時(shí)云朵,孫 豪
(1.四川省水產(chǎn)學(xué)校,成都 611730;2.雅安市農(nóng)業(yè)局畜牧發(fā)展中心,四川 雅安 625000)
乳酸菌是人體腸道和泌尿生殖道常見(jiàn)原住菌群,該屬的菌株已被廣泛用作益生菌?;钚匀樗峋鷮?duì)動(dòng)物機(jī)體有許多的生理功能:不僅可促進(jìn)營(yíng)養(yǎng)物質(zhì)消化吸收,降低膽固醇,抑制病原菌,維持腸道菌群平衡,還可維持神經(jīng)系統(tǒng)的正常功能,調(diào)節(jié)機(jī)體免疫,改善胃腸道功能[1-2]。乳酸菌在調(diào)節(jié)宿主腸道防御功能方面展現(xiàn)極為重要的作用。本文在國(guó)內(nèi)外研究基礎(chǔ)上,綜述了乳酸菌對(duì)腸道防御調(diào)節(jié)作用及其可能機(jī)制。
乳酸菌產(chǎn)生乳酸和過(guò)氧化氫被認(rèn)為在預(yù)防病原微生物定植和繁殖中發(fā)揮重要作用。研究表明,乳酸菌通過(guò)分泌的乳酸改變細(xì)胞膜的通透性,降低腸道pH和Eh,從而滅活沙眼衣原體等病原菌[3]。戊糖乳桿菌LPS16產(chǎn)生的乳酸可抑制多重耐藥幽門螺桿菌的活性[4]。由于乳酸積累,鼠李糖乳桿菌GG對(duì)鼠傷寒沙門氏菌具有強(qiáng)抗菌活性[5]。乳酸菌產(chǎn)生的過(guò)氧化氫也是一種重要的抗菌化合物,能夠激活腸道內(nèi)的過(guò)氧化物酶-硫氰酸鹽反應(yīng)系統(tǒng),并與過(guò)氧化物酶結(jié)合,將硫氰酸鹽氧化成氧化性中間產(chǎn)物,抑制病原菌的生長(zhǎng)[6-7]。
細(xì)菌素是一類選擇性地作用于細(xì)菌靶細(xì)胞的殺菌或抑菌物質(zhì),大多屬于多肽類分子。部分乳酸菌產(chǎn)生的細(xì)菌素屬于低分子量細(xì)菌素,可通過(guò)誘導(dǎo)致病菌細(xì)胞膜的通透化,使得致病菌的胞內(nèi)物質(zhì)外流,從而達(dá)到抑菌或殺菌作用[8]。目前,乳酸菌細(xì)菌素有g(shù)assericin A、reutericin 6、Acidocin A和Acidocin B等[9-11]。此外乳酸桿菌也會(huì)產(chǎn)生一定的抗生素。羅伊氏乳桿菌ATCC55730菌株產(chǎn)生羅伊氏抗生素(3-羥基丙醛),其是一種廣譜抗生素,不僅對(duì)革蘭氏陽(yáng)性和革蘭氏陰性細(xì)菌具有抗生素活性,而且對(duì)酵母菌、真菌、原生動(dòng)物和病毒均具有抗生素活性[12-13]。Corr等研究表明,唾液乳桿菌UCC118產(chǎn)生的Abp118細(xì)菌素在體內(nèi)可顯著保護(hù)小鼠免受食源性侵入病原體單增李斯特菌的感染,而發(fā)生穩(wěn)定突變的唾液乳桿菌UCC118不能產(chǎn)生Abp118細(xì)菌素,導(dǎo)致小鼠被兩株單增李斯特菌EGDE和LO28感染[14]。
乳酸桿菌可通過(guò)對(duì)宿主有限資源的競(jìng)爭(zhēng)來(lái)抑制病原菌。除競(jìng)爭(zhēng)營(yíng)養(yǎng)物之外,乳酸菌與病原菌還要競(jìng)爭(zhēng)微量元素等。鐵元素幾乎是所有的細(xì)菌必不可少的元素,嗜酸乳桿菌和德氏乳桿菌細(xì)菌表面可以結(jié)合氫氧化鐵,導(dǎo)致鐵元素不被病原微生物利用[15-16]。
細(xì)胞培養(yǎng)試驗(yàn)表明,乳酸菌能夠黏附上皮細(xì)胞,形成菌膜,從而阻斷病原體的附著,這種機(jī)制在乳酸菌對(duì)宿主的作用中扮演重要角色。這種抗粘附作用可能是益生菌和致病菌競(jìng)爭(zhēng)同一受體或誘導(dǎo)增加產(chǎn)生黏蛋白的結(jié)果。Mack等研究表明,HT20-MTX細(xì)胞與植物乳桿菌299v或鼠李糖乳桿菌GG共培養(yǎng)時(shí),能夠誘導(dǎo)產(chǎn)生MUC3黏蛋白,MUC3黏蛋白隨后抑制了腸致病性大腸桿菌E2348/69的黏附[17]。乳酸菌最突出的黏附特性是其表面蛋白,如羅伊氏乳桿菌1063的黏液結(jié)合蛋白MUB[18]。其具有共同特性,比如信號(hào)肽的存在,細(xì)胞壁C-末端錨定模體(LPXTG:L-亮氨酸、P-脯氨酸、X-任意氨基酸、T-蘇氨酸、G-甘氨酸)和幾個(gè)含有假定黏附功能的重復(fù)域[19]。除了表面蛋白黏附排斥,乳酸菌與致病菌也競(jìng)爭(zhēng)相同受體,其他抗黏附模式的表達(dá)可能是分泌蛋白降解碳水化合物受體,建立生物膜,產(chǎn)生受體類似物和誘導(dǎo)生物表面活性劑[20]。
Hess等采用慶大霉素保護(hù)法量化侵襲性,在細(xì)胞培養(yǎng)試驗(yàn)中,細(xì)胞內(nèi)外之間的細(xì)菌差異通過(guò)慶大霉素殺死細(xì)胞外的細(xì)菌來(lái)實(shí)現(xiàn)。細(xì)胞內(nèi)細(xì)菌的數(shù)量通過(guò)上皮細(xì)胞裂解液菌落計(jì)數(shù)測(cè)定[21]。乳酸菌所產(chǎn)生的抗菌物質(zhì)可導(dǎo)致細(xì)胞內(nèi)細(xì)菌數(shù)量減少,盡管這些物質(zhì)不會(huì)直接抑制侵襲而只是殺死病原體,但也有部分乳酸菌能夠特異性干擾細(xì)菌入侵宿主細(xì)胞。研究表明,部分益生乳酸菌的分泌物能干擾大腸桿菌或李斯特桿菌侵宿主上皮細(xì)胞[22]。乳酸菌抑制病原體侵入腸上皮細(xì)胞這種體外屬性在體內(nèi)是否存在,必須在將作用相關(guān)基因與等位基因突變及親緣菌株鑒定后,在動(dòng)物試驗(yàn)中驗(yàn)證。
絕大多數(shù)細(xì)菌毒力因子是毒素,部分乳酸菌可抑制病原微生物毒素基因表達(dá)來(lái)中和、降解毒素,從而發(fā)揮抗毒素能力。伴放線放線桿菌與局部侵襲性牙周炎的發(fā)生密切相關(guān),唾液乳桿菌OMZ520和加氏乳酸桿菌OMZ525無(wú)細(xì)胞上清可下調(diào)該致病菌白細(xì)胞毒素(LtxA)和細(xì)胞致死腫脹毒素(CdtB)[23]。與此類似,Mundi等研究表明,嗜酸乳桿菌無(wú)細(xì)胞上清培養(yǎng)液能抑制空腸彎曲桿菌81-176毒力基因ciaB和flaA的表達(dá),而活化甲基周期被打亂的luxS突變菌株只有ciaB毒力基因被抑制,同型半胱氨酸的補(bǔ)充恢復(fù)了被破壞的周期,繼而恢復(fù)乳酸菌對(duì)兩種毒力基因的抑制作用[24]。乳酸桿菌分泌的高濃度有機(jī)酸抑制腸出血性大腸桿菌O157∶H7志賀毒素2A的表達(dá),而菌體能與EHEC O157∶H7志賀毒素(Stx)B亞基的結(jié)合,降低后者對(duì)Vero細(xì)胞的毒性作用[25-26]。
部分乳酸菌預(yù)防真菌毒素對(duì)宿主的保護(hù)是主要基于毒素和乳酸菌之間的物理化學(xué)作用。熱和酸滅活的鼠李糖乳桿菌GG對(duì)玉米赤霉烯酮展現(xiàn)出較高的結(jié)合性能,但這種結(jié)合是可逆的,在水洗時(shí)能重新釋放[27]。Turner等發(fā)現(xiàn),鼠李糖乳桿菌GG能夠結(jié)合脫氧雪腐鐮刀菌烯醇,限制這種毒素的生物利用度,從而恢復(fù)腸分化中Caco-2細(xì)胞的堿性磷酸酶活性[28]。此外,乳酸菌還能結(jié)合黃曲霉毒素毒素B1(AFB1)等真菌毒素。李志剛等研究表明,乳酸菌結(jié)合AFB1的強(qiáng)度為4%~5%,而被結(jié)合的AFB1仍具有較強(qiáng)的致突變性,而體內(nèi)試驗(yàn)表明,植物乳桿菌BS22、鼠李糖乳桿菌GG能夠調(diào)節(jié)腸道的吸收,減少AFB1在體內(nèi)的蓄積量,促進(jìn)隨糞便排泄量,減緩肝損傷[29-31]。體外研究表明,鼠李糖乳桿菌GG降低細(xì)胞對(duì)AFB1的吸收,并防止了細(xì)胞膜和DNA的損傷[32]。同時(shí),部分乳酸菌能產(chǎn)生抗霉菌毒素類似物,抑制AFB1的合成。Gourama等研究表明,乳酸菌培養(yǎng)液的無(wú)細(xì)胞上清液可以顯著抑制AFB1的合成,但具體是上清液中什么物質(zhì)還不太清楚[33]。此外,部分乳酸菌還能直接降解AFB1。Megalla等用乳酸菌發(fā)酵牛乳,發(fā)現(xiàn)乳中AFB1轉(zhuǎn)化為無(wú)毒的AFB2和低毒的 AFR0[34]。
乳酸菌菌體、代謝產(chǎn)物及細(xì)胞壁均有免疫刺激特性,能刺激腸道黏膜免疫系統(tǒng),激活先天性免疫應(yīng)答[35]。乳酸菌到達(dá)消化道后,被M細(xì)胞與上皮細(xì)胞內(nèi)化進(jìn)入小腸內(nèi)腔。乳酸菌菌體或片段被腸上皮細(xì)胞內(nèi)化后,先與消化道固有膜中的抗原呈遞細(xì)胞、巨噬細(xì)胞和(或)樹(shù)突狀細(xì)胞相互作用,誘導(dǎo)上皮細(xì)胞釋放IL-6。巨噬細(xì)胞和樹(shù)突狀細(xì)胞吞噬乳酸菌或片段,從而誘導(dǎo)TNF-α、IFN-γ、IL-10和IL-6等細(xì)胞因子的產(chǎn)生。TNF-α是啟動(dòng)黏膜相關(guān)的免疫細(xì)胞和腸上皮細(xì)胞相互作用所必須的因子,而IFN-γ則是一些免疫細(xì)胞成熟所必須的[36]。誘導(dǎo)釋放的IL-6能夠促進(jìn)分泌IgA+的B細(xì)胞的增殖,導(dǎo)致分泌IgA細(xì)胞數(shù)量的增加及向腸固有層漿細(xì)胞靠近通路的增多[37]。IL-6、IL-4和TGF-β結(jié)合能夠誘導(dǎo)胸腺依賴性B細(xì)胞表面抗原從IgM轉(zhuǎn)變?yōu)镮gA,增加腸道固有膜分泌IgA的B細(xì)胞的數(shù)量[38]。此外,免疫細(xì)胞產(chǎn)生的IL-10、IL-6、IL-4和TGF-β能夠促進(jìn)胸腺依賴細(xì)胞,通過(guò)乳酸菌刺激能夠誘導(dǎo)IgA循環(huán),增加腸道遠(yuǎn)端黏膜處IgA分泌細(xì)胞數(shù)量。IgA分泌細(xì)胞移到腸系膜淋巴結(jié)后穿過(guò)胸導(dǎo)管到達(dá)循環(huán)系統(tǒng),到達(dá)支氣管和乳腺,促使機(jī)體分泌大量的IgA以抵御病原菌的侵襲[38]。Liu等研究表明,大熊貓?jiān)粗参锶闂U菌BSGP201683能上調(diào)大腸桿菌攻毒組小鼠空腸中IL-1β、IL-6、IL-8、TLR-4和MyD88的表達(dá),最終導(dǎo)致大腸桿菌攻毒組小鼠結(jié)腸中的腸桿菌科細(xì)菌數(shù)量下降[39]。
乳酸菌通過(guò)分泌抗菌物質(zhì)、競(jìng)爭(zhēng)排斥、調(diào)節(jié)腸道免疫、改善腸道菌群等方式發(fā)揮益生作用。目前研究主要側(cè)重于乳酸菌的免疫調(diào)節(jié)和競(jìng)爭(zhēng)黏附作用效果,其作用的前提是乳酸菌表面成分與腸道上皮細(xì)胞受體的互作,但乳酸菌表面成分與受體之間具體識(shí)別方式仍然不明了,有關(guān)表面成分在腸道識(shí)別后的信號(hào)啟動(dòng)與傳導(dǎo)機(jī)制仍待進(jìn)一步深入研究,并且隨著基因工程以及生物技術(shù)的發(fā)展,相信在乳酸菌的功能作用機(jī)制研究上可以取得更大的進(jìn)步。
[參考文獻(xiàn)]
[1] 駱鵬飛,俞蘭秀,鐘霞,等.乳酸菌對(duì)精神性疾病作用的研究進(jìn)展[J].食品工業(yè)科技,2017(16):347-351.
[2] 代永剛,田志剛,南喜平.乳酸菌及其生理功能研究的進(jìn)展[J].農(nóng)產(chǎn)品加工·學(xué)刊,2009(7):24-26.
[3] Gong Z,Luna Y,Yu P,et al.LactobacilliinactivateChlamydia trachomatisthrough lactic acid but not H2O2[J].Plos One,2014,9(9):107 758.
[4] Zheng P X,Fang H Y,Yang H B,et al.Lactobacilluspentosus strain LPS16 produces lactic acid,inhibiting multidrug-resistantHelicobacter pylori[J].Journal of Microbiology Immunology&In?fection,2016,49(2):168-174.
[5] De Keersmaecker S C,Verhoeven T L,Desair J,et al.Strong anti?microbial activity ofLactobacillus rhamnosusGG againstSalmo?nella typhimuriumis due to accumulation of lactic acid[J].Fems Microbiology Letters,2006,259(1):89-96.
[6] Voltan S,Martines D,Elli M,et al.Lactobacillus crispatus M247-derived H2O2acts as a signal transducing molecule activating per?oxisome proliferator activated receptor-gamma in the intestinal mucosa[J].Gastroenterology,2008,135(4):1 216-1 227.
[7] Otero M C,Nader-Macías M E.Inhibition ofStaphylococcus aure?usby H2O2-producingLactobacillus gasseriisolated from the vagi?nal tract of cattle[J].Animal Reproduction Science,2006,96(1/2):35-46.
[8] 貢漢生,孟祥晨.乳酸菌細(xì)菌素分類與作用機(jī)制[J].食品與發(fā)酵工業(yè),2008,34(1):105-109.
[9] Nakamura K,Arakawa K,Kawai Y,et al.Food preservative poten?tial of gassericin A-containing concentrate prepared from a cheese whey culture supernatant fromLactobacillus gasseriLA39[J].Animal Science Journal,2013,84(2):144-149.
[10] Pandey N,Malik R K,Kaushik J K,et al.Gassericin A:a circular bacteriocin produced by lactic acid bacteriaLactobacillus gasseri[J].World Journal of Microbiology&Biotechnology,2013,29(11):1 977-1 987.
[11] Majhenic A C,Venema K,Allison G E,et al.DNA analysis of the genes encoding acidocin LF221 A and acidocin LF221 B,two bac?teriocins produced byLactobacillus gasseriLF221[J].Applied Mi?crobiology&Biotechnology,2004,63(6):705-714.
[12] Talarico T L,Casas I A,Chung T C,et al.Production and isolation of reuterin,a growth inhibitor produced byLactobacillus reuteri[J].Antimicrobial Agents&Chemotherapy,1988,32(12):1 854-1 858.
[13] Cleusix V,Lacroix C,Vollenweider S,et al.Glycerol induces reuterin production and decreasesEscherichia colipopulation in an in vitro model of colonic fermentation with immobilized human feces[J].Fems Microbiology Ecology,2008,63(1):56-64.
[14] Corr S C,Li Y,Riedel C U,et al.Bacteriocin production as a mechanism for the antiinfective activity ofLactobacillus salivariusUCC118[J].Proceedings of the National Academy of Sciences of the United States of America,2007,104(18):7 617-7 621.
[15] Weinberg E D.TheLactobacillusanomaly:total iron abstinence[J].Perspectives in Biology&Medicine,1997,40(4):578-583.
[16] Elli M,Zink R,Rytz A,et al.Iron requirement ofLactobacillusspp.in completely chemically defined growth media[J].Journal of Applied Microbiology,2000,88(4):695-703.
[17] Mack D R,Ahrne S,Hyde L,et al.Extracellular MUC3 mucin se?cretion follows adherence ofLactobacillus strainsto intestinal epi?thelial cellsin vitro[J].Gut,2003,52(6):827-833.
[18] Roos S,Jonsson H.A high-molecular-mass cell-surface protein fromLactobacillus reuteri1063 adheres to mucus components[J].Microbiology,2002,148(2):433-442.
[19] Sánchez B,Bressollier P,Urdaci M C.Exported proteins in probi?otic bacteria:adhesion to intestinal surfaces,host immunomodula?tion and molecular cross-talking with the host[J].Fems Immunolo?gy&Medical Microbiology,2008,54(1):1-17.
[20] Chen X Y,Woodward A,Zijlstra R T,et al.Exopolysaccharides synthesized byLactobacillus reuteriProtect against Enterotoxigen?icEscherichia coliin Piglets[J].Appl Environ Microbiol,2014,80(18):5 752-5 760.
[21] Hess P,Altenh?fer A,Khan A S,et al.A Salmonella fim homo?logue in Citrobacter freundii mediates invasionin vitroand cross?ing of the blood-brain barrier in the rat pup model[J].Infection&Immunity,2004,72(9):5 298-5 307.
[22] Botes M,Loos B,Reenen C A V,et al.Adhesion of the probiotic strainsEnterococcus mundtiiST4SA andLactobacillus plantarum423 to Caco-2 cells under conditions simulating the intestinal tract,and in the presence of antibiotics and anti-inflammatory medicaments[J].Archives of Microbiology,2008,190(5):573-584.
[23] Nissen L,Sgorbati B,Biavati B,et al.Lactobacillus salivariusandL.gasseridown-regulate aggregatibacter actinomycetemcomitans exotoxins expression[J].Annals of Microbiology,2014,64(2):611-617.
[24] Mundi A,Delcenserie V,Amirijami M,et al.Cell-free prepara?tions ofLactobacillus acidophilusstrain La-5 andBifidobacterium longumstrain NCC2705 affect virulence gene expression in Cam?pylobacter jejuni[J].Journal of Food Protection,2013,76(10):1 740-1 746.
[25] Carey C M,Kostrzynska M,Ojha S,et al.The effect of probiotics and organic acids on Shiga-toxin 2 gene expression in enterohem?orrhagicEscherichia coliO157∶H7[J].Journal of Microbiological Methods,2008,73(2):125-132.
[26] Kakisu E,Abraham A G,Farinati C T,et al.Lactobacillus planta?rumisolated from kefir protects vero cells from cytotoxicity by type-II shiga toxin fromEscherichia coliO157∶H7[J].Journal of Dairy Research,2013,80(1):64-71.
[27] El-Nezami H,Polychronaki N,Lee Y K,et al.Chemical moieties and interactions involved in the binding of zearalenone to the sur?face ofLactobacillus rhamnosusstrains GG[J].J Agric Food Chem,2004,52(14):4 577-4 581.
[28] Turner P C,Wu Q K,Piekkola S,et al.Lactobacillus rhamnosus,strain GG restores alkaline phosphatase activity in differentiating Caco-2 cells dosed with the potent mycotoxin deoxynivalenol[J].Food&Chemical Toxicology,2008,46(6):2 118-2 123.
[29] 李志剛,楊寶蘭,姚景會(huì),等.乳酸菌對(duì)黃曲霉毒素B1吸附作用的研究[J].中國(guó)食品衛(wèi)生雜志,2003,15(3):212-215.
[30] 張艷,曾東,倪學(xué)勤,等.植物乳桿菌BS22對(duì)黃曲霉毒素B1的吸附效果及對(duì)肉雞消化道菌群的影響[J].湖南農(nóng)業(yè)大學(xué)學(xué)報(bào):自科版,2015,41(3):286-293.
[31] Gratz S,T?ubel M,Juvonen R O,et al.Lactobacillus rhamnosusstrain GG modulates intestinal absorption,fecal excretion,and tox?icity of aflatoxin B1in rats[J].Applied&Environmental Microbiol?ogy,2006,72(11):7 398-7 400.
[32] Gratz S,Wu Q K,El-Nezami H,et al.Lactobacillus rhamnosusstrain GG reduces aflatoxin B1transport,metabolism,and toxicity in Caco-2 Cells[J].Applied&Environmental Microbiology,2007,73(12):3 958-3 964.
[33] Gourama H,Bullerman L B.Antimycotic and antiaflatoxigenic effect of lactic acid bacteria:a review[J].Journal of Food Protec?tion,1995,58(11):1 275-1 280.
[34] Megalla S E,Mohran M A.Fate of aflatoxin B-1 in fermented dairy products[J].Mycopathologia,1984,88(1):27-29.
[35] Baarlen P V,Wells J M,Kleerebezem M.Regulation of intestinal homeostasis and immunity with probiotic lactobacilli[J].Trends in Immunology,2013,34(5):208-215.
[36] 程福亮,王麗榮,王春鳳,等.乳酸菌對(duì)腸道黏膜免疫影響的研究進(jìn)展[J].飼料博覽,2013(12):12-15.
[37] Citar M,Hacin B,Tompa G,et al.Human intestinal mucosa-asso?ciatedLactobacillusandBifidobacteriumstrains with probiotic properties modulate IL-10,IL-6 and IL-12 gene expression in THP-1 cells[J].Beneficial Microbes,2015,6(3):325-336.
[38] Galdeano C M,Leblanc A D M D,Vinderola G,et al.Proposed,model:mechanisms of immunomodulation induced by probiotic Bacteria[J].Clinical&Vaccine Immunology Cvi,2007,14(5):485-492.
[39] Liu Q,Ni X,Wang Q,et al.Lactobacillus plantarumBSGP201683 isolated from giant panda feces attenuated inflammation and improved gut microflora in mice challenged with enterotoxigenicEscherichia coli[J].Frontiers in Microbiology,2017,8:1 885.