董 雨,沈?yàn)t然,黨旖旎,張國新,朱 宏
南京醫(yī)科大學(xué)第一附屬醫(yī)院消化科,江蘇 南京 210029
食管癌是中國第三大常見癌癥,同時(shí)也是第四位引起腫瘤死亡的癌癥[1],目前病因仍不明確,考慮與食物粗糙、飲酒、吸煙、遺傳及食管炎等因素有關(guān)。許多食管鱗狀細(xì)胞癌(以下簡(jiǎn)稱鱗癌)的患者都有嚴(yán)重的吸煙和飲酒史,腺癌患者更易肥胖和患胃食管反流病。食管癌的主要組織學(xué)類型為腺癌和鱗癌[2],全球范圍內(nèi),鱗癌多發(fā)于亞洲東部和非洲的東南部[3-4],且好發(fā)于食管中段,而腺癌則多發(fā)生在食管遠(yuǎn)端。在我國鱗癌更常見,比例超過90%,且食管癌發(fā)病地區(qū)差異明顯,高發(fā)區(qū)與周邊相對(duì)低發(fā)區(qū)形成鮮明對(duì)比,構(gòu)成我國食管癌最典型的流行病學(xué)特征[5]。傳統(tǒng)上,腺癌和鱗癌都是通過外科手術(shù)切除治療[6]。然而,即使是病灶被完整切除的患者,或經(jīng)包括手術(shù)、化療、放療和放化療聯(lián)合在內(nèi)的多方法聯(lián)合治療,食管癌預(yù)后仍然很差[7],總體5年生存率不足20%[5]。因此,我們需要不斷的研究關(guān)于食管癌的發(fā)生、發(fā)展機(jī)制,以尋求新的診治方法。
人體胃腸道微生態(tài)是最復(fù)雜的微生態(tài)系統(tǒng)之一,人體的胃腸道菌群構(gòu)成一個(gè)龐大、復(fù)雜的微生態(tài)系統(tǒng),參與物質(zhì)代謝、促進(jìn)機(jī)體免疫系統(tǒng)的發(fā)育和抑制病原菌定植等生理作用。人體腸道菌群數(shù)量為1 014個(gè),是人類細(xì)胞總數(shù)的10倍,被稱為人類的第二套基因組[8]。胃腸道菌群與宿主處于共生的狀態(tài),對(duì)宿主發(fā)揮著重要的生理功能[9]。正常的腸道微生物群在宿主營養(yǎng)代謝、藥物代謝、維護(hù)腸道黏膜屏障結(jié)構(gòu)完整性、免疫調(diào)節(jié)和防護(hù)病原體等方面具有特定的功能[10-14]。目前腸道菌群也被證明在人體健康和疾病方面起著至關(guān)重要的作用,其中包括消化道腫瘤[15]。有研究[16-20]表明,人類腸道菌群可以通過破壞DNA、激活致癌信號(hào)傳導(dǎo)途徑、產(chǎn)生腫瘤促進(jìn)代謝物和抑制抗腫瘤免疫反應(yīng)來影響消化道腫瘤的發(fā)生和發(fā)展。胃腸道微生物群可以通過合理的抗生素、益生菌和益生元制劑的方式進(jìn)行改良[21-23],使得人類對(duì)癌癥和微生物群落之間的關(guān)系有了更好的了解,這為胃腸腫瘤的治療方法提供了新的可能,本文就食管癌發(fā)生、發(fā)展各階段與微生態(tài)的相關(guān)研究作一概述。
關(guān)于對(duì)食管內(nèi)微生物群的研究,可以追溯到1980年代早期,證明食管內(nèi)并不只是存在口腔吞咽或胃食管反流得來的微生物群[23-24]。近年來,關(guān)于健康個(gè)體微生物群組成的相關(guān)知識(shí)已經(jīng)通過基于宏基因組學(xué)方法的研究得到了進(jìn)展。然而,與胃腸道相比,食管內(nèi)獲取樣本的困難限制了食管菌群的研究數(shù)量[25]。研究發(fā)現(xiàn),食管菌群內(nèi)以鏈球菌為主[26],同時(shí)存在其他細(xì)菌如普氏菌、梭形桿菌、韋榮球菌、孿生球菌、顆粒鏈菌[27-28]。曾有觀點(diǎn)認(rèn)為:食管菌群主要起源于口腔[26],然而,WADE等[29]研究發(fā)現(xiàn),食管微生物群中還存在不同于口腔菌群的微生物成分,提示食管遠(yuǎn)端存在自己獨(dú)特的微生態(tài)群,表明微生物群落在不同的兩個(gè)身體部位發(fā)生的適應(yīng)性變化。
胃食管反流病是目前所知的引起B(yǎng)arrett食管的一個(gè)很重要的因素,進(jìn)一步可以發(fā)展成食管腺癌。胃食管反流病中,根據(jù)反流物是否導(dǎo)致食管黏膜糜爛、潰瘍,進(jìn)一步可分成反流性食管炎和非糜爛性反流病。反流性食管炎經(jīng)過非正常愈合后,食管下段的復(fù)層鱗狀上皮被化生的單層柱狀上皮所替代,成為Barrett食管[5],0.5%~1%的胃食管反流病患者最終發(fā)展為食管腺癌[30]。
YANG等[30]的研究發(fā)現(xiàn),人類食管遠(yuǎn)端有自己獨(dú)特的微生物群,在炎癥和化生過程中會(huì)被擾亂。這項(xiàng)研究使用16S rRNA基因檢測(cè)食管微生態(tài)群落,并確定了Ⅰ型和Ⅱ型微生物組群,Ⅰ型微生物組主要由革蘭陽性菌的厚壁菌屬主導(dǎo),Ⅱ型主要由革蘭陰性菌形成(53%Ⅱ型vs15%Ⅰ型),其中最具代表性菌屬有菌類桿菌、變形桿菌、梭菌和螺旋菌屬[30]。Ⅱ型微生物群與反流性食管炎及Barrett食管具有明顯相關(guān)性,即占主導(dǎo)地位的菌群由革蘭陰性變?yōu)楦锾m陽性菌,提示菌群失調(diào)在疾病發(fā)生過程中起了一定作用[30]。研究表明,Ⅱ型微生物群可通過途徑一:產(chǎn)生免疫活性成分,比如脂溶糖 (LPS),它可以激活NF-κB這條經(jīng)典的炎癥信號(hào)通路,在反流性食管炎及Barrett食管患者食管中均可檢測(cè)出NF-κB信號(hào)因子的表達(dá)升高,NF-κB激活可引起炎癥因子例如IL-1β、IL-6、IL-8和 TNF-α表達(dá)增加[31];或途徑二:激活誘導(dǎo)型一氧化氮合成酶(iNOS),iNOS的激活降低了食管下括約肌蠕動(dòng)頻率,長期會(huì)增加患食管癌的風(fēng)險(xiǎn)[30]。在反流性食管炎患者的食管中,LEBEL-BINAY等[32]檢測(cè)出一種新的主導(dǎo)菌群:簡(jiǎn)明彎曲桿菌,這種細(xì)菌與上皮細(xì)胞分泌IL-18密切相關(guān),進(jìn)而影響消化道腫瘤患者的預(yù)后。ALEVTINA等[31]的隊(duì)列研究發(fā)現(xiàn),Barrett食管中菌群以鏈球菌和普氏菌為主,這兩種菌又與腰臀比和食管裂孔疝長度有關(guān),是已知的兩個(gè)食管腺癌發(fā)生的危險(xiǎn)因素。在反流性食管炎和Barrett食管中,微生物的改變可能導(dǎo)致免疫活性的增強(qiáng),進(jìn)而引起慢性炎癥,最終導(dǎo)致食管腺癌[30]。綜上所述,食管菌群在正常食管、反流性食管炎和Barrett食管之間存在差異,從而支持食管病變與菌群群落的特征有關(guān)。
食管腺癌在我國食管癌中所占比例小,僅1.2%~6.5%[33]。目前已知的與食管腺癌發(fā)生的相關(guān)危險(xiǎn)因素為反流性食管炎[34]、幽門螺桿菌感染率的下降[35]、吸煙[36]、肥胖及飲食習(xí)慣[37]。Barrett食管是食管腺癌的主要癌前病變,一般從Barrett食管進(jìn)展到食管腺癌的時(shí)間大約為5年[37],口服抗氧化劑、食用新鮮水果蔬菜可能降低Barrett食管發(fā)病率,進(jìn)而減少食管腺癌的發(fā)生風(fēng)險(xiǎn)[38]。
YAGHOOBI等[35]研究發(fā)現(xiàn),幽門螺桿菌可能通過影響B(tài)arrett食管的發(fā)展從而降低食管腺癌的發(fā)生率。具體的機(jī)制之一是,在IL-1b表達(dá)升高的個(gè)體中,幽門螺桿菌通過抑制壁細(xì)胞功能和(或)引起萎縮性胃炎,進(jìn)而使胃酸分泌減少,而胃酸過多被認(rèn)為是加重反流性食管炎的原因之一[39]。其他作用可能包括胃內(nèi)激素相互作用的變化及由幽門螺桿菌的消失引起的T細(xì)胞群數(shù)量的變化[39]。機(jī)制二:由于幽門螺桿菌的消失而引起的胃微生態(tài)菌群的改變,進(jìn)而導(dǎo)致了胃酸反流相關(guān)的食管腺癌[39]。在感染與未感染幽門螺桿菌的不同個(gè)體中,胃腸道微生態(tài)菌落結(jié)構(gòu)有顯著不同,這似乎表明幽門螺桿菌可以改變鄰近組織的患癌風(fēng)險(xiǎn)。BLACKETT等[40]研究發(fā)現(xiàn),在反流性食管炎發(fā)展至食管腺癌過程中最主導(dǎo)的變化是彎曲桿菌定植于被反流侵蝕的食管,并逐漸取代正常菌群,提示反流性疾病向腺癌的進(jìn)展可能是由于宿主體內(nèi)的微生物環(huán)境發(fā)生主動(dòng)改變,而不是因?yàn)樯掀ぜ?xì)胞性質(zhì)改變后引起的微生物群落的被動(dòng)遷移。綜上所述,幽門螺桿菌的感染將引起胃內(nèi)微生態(tài)結(jié)構(gòu)的變化,進(jìn)而影響腫瘤的發(fā)生。另外有研究[41]發(fā)現(xiàn),與正常組織相比,食管的癌性組織中齒垢密螺旋體、輕型鏈球菌及咽峽炎鏈球菌數(shù)量明顯增多,這些病原體通過細(xì)胞因子誘發(fā)炎癥,可能進(jìn)一步促進(jìn)腫瘤的發(fā)生。
在我國,鱗癌是食管癌最常見的組織學(xué)類型,比例超過90%。食管鱗狀上皮不典型增生是鱗癌的癌前病變[42]。上世紀(jì)70年代中國提出了這樣一種假設(shè):食管鱗癌的發(fā)生與較差的口腔衛(wèi)生習(xí)慣或牙齒脫落有關(guān)[43]。近年來,來自中國[44]、印度[45]、伊朗[46]、拉丁美洲[47]和日本[48]等食管癌高發(fā)地區(qū)的研究證實(shí)了較差的口腔環(huán)境確實(shí)與鱗癌有關(guān)。在鱗癌患者唾液中,微生態(tài)多樣性較正常人及有異型增生個(gè)體減少[43],伯克氏菌、卡托菌、棒桿菌、羊肚菌、消化球菌、心桿菌數(shù)量均有明顯減少[43]。最近,GAO等[49]在研究鱗癌發(fā)病機(jī)理時(shí)發(fā)現(xiàn),一種會(huì)引起口腔鱗狀細(xì)胞癌的特定細(xì)菌牙齦卟啉單胞菌,可能與鱗癌的發(fā)生有關(guān),再次提出了這兩種腫瘤的相似性,且該細(xì)菌會(huì)選擇性的感染鱗癌及周邊的黏膜,而不會(huì)感染健康的食管黏膜,甚至這種細(xì)菌與食管癌的進(jìn)展程度和預(yù)后相關(guān),可以考慮作為鱗癌的腫瘤標(biāo)志物[49]。有研究[23]表示,若慢性萎縮性胃炎患者的血清里胃蛋白酶原Ⅰ(PGⅠ)與胃蛋白酶原Ⅱ(PGⅡ)比值降低,則其與食管鱗狀上皮不典型增生及鱗癌的發(fā)生有顯著相關(guān)性,而在PGⅠ/Ⅱ比值降低個(gè)體中,上消化道微生態(tài)多樣性與食管鱗狀上皮不典型增生密切相關(guān)。另一項(xiàng)研究[50]表明,與健康人相比,食管鱗狀上皮不典型增生及鱗癌患者的胃體微生態(tài)中梭狀菌及厚壁菌異常豐富,這表明胃的微生態(tài)失調(diào)可能與食管病變相關(guān)[50]。DIAKOWSKA等[51]發(fā)現(xiàn),幽門螺桿菌感染增加了IL-18的產(chǎn)生,IL-18是IFN-c的誘導(dǎo)因子,可刺激固有和反應(yīng)性免疫反應(yīng)發(fā)生(Th1和Th2),激活NK細(xì)胞誘導(dǎo)細(xì)胞凋亡,不適當(dāng)?shù)腎L-18釋放與鱗狀細(xì)胞癌的臨床分期有關(guān)。
目前積累的證據(jù)表明,不平衡的胃腸道微生態(tài)菌群將引起食管炎癥及腫瘤。了解微生態(tài)菌群變化對(duì)不同類型食管癌及食管癌發(fā)生、發(fā)展過程中不同環(huán)節(jié)的影響,將為食管癌的診斷、預(yù)防和治療提供新的可能性。
[1] CHEN W, ZHENG R, BAADE P D, et al. Cancer statistics in China, 2015 [J]. CA Cancer J Clin, 2016, 66(2): 115-132. DOI: 10.3322/caac.21338.
[2] ENZINGER P C, MAYER R J. Esophageal cancer [J]. N Engl J Med. 2003, 349(23): 2241-2252. DOI: 10.1056/NEJMra035010.
[3] TORRE L A, BRAY F, SIEGEL R L, et al. Global cancer statistics, 2012 [J]. CA Cancer J Clin, 2015, 65(2): 87-108. DOI: 10.3322/caac.21262.
[4] ARNOLD M, SOERJOMATARAM I, FERLAY J, et al. Global incidence of oesophageal cancer by histological subtype in 2012 [J]. Gut, 2015, 64(3): 381-387. DOI: 10.1136/gutjnl-2014-308124.
[5] 馬丹, 楊帆, 廖專, 等. 中國早期食管癌篩查及內(nèi)鏡診治專家共識(shí)意見(2014年,北京)[J]. 中國實(shí)用內(nèi)科雜志, 2015, 35(4): 320-337. DOI: 10.7504/nk2015030402.
[6] BABA Y, YOSHIDA N, SHIGAKI H, et al. Prognostic impact of postoperative complications in 502 patients with surgically resected esophageal squamous cell carcinoma: a retrospective single-institution study [J]. Ann Surg, 2016, 264(2): 305-311. DOI: 10.1097/SLA.0000000000001510.
[7] BABA Y, WATANABE M, YOSHIDA N, et al. Radiofrequency ablation for pulmonary metastases from gastrointestinal cancers [J]. Ann Thorac Cardiovasc Surg, 2014, 20(2): 99-105.
[8] PAMER E G. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens [J]. Science, 2016, 352(6285): 535-538. DOI: 10.1126/science.aad9382.
[9] 劉龍, 蘇文. 胃腸道微生態(tài)與腫瘤關(guān)系的研究進(jìn)展[J]. 中國微生態(tài)學(xué)雜志, 2016, 28(11): 1349-1352. DOI: 10.13381/j.cnki.cjm.201611030.
LIU L, SU W. The role of gastrointestinal microbiota in carcinogenesis: research advance [J]. Chinese Journal of Microecology, 2016, 28(11): 1349-1352. DOI: 10.13381/j.cnki.cjm.201611030.
[10] BELKAID Y, HAND T W. Role of the microbiota in immunity and inflammation [J]. Cell, 2014, 157(1): 121-141. DOI: 10.1016/j.cell.2014.03.011.
[11] CLEMENTE J C, URSELL L K, PARFREY L W, et al. The impact of the gut microbiota on human health: an integrative view [J]. Cell, 2012, 148(6): 1258-1270. DOI: 10.1016/j.cell.2012.01.035.
[12] THAISS C A, ZMORA N, LEVY M, et al. The microbiome and innate immunity [J]. Nature, 2016, 535(7610): 65-74. DOI: 10.1038/nature18847.
[13] TREMAROLI V, BACKHED F. Functional interactions between the gut microbiota and host metabolism [J]. Nature, 2012, 489(7415): 242-249. DOI: 10.1038/nature11552.
[14] HOOPER L V, LITTMAN D R, MACPHERSON A J. Interactions between the microbiota and the immune system [J]. Science, 2012, 336(6086): 1268-1273. DOI: 10.1126/science.1223490.
[15] VOGTMANN E, GOEDERT J J. Epidemiologic studies of the human microbiome and cancer [J]. Br J Cancer, 2016, 114(3): 237-242. DOI: 10.1038/bjc.2015.465.
[16] GARRETT W S. Cancer and the microbiota [J]. Science, 2015, 348(6230): 80-86. DOI: 10.1126/science.aaa4972.
[17] ZITVOGEL L, AYYOUB M, ROUTY B, et al. Microbiome and anticancer immunosurveillance [J]. Cell, 2016, 165(2): 276-287. DOI: 10.1016/j.cell.2016.03.001.
[18] JOHNSON C H, SPILKER M E, GOETZ L, et al. Metabolite and microbiome interplay in cancer immunotherapy [J]. Cancer Res, 2016, 76(21): 6146-6152. DOI: 10.1158/0008-5472.CAN-16-0309.
[19] ELINAV E, NOWARSKI R, THAISS C A, et al. Inflammation-induced cancer: crosstalk between tumours, immune cells and microorganisms [J]. Nat Rev Cancer, 2013, 13(11): 759-771. DOI: 10.1038/nrc3611.
[20] DZUTSEV A, GOLDSZMID R S, VIAUD S, et al. The role of the microbiota in inflammation, carcinogenesis, and cancer therapy [J]. Eur J Immunol, 2015, 45(1): 17-31. DOI: 10.1002/eji.201444972.
[21] BECATTINI S, TAUR Y, PAMER E G. Antibiotic-induced changes in the intestinal microbiota and disease [J]. Trends Mol Med, 2016, 22(6): 458-478. DOI: 10.1016/j.molmed.2016.04.003.
[22] PAMER E G. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens [J]. Science, 2016, 352(6285): 535-538. DOI: 10.1126/science.aad9382.
[24] YONG F, XUDONG N, LIJIE T. Human papillomavirus types 16 and 18 in esophagus squamous cell carcinoma: a meta-analysis[J]. Ann Epidemiol, 2013, 23(11): 726-734. DOI: 10.1016/j.annepidem.2013.07.002.
[25] LAU W F, WONG J, LAM K H, et al. Oesophageal microbial flora in carcinoma of the oesophagus [J]. Aust N Z J Surg, 1981, 51(1): 52-55.
[26] FINLAY I G, WRIGHT P A, MENZIES T, et al. Microbial flora in carcinoma of oesophagus [J]. Thorax, 1982, 37(3): 181-184.
[27] KUCZYNSKI J, LAUBER C L, WALTERS W A, et al. Experimental and analytical tools for studying the human microbiome [J]. Nat Rev Genet, 2011, 13(1): 47-58. DOI: 10.1038/nrg3129.
[28] DI PILATO V, FRESCHI G, RINGRESSI M N, et al. The esophageal microbiota in health and disease [J]. Ann N Y Acad Sci, 2016, 1381(1): 21-33. DOI: 10.1111/nyas.13127.
[29] WADE W G. The oral microbiome in health and disease [J]. Pharmacol Res, 2013, 69(1): 137-143. DOI: 10.1016/j.phrs.2012.11.006.
[30] YANG L, LU X, NOSSA C W, et al. Inflammation and intestinal metaplasia of the distal esophagus are associated with alterations in the microbiome [J]. Gastroenterology, 2009, 137(2): 588-597. DOI: 10.1053/j.gastro.2009.04.046.
[31] GALL A, FERO J, MCCOY C, et al. Bacterial composition of the human upper gastrointestinal tract microbiome is dynamic and associated with genomic instability in a Barrett’s esophagus cohort [J]. PLoS One, 2015, 10(6): e0129055. DOI: 10.1371/journal.pone.0129055.
[32] LEBEL-BINAY S, BERGER A, ZINZINDOHOUF, et al. Interleukin-18: biological properties and clinical implications [J]. Eur Cytokine Netw, 2000, 11(1): 15-26.
[33] 朱文亮, 趙學(xué)科, 韓晶晶, 等. 食管癌高/低發(fā)區(qū)1981~2010年882例原發(fā)性食管腺癌臨床病理特征和家族史變化初步分析[J]. 河南大學(xué)學(xué)報(bào)(醫(yī)學(xué)版), 2012, 31(3): 213-218.
ZHU W L, ZHAO X K, HAN J J, et al. Analysis on the clinicopathology and family history for 882 patients with primary esophageal adenocarcinoma ( EAC) in high-and-low Incidence areas for EAC over the past thirty years [J]. Journal of Henan University (Medical Science), 2012, 31(3): 213-218.
[34] WHITEMAN D C, PARMAR P, FAHEY P, et al. Association of Helicobacter pylori infection with reduced risk for esophageal cancer is independent of environmental and genetic modifiers [J]. Gastroenterology, 2010, 139(1): 73-83, e11-e12. DOI: 10.1053/j.gastro.2010.04.009.
[35] YAGHOOBI M, FARROKHYAR F, YUAN Y, et al. Is there an increased risk of GERD after Helicobacter pylori eradication?: a meta-analysis [J]. Am J Gastroenterol, 2010, 105(5): 1007-1013. DOI: 10.1038/ajg.2009.734.
[36] COOK M B, KAMANGAR F, WHITEMAN D C, et al. Cigarette smoking and adenocarcinomas of the esophagus and esophagogastric junction: a pooled analysis from the international BEACON consortium [J]. J Natl Cancer Inst, 2010, 102(17): 1344-1353. DOI: 10.1093/jnci/djq289.
[37] ABRAMS J A, SHARAIHA R Z, GONSALVES L, et al. Dating the rise of esophageal adenocarcinoma: analysis of Connecticut Tumor Registry data, 1940-2007 [J]. Cancer Epidemiol Biomarkers Prev, 2011, 20(1): 183-186. DOI: 10.1158/1055-9965.EPI-10-0802.
[38] KUBO A, LEVIN T R, BLOCK G, et al. Dietary antioxidants, fruits, and vegetables and the risk of Barrett's esophagus [J]. Am J Gastroenterol, 2008, 103(7): 1614-1623, 1624. DOI: 10.1111/j.1572-0241.2008.01838.x.
[39] ABREU M T, PEEK R J. Gastrointestinal malignancy and the microbiome [J]. Gastroenterology, 2014, 146(6): 1534-1546. DOI: 10.1053/j.gastro.2014.01.001.
[40] BLACKETT K L, SIDDHI S S, CLEARY S, et al. Oesophageal bacterial biofilm changes in gastro-oesophageal reflux disease, Barrett’s and oesophageal carcinoma: association or causality? [J]. Aliment Pharmacol Ther, 2013, 37(11): 1084-1092. DOI: 10.1111/apt.12317.
[41] NARIKIYO M, TANABE C, YAMADA Y, et al. Frequent and preferential infection of Treponema denticola, Streptococcus mitis, and Streptococcus anginosus in esophageal cancers [J]. Cancer Sci, 2004, 95(7): 569-574.
[42] YANG C S. Research on esophageal cancer in China: a review [J]. Cancer Res, 1980, 40(8 Pt 1): 2633-2644.
[43] CHEN X, WINCKLER B, LU M, et al. Oral microbiota and risk for esophageal squamous cell carcinoma in a high-risk area of China [J]. PLoS One, 2015, 10(12): e143603. DOI: 10.1371/journal.pone.0143603.
[44] ABNET C C, QIAO Y L, MARK S D, et al. Prospective study of tooth loss and incident esophageal and gastric cancers in China [J]. Cancer Causes Control, 2001, 12(9): 847-854.
[45] DAR N A, ISLAMI F, BHAT G A, et al. Poor oral hygiene and risk of esophageal squamous cell carcinoma in Kashmir [J]. Br J Cancer, 2013, 109(5): 1367-1372. DOI: 10.1038/bjc.2013.437.
[46] ABNET C C, KAMANGAR F, ISLAMI F, et al. Tooth loss and lack of regular oral hygiene are associated with higher risk of esophageal squamous cell carcinoma [J]. Cancer Epidemiol Biomarkers Prev, 2008, 17(11): 3062-3068. DOI: 10.1158/1055-9965.EPI-08-0558.
[47] GUHA N, BOFFETTA P, WUNSCH FILHO V, et al. Oral health and risk of squamous cell carcinoma of the head and neck and esophagus: results of two multicentric case-control studies [J]. Am J Epidemiol, 2007, 166(10): 1159-1173. DOI: 10.1093/aje/kwm193.
[48] SATO F, OZE I, KAWAKITA D, et al. Inverse association between toothbrushing and upper aerodigestive tract cancer risk in a Japanese population [J]. Head Neck, 2011, 33(11): 1628-1637. DOI: 10.1002/hed.21649.
[49] GAO S, LI S, MA Z, et al. Presence of porphyromonas gingivalis in esophagus and its association with the clinicopathological characteristics and survival in patients with esophageal cancer[J]. Infect Agent Cancer, 2016, 11: 3. DOI: 10.1186/s13027-016-0049-x.
[50] NASROLLAHZADEH D, MALEKZADH R, PLONER A, et al. Variations of gastric corpus microbiota are associated with early esophageal squamous cell carcinoma and squamous dysplasia [J]. Sci Rep, 2015, 5: 8820. DOI: 10.1038/srep08820.
[51] DIAKOWSKA D, MARKOCKA-MACZKA K, GRABOWSKI K, et al. Serum interleukin-12 and interleukin-18 levels in patients with oesophageal squamous cell carcinoma [J]. Exp Oncol, 2006, 28(4): 319-322.