趙瀅 陸阿明
摘 要: 跑步損傷尤其是跑步引發(fā)的下肢損傷是當(dāng)今運(yùn)動(dòng)醫(yī)學(xué)領(lǐng)域的研究熱點(diǎn),就近年來有關(guān)跑步足著地方式影響因素和足著地方式與下肢損傷之間關(guān)系的研究進(jìn)行綜述。1)影響足著地方式的主要因素包括自身足的結(jié)構(gòu)、速度、鞋具、地面材質(zhì)等,且著地方式與步長(zhǎng)、步頻及下肢的一些其他運(yùn)動(dòng)學(xué)、動(dòng)力學(xué)指標(biāo)密切有關(guān)。2)不同足著地方式會(huì)對(duì)下肢生物力學(xué)特征產(chǎn)生不同的影響且每種著地方式都有利弊,跑步者不能僅僅通過控制足著地方式來預(yù)防下肢損傷。跑步下肢損傷是由多種因素綜合導(dǎo)致的病理現(xiàn)象,綜合考慮各種相關(guān)因素才能有效制定預(yù)防跑步下肢損傷的方案。
關(guān)鍵詞: 跑步;足著地方式;下肢損傷
中圖分類號(hào):G804.6?? 文獻(xiàn)標(biāo)識(shí)碼:A? 文章編號(hào):1006-2076(2018)06-0099-06
Abstract: For the reason that running injuries especially the lower limb injuries which caused by running had been one of the hot topics, this study reviewed the researches in recent years about factors influencing the pattern of running strike and the effects of running strike pattern on the lower limb injuries. Results showed:1) The main influencing factors of running strike pattern included the foot structure, running speed, running shoes, ground type and so on, which were related to step length、step frequency and other kinematics and kinetic variables of lower limbs. So strike pattern was one of the direct factors , which led to sports injury.2) Each running strike pattern had its advantages and disadvantages, so we couldn't prevent the lower limb injury merely from controlling the running strike pattern. In conclusion, lower limb injuries were the pathological phenomenon caused by many factors. Therefore, runners should consider various related factors comprehensively and establish a program that can prevent running injuries of lower limbs.
Key words: running; strike pattern; lower limb injury
有研究報(bào)道,與跑步相關(guān)的損傷發(fā)生率在18.2%~92.4%之間[1]。最新的Meta分析結(jié)果表明,每1 000小時(shí)跑步過程中,與跑相關(guān)損傷的發(fā)生率在2.5%(田徑運(yùn)動(dòng)員)到33.0%(初級(jí)跑步愛好者)之間[2]。脛骨內(nèi)側(cè)應(yīng)力性綜合癥、跟腱炎、足底筋膜炎、髕股關(guān)節(jié)綜合癥以及髂脛束摩擦綜合癥是與跑步相關(guān)的損傷中最為常見的幾種[1]。在跑步過程中,每一次與地面接觸,下肢會(huì)承受3倍的垂直沖擊力和1倍的前后沖擊力[3]。有研究報(bào)道,下肢的損傷與著地時(shí)的沖擊力峰值和負(fù)載率密切相關(guān)[4]。已有研究對(duì)跑步時(shí)的著地方式與跑步損傷的發(fā)生率、損傷風(fēng)險(xiǎn)因子以及跑步損傷的癥狀之間的聯(lián)系進(jìn)行了研究。有文獻(xiàn)指出,前足著地方式或者是中足著地方式是低效率的跑步模式,因?yàn)檫@兩種跑步模式下,在著地之后壓力中心的軌跡先向后退然后再向前,然而后足著地方式下壓力中心的軌跡在著地之后是一致往前的[3]。除此之外,前足著地方式下下肢的有效質(zhì)量減少,著地時(shí)的碰撞力量減少,因此有研究提出前足著地方式有利于降低下肢跑步損傷,但是研究結(jié)論不一。本研究就目前有關(guān)跑步時(shí)著地方式對(duì)下肢生物力學(xué)特征影響的研究狀況作一綜述,探討跑步著地方式與下肢損傷的關(guān)系。
1 跑步著地方式及其影響因素
1.1 著地方式分類
足或鞋與地面接觸時(shí)所采用的部位被定義為足著地方式[5]。Cavanagh和Lafortune等人根據(jù)跑步時(shí)足底壓力中心相對(duì)于鞋(或裸足跑動(dòng)時(shí)相對(duì)于足)的位置定義了三種著地方式:后足著地、中足著地和前足著地[3]。后足著地是以腳后跟(足與地面的接觸點(diǎn)在距離腳后跟三分之一鞋長(zhǎng)以內(nèi))最先與地面接觸的著地方式;中足著地是以腳掌(足與地面接觸點(diǎn)在鞋長(zhǎng)的中間三分之一以內(nèi))最先與地面接觸的著地方式;前足著地是以腳前掌(足與地面的接觸點(diǎn)在距離腳前掌三分之一鞋長(zhǎng)以內(nèi))最先與地面接觸的著地方式。三種著地方式中,后足著地方式是最常見的著地方式[6-8],但是由于跑步者從事不同運(yùn)動(dòng)項(xiàng)目和自身習(xí)慣差異,還是存在著不同著地方式。但隨著地面材質(zhì)[9]、跑步速度[10]、穿鞋與否[11]、鞋子的類型[12]等因素的改變,都會(huì)影響跑步足著地方式。
1.2 不同速度對(duì)著地方式的影響
眾所周知,不同專項(xiàng)的跑步者習(xí)慣采取的足著地方式不同,多數(shù)研究學(xué)者[13-16]認(rèn)為跑步速度會(huì)影響足著地方式。Nigg等人[17]通過實(shí)驗(yàn)發(fā)現(xiàn)當(dāng)跑速?gòu)? m/s增加到6 m/s時(shí),在足接觸地面之前軀干會(huì)向前傾斜,足著地的相對(duì)部位也會(huì)往前移動(dòng),這提示當(dāng)速度增加時(shí)著地指數(shù)也會(huì)增加。這與Keller等人[16]的研究結(jié)果一致,后足著地跑步者當(dāng)跑步速度增加到大于5 m/s時(shí),會(huì)從后足著地方式改變?yōu)橹凶阒胤绞?。Larson等人[14]采用錄像法判別286名亞精英馬拉松運(yùn)動(dòng)員進(jìn)行10 km和32 km馬拉松時(shí)的著地方式,發(fā)現(xiàn)87.8%~93%的運(yùn)動(dòng)員習(xí)慣采用后足著地方式,而最快的幾個(gè)運(yùn)動(dòng)員采用的中足著地方式。由上述研究可知,足著地方式多取決于跑步者的習(xí)慣,但隨著速度增加,跑步者的足著地方式可以隨之改變,這可能與跑速增加引起的軀干前傾、單支撐時(shí)間縮短等有關(guān),而這兩個(gè)因素與跑步者的速度能力有關(guān)。因此,探討速度對(duì)足著地方式的影響需要考慮跑步者的速度能力。M. MUOZ-JIMENEZ等人[18]通過實(shí)驗(yàn)發(fā)現(xiàn),跑速并不影響跑步足著地方式,這與前面的文獻(xiàn)觀點(diǎn)相悖,但在實(shí)驗(yàn)中發(fā)現(xiàn)跑速會(huì)影響跑步者的足部的旋轉(zhuǎn)角度。這可能是與實(shí)驗(yàn)中受試者的速度能力有關(guān),實(shí)驗(yàn)設(shè)定速度并不足以改變受試者的著地方式,其次,可能是僅以錄像方法視覺判斷受試者的足著地方式會(huì)受后足內(nèi)外旋轉(zhuǎn)、前足內(nèi)收外展的視覺干擾從而影響數(shù)據(jù)的準(zhǔn)確性,因此相關(guān)文獻(xiàn)中有關(guān)判斷足著地方式的方法還需要進(jìn)一步改進(jìn)。
1.3 鞋具對(duì)著地方式的影響
由最初人們采用的裸足或者類似皮鞋、涼鞋這類低支撐度的鞋具進(jìn)行跑步,直到1970年現(xiàn)代跑鞋的發(fā)明,跑鞋一直經(jīng)歷著不斷發(fā)展和改進(jìn),當(dāng)前趨勢(shì)又回歸于裸足式跑鞋(最小支撐度跑鞋),目的是讓跑步者采用前足著地方式跑步。一般穿鞋跑步者都是采用后足著地方式落地的,這與現(xiàn)代跑鞋的高減震性也有關(guān)系。然而習(xí)慣裸足跑步者和習(xí)慣穿鞋跑步者之間最主要的差異是,裸足跑時(shí),初始觸地發(fā)生在前足或中足而非腳后跟上[8, 19]。Max Robert Paquette等人[12]通過實(shí)驗(yàn)發(fā)現(xiàn),并不需要特殊訓(xùn)練,當(dāng)受試者在裸足跑時(shí),自然而然會(huì)采取更靠前的著地方式。大量比較裸足跑和穿鞋跑差異的研究[12, 17, 20]證明了裸足跑可以減小損傷的發(fā)生率,研究中指出裸足跑具有較低的觸地沖擊力,較低的跑步能耗,較高的運(yùn)動(dòng)感知和肌肉力量[8, 21],步長(zhǎng)變短,步頻變快[22],這要求著地所需要的時(shí)間縮短,因此通常采取更省時(shí)的前足著地方式。穿著裸足跑鞋與普通跑鞋相比,踝關(guān)節(jié)的跖屈力矩較大,踝關(guān)節(jié)離心收縮功率較大,但是地面反作用力的峰值差不多[12],因此,穿著裸足跑鞋具有更大的地面反作用力力臂,而增加的力臂長(zhǎng)會(huì)增加離心跖屈運(yùn)動(dòng),這導(dǎo)致足著地時(shí)壓力中心更靠前。因此,裸足跑鞋可以通過改變步長(zhǎng)、步頻、踝關(guān)節(jié)背屈和跖屈角度以及運(yùn)動(dòng)感知和肌肉力量來改變跑步者的著地方式。也有證據(jù)顯示[23],相比于傳統(tǒng)跑鞋,穿著有彈性的裸足跑鞋可以整體降低慢性足底筋膜炎患者的疼痛水平。同時(shí),一些傳統(tǒng)跑鞋設(shè)計(jì)會(huì)影響與跑步相關(guān)的一些其他生物力學(xué)變化和肌肉骨骼損傷特征。Lieberman等人[8]認(rèn)為一些傳統(tǒng)跑鞋設(shè)計(jì)會(huì)降低本體感覺或者軀體感覺,增加了跑步過程中腳踝扭傷的風(fēng)險(xiǎn)。因此,越來越多的研究者推薦裸足跑。
雖然我們可以通過裸足跑或者穿著裸足跑鞋來影響跑步者的著地方式,從而降低跑步損傷概率,但是并非穿著裸足跑鞋就可以完全預(yù)防所有的跑步損傷。有研究發(fā)現(xiàn),穿著裸足跑鞋可能會(huì)引起跖骨痛、脂肪墊綜合征,加快某些骨骼(籽骨、跖骨)應(yīng)力性骨折以及增加相關(guān)跟腱損傷的風(fēng)險(xiǎn)性[24]。此外,相對(duì)傳統(tǒng)跑鞋,裸足跑鞋并不適宜越野跑等一些需要在不平坦地面跑步的運(yùn)動(dòng),因此,通過跑鞋來改變足著地方式進(jìn)而防止損傷這一觀點(diǎn)還需要進(jìn)一步論證和探討。
2 跑步足著地方式與下肢生物力學(xué)特征
2.1 跑步損傷與下肢生物力學(xué)
許多研究從運(yùn)動(dòng)生物力學(xué)的角度對(duì)跑步相關(guān)損傷的危險(xiǎn)因素進(jìn)行了研究。動(dòng)力學(xué)方面,髕股關(guān)節(jié)應(yīng)力的增加[25]、垂直負(fù)荷加載率、髕股外側(cè)接觸面壓力[26]是跑步最易導(dǎo)致的勞損性損傷-髕股關(guān)節(jié)綜合癥的潛在風(fēng)險(xiǎn)之一[25],制動(dòng)力的增加更易發(fā)生跟腱炎,平均和瞬時(shí)垂直負(fù)荷加載率、地面反作用力是脛骨應(yīng)力性骨折[27-28]和足底筋膜炎[28]的危險(xiǎn)因素。運(yùn)動(dòng)學(xué)方面,過度的足部旋前是脛骨內(nèi)側(cè)應(yīng)力綜合癥的危險(xiǎn)因素[29],當(dāng)踝關(guān)節(jié)跖屈角度受限時(shí)足突然翻轉(zhuǎn)和內(nèi)旋易導(dǎo)致距腓前韌帶和跟腓韌帶應(yīng)力損傷[30],下肢關(guān)節(jié)在額狀面上的過度運(yùn)動(dòng)(膝外翻)和足外翻、膝外旋、髖關(guān)節(jié)內(nèi)收角度增加[31]是髕股關(guān)節(jié)綜合癥的發(fā)病原因之一,一個(gè)前瞻性研究表明,過大的踝關(guān)節(jié)跖屈運(yùn)動(dòng)幅度[32]和足部旋前[33-34]可能會(huì)增加跟腱過勞性損傷。同時(shí)有跟腱損傷史的運(yùn)動(dòng)員膝關(guān)節(jié)運(yùn)動(dòng)幅度明顯大于沒有跟腱損傷史的運(yùn)動(dòng)員[35]。因此,跑步時(shí)下肢的生物力學(xué)特征與運(yùn)動(dòng)損傷有著密切的關(guān)系。
而不同的足著地方式對(duì)下肢生物力學(xué)特征有著明顯的影響,如地面沖擊變量、肌肉活動(dòng)和關(guān)節(jié)應(yīng)力等。有研究指出,采取后足著地方式的跑步運(yùn)動(dòng)員比采取前足著地方式的跑步運(yùn)動(dòng)員更易發(fā)生運(yùn)動(dòng)損傷[36],因此跑步的下肢損傷因素眾多,但足著地方式是可能的因素之一。
2.2 足著地方式對(duì)下肢動(dòng)力學(xué)指標(biāo)的影響
下肢動(dòng)力學(xué)指標(biāo)包括地面反作用力、平均和瞬時(shí)垂直負(fù)荷加載率和關(guān)節(jié)應(yīng)力。
2.2.1 足著地方式對(duì)垂直沖擊變量、負(fù)荷加載率的影響
地面反作用力即垂直沖擊力是輸入人體并引起軟組織振動(dòng)的信號(hào),而人體的肌肉活動(dòng)模式對(duì)地面反作用力的輸入做出相應(yīng)反饋[37]。跑步具有潛在的損傷性,當(dāng)腳接觸地面時(shí)足部的合成地面反作用力會(huì)被傳至下肢動(dòng)力鏈上,因此作為脛骨應(yīng)力性骨折和足底筋膜炎潛在危險(xiǎn)因素的垂直沖擊變量比如垂直沖量的峰值大小和碰撞沖擊的速度一直是跑步損傷研究的重點(diǎn)。跑步時(shí)采取前足和中足著地方式時(shí)產(chǎn)生的垂直地面反作用力比后足著地方式時(shí)產(chǎn)生的垂直地面反作用力小這個(gè)觀點(diǎn),一直是專家學(xué)者們認(rèn)為前足著地和中足著地比后足著地更不易損傷的原因之一[36, 38]。值得一提的是,明顯的后足著地方式和小程度的后足著地方式之間的地面沖擊力量具有顯著性差異,相比而言,較高程度的后足著地方式的地面沖擊力量會(huì)大80%左右[39]。
目前研究普遍認(rèn)為,跑步時(shí)采取后足著地方式會(huì)產(chǎn)生2個(gè)垂直地面反作用力的沖擊峰值,而前足著地方式只有1個(gè)沖擊峰值[8]。這是由于后足著地跑步時(shí)的第一個(gè)峰值會(huì)在負(fù)荷變化期的初始觸地即刻產(chǎn)生,然后在支撐中期產(chǎn)生第二個(gè)峰值,而前足著地跑步時(shí)只在初始觸地即刻產(chǎn)生一個(gè)峰值。同時(shí),與前足著地方式相比,后足著地方式跑會(huì)產(chǎn)生更大的平均和峰值載荷率[40-41],以及更大的步長(zhǎng)[42]。雖然一些研究認(rèn)為沖擊變量如垂直地面反作用力與下肢損傷有關(guān)[27, 43],但也有研究不贊同這個(gè)觀點(diǎn)[44],Nigg BM等人[45]通過研究發(fā)現(xiàn),跑步時(shí)產(chǎn)生得高地面反作用力和負(fù)荷載率與跑步損傷的發(fā)生沒有必然聯(lián)系。因此,一些研究者陸續(xù)提出了除地面反作用力以外的一些其他沖擊變量,如Allison H.Gruber[46]等人通過計(jì)算頭部和脛骨的加速度峰值研究跑步時(shí)的撞擊頻率和振動(dòng)衰減程度,實(shí)驗(yàn)發(fā)現(xiàn)后足著地方式在較低和較高撞擊頻率下產(chǎn)生更快的振動(dòng)衰減,同時(shí)會(huì)產(chǎn)生更大的地面反作用力,不同的著地方式損傷的類型也不盡相同,但是現(xiàn)如今振動(dòng)衰減速度與損傷的相關(guān)關(guān)系還沒有明確,還有待進(jìn)一步研究。
2.2.2 足著地方式對(duì)下肢關(guān)節(jié)應(yīng)力的影響
當(dāng)足部與地面接觸時(shí),地面反作用力會(huì)被傳至下肢動(dòng)力鏈上,下肢的關(guān)節(jié)應(yīng)力變化也是導(dǎo)致下肢關(guān)節(jié)損傷的直接原因。采用前足著地方式跑時(shí),受試者的下肢總功率、髖和膝關(guān)節(jié)的離心功率顯著低于后足著地方式跑[47]。與后足著地方式相比,采用前足和中足著地方式跑可以明顯降低髕股關(guān)節(jié)的疼痛和功能受限的程度,除此之外,也可以顯著地降低髕股關(guān)節(jié)的反作用力和髕股關(guān)節(jié)的應(yīng)力[47-48]。從這些研究結(jié)果不難得出,前足著地方式與后足著地方式相比,前足著地方式可以緩解髕股關(guān)節(jié)疼痛的癥狀并有可能會(huì)降低髕股關(guān)節(jié)疼的發(fā)生率。然而,前足著地方式也可能會(huì)增加局部組織的力學(xué)負(fù)荷。一些研究表明[49-51],前足著地跑時(shí)在支撐期的前半時(shí)期踝關(guān)節(jié)的離心功率顯著提高,這可能會(huì)增加踝關(guān)節(jié)的力學(xué)負(fù)荷,同時(shí)前足著地跑步者比后足著地跑步者跟腱的硬度和大小更大,THOMAS ALMONROEDER等人[52]通過實(shí)驗(yàn)發(fā)現(xiàn),前足著地比后足著地方式的跟腱沖擊力大11%,因此有可能會(huì)增加患跟腱炎的風(fēng)險(xiǎn)。
2.3 足著地方式對(duì)下肢運(yùn)動(dòng)學(xué)指標(biāo)的影響
下肢動(dòng)力學(xué)指標(biāo)和運(yùn)動(dòng)學(xué)指標(biāo)之間有著密切聯(lián)系。不同的足著地方式下,下肢各個(gè)關(guān)節(jié)的運(yùn)動(dòng)學(xué)指標(biāo)都不盡相同,比如步長(zhǎng)、步頻、關(guān)節(jié)角度等。大量研究證明,前足著地比后足著地方式的跑步者,步長(zhǎng)更短,步頻更快,與地面接觸的時(shí)間也更短[53-54]。后足著地跑步者通過著地時(shí)更大程度地彎曲膝關(guān)節(jié)來使步長(zhǎng)縮短[8, 40, 55],與此同時(shí),步頻變快,與地面接觸的時(shí)間也相應(yīng)縮短。同時(shí),因?yàn)椴介L(zhǎng)縮短,前足著地跑步者的踝關(guān)節(jié)跖屈角度變大,足更趨向于水平前進(jìn)[40, 47, 53, 56-58]。Daniel Kuhman等人[51]將習(xí)慣性后足著地跑步者在后足著地跑步時(shí)與變化成前足著地時(shí)的膝關(guān)節(jié)和踝關(guān)節(jié)角度進(jìn)行比較后發(fā)現(xiàn),在習(xí)慣性后足著地方式時(shí)會(huì)產(chǎn)生更大的踝關(guān)節(jié)背屈峰值、膝關(guān)節(jié)在矢狀面的活動(dòng)范圍峰值,然而當(dāng)改變成前足著地時(shí),踝關(guān)節(jié)跖屈峰值、踝關(guān)節(jié)矢狀面峰值會(huì)增加。不同的足著地方式對(duì)膝關(guān)節(jié)和踝關(guān)節(jié)角度影響不同,這導(dǎo)致不同的足著地方式所引起的跑步損傷類型也不盡相同。
2.4 足著地方式與下肢肌肉活動(dòng)
下肢肌肉活動(dòng)隨著足著地方式而改變,但肌肉力量、肌肉疲勞等因素也同時(shí)會(huì)通過影響跑步下肢運(yùn)動(dòng)學(xué)、動(dòng)力學(xué)參數(shù)進(jìn)而導(dǎo)致動(dòng)作結(jié)構(gòu)的改變。有研究指出,膝關(guān)節(jié)周圍的肌肉不僅可以產(chǎn)生運(yùn)動(dòng),還可以增加關(guān)節(jié)穩(wěn)定性和減少關(guān)節(jié)載荷[59-60],髖關(guān)節(jié)肌肉增加可以穩(wěn)定骨盆和限制膝關(guān)節(jié)內(nèi)側(cè)力矢量的力臂[60-61],而膝關(guān)節(jié)炎患者的肌肉力量會(huì)明顯影響膝關(guān)節(jié)功能和步態(tài)[62]。Meagan J.Warnica等人[63]通過研究指出,踝關(guān)節(jié)肌肉在高強(qiáng)度(30%~40%MVC)激活狀態(tài)下可以影響壓力中心和重心的移動(dòng)情況從而改變受試者的平衡能力。因此,研究跑步足著地方式與損傷關(guān)系時(shí)應(yīng)考慮肌肉活動(dòng)的變化。
足著地方式會(huì)影響跑步時(shí)的肌肉活性,肌肉力量與地面反作用力密切相關(guān)[64],不同足著地方式產(chǎn)生的不同地面反作用力都可以通過肌肉活動(dòng)改變表現(xiàn)出來,比如Schmitz等人[65]認(rèn)為當(dāng)采用后足著地方式跑步時(shí),髖屈肌活動(dòng)的增加可以減少負(fù)荷載率;前足著地方式會(huì)較多使用腓腸肌內(nèi)側(cè)頭和外側(cè)頭等跖屈肌肉,而后足著地方式會(huì)較多使用脛骨前肌和腘繩肌外側(cè)肌等背屈肌肉,這與不同足著地方式引起的下肢關(guān)節(jié)角度差異有關(guān)。Jennifer R. Yong等人[66]將習(xí)慣前足著地方式與習(xí)慣后足著地方式跑步者的肌肉活動(dòng)現(xiàn)象進(jìn)行實(shí)驗(yàn)比較后發(fā)現(xiàn),后足著地方式跑步者脛骨前部的每塊肌肉RMS值在擺動(dòng)相末期階段減少;相反,腓腸肌內(nèi)外側(cè)頭的RMS值在擺動(dòng)相末期明顯增加。而在早期站立階段,脛骨前部肌肉和跖屈肌肉都無明顯差異。由此可知,不同的足著地方式會(huì)導(dǎo)致肌肉活動(dòng)出現(xiàn)差異,但差異性存在于步態(tài)周期中的某些階段,而非存在于一個(gè)完整的步態(tài)周期。
3 展望
足著地方式的影響因素主要有自身足結(jié)構(gòu)、速度、鞋具、地面材質(zhì)等,這與步長(zhǎng)、步頻及下肢的一些其他運(yùn)動(dòng)學(xué)、動(dòng)力學(xué)指標(biāo)有關(guān),足著地方式是導(dǎo)致運(yùn)動(dòng)損傷的直接或間接原因之一。足著地方式可以是自身習(xí)慣產(chǎn)生的[46],也可以通過外部條件控制[51],現(xiàn)如今相關(guān)研究中這兩種足著地方式的控制方法皆有,因此兩者對(duì)跑步者的下肢生物力學(xué)影響的差異性和這個(gè)差異性是否影響下肢跑步損傷也有待進(jìn)一步研究。同時(shí),不管跑步者習(xí)慣采取何種著地方式,采取這種習(xí)慣著地方式是否是跑步者本身的一種防御保護(hù)手段,相比于其他著地方式發(fā)生下肢損傷的概率是否是最低的,此方面還有待進(jìn)一步探討研究。
研究表明,跑步前足著地方式相比于后足著地方式能預(yù)防一些跑步損傷和降低一些跑步損傷發(fā)生概率,如髕股關(guān)節(jié)綜合癥、脛骨應(yīng)力性骨折或足底筋膜炎,但是前足著地方式也有自己的局限性,也會(huì)增加跟腱炎的發(fā)生幾率。不同著地方式對(duì)下肢生物力學(xué)特征有著不一樣的影響,不管是前足著地方式、中足著地方式還是后足著地方式,都有著自身的優(yōu)點(diǎn)與缺點(diǎn)。目前很少有研究直接對(duì)著地方式的選擇下準(zhǔn)確的結(jié)論,因此不能盲目地改變自身習(xí)慣的著地方式來預(yù)防下肢損傷。若要改變著地方式也要逐漸改變,采取一些訓(xùn)練手段讓跑步者逐漸適應(yīng)新的著地方式,因?yàn)橥蝗蛔屢恍┪簇?fù)重的肌肉承重容易引起肌肉損傷。
參考文獻(xiàn):
[1]Lopes A D, Hespanhol L C, Yeung S S, et al. What are the Main Running-Related Musculoskeletal Injuries?[KG-*4][J]. Sports Medicine, 2012, 42(10):891.
[2]Videbk S, Bueno AM, Nielsen RO, Rasmussen S. Incidence of Running-Related Injuries Per 1000 h of running in Different Types of Runners:A Systematic Review and Meta-Analysis[J]. Sports Medicine, 2015,45(7):1017-1026.
[3]Cavanagh PR, Lafortune MA. Ground reaction forces in distance running[J]. Journal of Biomechanics, 1980,13(5):397-406.
[4]Wang LI, Peng HT. Biomechanical comparisons of single- and double-legged drop jumps with changes in drop height[J]. International Journal of Sports Medicine, 2013,35(06):522-527.
[5]Munro CF, Miller DI, Fuglevand AJ. Ground reaction forces in running:a reexamination[J]. Journal of Biomechanics, 1987,20(2):147-155.
[6]de Almeida MO, Saragiotto BT, Yamato TP, Lopes AD. Is the rearfoot pattern the most frequently foot strike pattern among recreational shod distance runners?[J]. Physical Therapy in Sport Official Journal of the Association of Chartered Physiotherapists in Sports Medicine, 2015,16(1):29.
[7]Kasmer ME, Liu XC, Roberts KG, Valadao JM. Foot-strike pattern and performance in a marathon[J]. International Journal of Sports Physiology & Performance, 2013,8(3):286.
[8]Lieberman DE, Venkadesan M, Werbel WA, Daoud AI, DAndrea S, Davis IS, et al. Foot strike patterns and collision forces in habitually barefoot versus shod runners[J]. Nature, 2010,463(7280):531-535.
[9]Gruber AH, Silvernail JF, Brueggemann P, Rohr E, Hamill J. Footfall patterns during barefoot running on harder and softer surfaces[J]. Footwear Science, 2013,5(1):39-44.
[10]P L, E H, J K, T D, J P, D L, et al. Foot strike patterns of recreational and sub-elite runners in a long-distance road race[J]. Journal of Sports Sciences, 2011,29(15):1665.
[11]Mccarthy C, Fleming N, Donne B, Blanksby B. 12 weeks of simulated barefoot running changes foot-strike patterns in female runners[J]. International Journal of Sports Medicine, 2014,35(5):443.
[12]Paquette MR, Zhang S, Baumgartner LD. Acute effects of barefoot, minimal shoes and running shoes on lower limb mechanics in rear and forefoot strike runners[J]. Footwear Science, 2013,5(1):9-18.
[13]Hasegawa H, Yamauchi T, Kraemer W J. Foot strike patterns of runners at the 15-km point during an elite-level half marathon.[J]. Journal of Strength & Conditioning Research, 2007, 21(3):888.
[14]Larson P, Higgins E, Kaminski J, Decker T, Preble J, Lyons D, et al. Foot strike patterns of recreational and sub-elite runners in a long-distance road race[J]. J Sports Sci, 2011,29(15):1665-1673.
[15]Breine B, Malcolm P, Frederick EC, De Clercq D. Relationship between running speed and initial foot contact patterns[J]. Med Sci Sports Exerc, 2014,46(8):1595-1603.
[16]Keller TS, Weisberger AM, Ray JL, Hasan SS, Shiavi RG, Spengler DM. Relationship between vertical ground reaction force and speed during walking, slow jogging, and running[J]. Clinical Biomechanics, 1996,11(5):253-529.
[17]Nigg BM, Bahlsen HA, Luethi SM, Stokes S. The influence of running velocity and midsole hardness on external impact forces in heel-toe running[J]. Journal of Biomechanics, 1987,20(10):951-959.
[18]Muoz-Jimenez M, Latorre-Román PA, Soto-Hermoso VM, García-Pinillos F. Influence of shod/unshod condition and running speed on foot-strike patterns, inversion/eversion, and vertical foot rotation in endurance runners[J]. Journal of Sports Sciences, 2015,33(19):2035-2042.
[19]Herzog W. Running injuries:is it a question of evolution, form, tissue properties, mileage, or shoes?[J]. Exercise & Sport Sciences Reviews, 2012,40(2):59.
[20]Mccallion C, Donne B, Fleming N, Blanksby B. Acute Differences in Foot Strike and Spatiotemporal Variables for Shod, Barefoot or Minimalist Male Runners[J]. Journal of Sports Science & Medicine, 2014,13(2):280-286.
[21]Jenkins DW, Cauthon DJ. Barefoot running claims and controversies:a review of the literature[J]. Journal of the American Podiatric Medical Association, 1900,101(3):231-246.
[22]Bonacci J, Saunders PU, Hicks A, Rantalainen T, Vicenzino BG, Spratford W. Running in a minimalist and lightweight shoe is not the same as running barefoot:a biomechanical study[J]. British Journal of Sports Medicine, 2013,47(6):387.
[23]Ryan M, Fraser S, Mcdonald K, Taunton J. Examining the degree of pain reduction using a multielement exercise model with a conventional training shoe versus an ultraflexible training shoe for treating plantar fasciitis[J]. Physician & Sportsmedicine, 2009,37(4):68.
[24]Shakoor N, Block JA. Walking barefoot decreases loading on the lower extremity joints in knee osteoarthritis[J]. Arthritis & Rheumatism, 2006,54(9):2923-2927.
[25]Heino BJ, Powers CM. Patellofemoral stress during walking in persons with and without patellofemoral pain[J]. Medicine & Science in Sports & Exercise, 2002,34(10):1582.
[26]Davis IS, Bowser BJ, Hamill J. Vertical Impact Loading in Runners with a History of Patellofemoral Pain Syndrome:2597[J]. Medicine & Science in Sports & Exercise, 2010,42(5).
[27]Milner CE, Ferber R, Pollard CD, Hamill J, Davis IS. Biomechanical factors associated with tibial stress fracture in female runners[J]. Medicine & Science in Sports & Exercise, 2006,38(2):323.
[28]Pohl MB, Hamill J, Davis IS. Biomechanical and anatomic factors associated with a history of plantar fasciitis in female runners[J]. Clinical Journal of Sport Medicine Official Journal of the Canadian Academy of Sport Medicine, 2009,19(5):372.
[29]Zadpoor AA, Nikooyan AA. The relationship between lower-extremity stress fractures and the ground reaction force:a systematic review[J]. Clinical Biomechanics, 2011,26(1):23-28.
[30]Panagiotakis E, Mok KM, Fong DT, Amj B. Biomechanical analysis of ankle ligamentous sprain injury cases from televised basketball games:Understanding when, how and why ligament failure occurs[J]. 2017.
[31]Barton CJ, Levinger P, Menz HB, Webster KE. Kinematic gait characteristics associated with patellofemoral pain syndrome:A systematic review[J]. Gait & Posture, 2009,30(4):405-416.
[32]Mahieu NN, Witvrouw E, Stevens V, Van TD, Roget P. Intrinsic risk factors for the development of achilles tendon overuse injury:a prospective study[J]. American Journal of Sports Medicine, 2006,34(2):226-235.
[33]Maffulli N, Kader D. Tendinopathy of tendo achillis[J]. Journal of Bone & Joint Surgery British Volume, 2002,84(1):1.
[34]Clement DB, Taunton JE, Smart GW. Achilles tendinitis and peritendinitis:etiology and treatment[J]. American Journal of Sports Medicine, 1984,12(3):179.
[35]Azevedo LB, Lambert MI, Vaughan CL, O'Connor CM, Schwellnus MP. Biomechanical variables associated with Achilles tendinopathy in runners[J]. British Journal of Sports Medicine, 2009,43(4):288.
[36]Daoud AI, Geissler GJ, Wang F, Saretsky J, Daoud YA, Lieberman DE. Foot Strike and Injury Rates in Endurance Runners:A Retrospective Study[J]. Medicine & Science in Sports & Exercise, 2012,44(7):1325-1334.
[37]Boyer KA, Nigg BM. Muscle activity in the leg is tuned in response to impact force characteristics[J]. Journal of Applied Physiology, 2004,37(10):1583.
[38]Goss DL, Gross MT. Relationships among self-reported shoe type, footstrike pattern, and injury incidence[J]. Usarmy Medical Department Journal, 2012:25.
[39]Mercer JA, Horsch S. Heel–toe running:A new look at the influence of foot strike pattern on impact force[J]. Journal of Exercise Science & Fitness, 2015,13(1):29-34.
[40]Shih Y, Lin KL, Shiang TY. Is the foot striking pattern more important than barefoot or shod conditions in running?[J]. Gait & Posture, 2013,38(3):490-4.
[41]Giandolini M, Arnal PJ, Millet GY, Peyrot N, Samozino P, Dubois B, et al. Impact reduction during running:efficiency of simple acute interventions in recreational runners[J]. European Journal of Applied Physiology, 2013,113(3):599-609.
[42]Gruber AH, Umberger BR, Barry B, Joseph H. Economy and rate of carbohydrate oxidation during running with rearfoot and forefoot strike patterns[J]. Journal of Applied Physiology, 2013,115(2):194-201.
[43]Hreljac A, Marshall RN, Hume PA. Evaluation of lower extremity overuse injury potential in runners[J]. Med Sci Sports Exerc, 2000,32(9):1635-41.
[44]Bredeweg S, Buist I. No relationship between running related injuries and kinetic variables[J]. British Journal of Sports Medicine, 2011,45(4):328.
[45]Nigg BM, Cole GK, Bruggemann GP. Impact forces during heel-toe running[J]. Journal of Applied Biomechanics, 1995,11(4):407-432.
[46]Gruber AH, Boyer KA, Derrick TR, Hamill J. Impact shock frequency components and attenuation in rearfoot and forefoot running[J]. Journal of Sport and Health Science, 2014,3(2):113-121.
[47]Rd WD, Green DH, Wurzinger B. Changes in lower extremity movement and power absorption during forefoot striking and barefoot running[J]. International Journal of Sports Physical Therapy, 2012,7(5):525-532.
[48]Nathan VC, Kernozek TW. Patellofemoral Joint Stress during Running with Alterations in Foot Strike Pattern[J]. Medicine & Science in Sports & Exercise, 2015,47(5):1001.
[49]Kulmala JP, Avela J, Pasanen K, Parkkari J. Forefoot strikers exhibit lower running-induced knee loading than rearfoot strikers[J]. Medicine & Science in Sports & Exercise, 2013,45(12):2306.
[50]Stearne SM, Alderson JA, Green BA, Donnelly CJ, Rubenson J. Joint kinetics in rearfoot versus forefoot running:implications of switching technique[J]. Medicine & Science in Sports & Exercise, 2014,46(8):1578-1587.
[51]Kuhman D, Melcher D, Paquette MR. Ankle and knee kinetics between strike patterns at common training speeds in competitive male runners[J]. European Journal of Sport Science, 2015,16(4):433-440.
[52]Almonroeder T, Willson JD, Kernozek TW. The Effect of Foot Strike Pattern on Achilles Tendon Load During Running[J]. Annals of Biomedical Engineering, 2013,41(8):1758-1766.
[53]Squadrone R, Gallozzi C. Biomechanical and physiological comparison of barefoot and two shod conditions in experienced barefoot runners[J]. J Sports Med Phys Fitness, 2009,49(1):6-13.
[54]De WB, De CD, Aerts P. Biomechanical analysis of the stance phase during barefoot and shod running[J]. Journal of Biomechanics, 2000,33(3):269.
[55]Altman AR, Davis IS. A Kinematic Method for Footstrike Pattern Detection in Barefoot and Shod Runners[J]. Gait & Posture, 2012,35(2):298-300.
[56]Lieberman DE. What we can learn about running from barefoot running:an evolutionary medical perspective[J]. Exercise & Sport Sciences Reviews, 2012,40(2):63.
[57]Gruber AH. Impact characteristics in shod and barefoot running[J]. Footwear Science, 2011,3(1):33-40.
[58]Divert C, Mornieux G, Freychat P, Baly L, Mayer F, Belli A. Barefoot-shod running differences:shoe or mass effect?[J]. International Journal of Sports Medicine, 2008,29(6):512.
[59]Bennell KL, Hunt MA, Wrigley TV, Lim BW, Hinman RS. Role of muscle in the genesis and management of knee osteoarthritis[J]. Rheumatic Disease Clinics of North America, 2013,39(1):145.
[60]Mündermann A, Dyrby CO, Andriacchi TP. Secondary gait changes in patients with medial compartment knee osteoarthritis:increased load at the ankle, knee, and hip during walking[J]. Arthritis & Rheumatology, 2005,52(9):2835-2844.
[61]Chang SH, Mercer VS, Giuliani CA, Sloane PD. Relationship between hip abductor rate of force development and mediolateral stability in older adults[J]. Archives of Physical Medicine & Rehabilitation, 2005,86(9):1843-1850.
[62]Park SK, Kobsar D, Ferber R. Relationship between lower limb muscle strength, self-reported pain and function, and frontal plane gait kinematics in knee osteoarthritis[J]. Clinical Biomechanics, 2016,38:68-74.
[63]Warnica MJ, Weaver TB, Prentice SD, Laing AC. The influence of ankle muscle activation on postural sway during quiet stance[J]. Gait & Posture, 2014,39(4):1115.
[64]Hamner SR, Seth A, Delp SL. Muscle contributions to propulsion and support during running[J]. Journal of Biomechanics, 2010,43(14):2709.
[65]Schmitz A, Pohl MB, Woods K, Noehren B. Variables during swing associated with decreased impact peak and loading rate in running[J]. Journal of Biomechanics, 2014,47(1):32.
[66]Yong JR, Silder A, Delp SL. Differences in muscle activity between natural forefoot and rearfoot strikers during running[J]. Journal of Biomechanics, 2014,47(15):3593-3597.