国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

中國不同氣候區(qū)小麥產(chǎn)量及發(fā)育期持續(xù)時(shí)間 對田間增溫的響應(yīng)

2018-02-04 03:06:09高美玲張旭博孫志剛孫楠李仕冀高永華張崇玉
中國農(nóng)業(yè)科學(xué) 2018年2期
關(guān)鍵詞:氣候區(qū)溫帶全生育期

高美玲,張旭博,孫志剛,3,孫楠,李仕冀,3,高永華,張崇玉

?

中國不同氣候區(qū)小麥產(chǎn)量及發(fā)育期持續(xù)時(shí)間 對田間增溫的響應(yīng)

高美玲1,張旭博2,孫志剛2,3,孫楠4,李仕冀2,3,高永華5,張崇玉1

(1貴州大學(xué)生命科學(xué)學(xué)院, 貴陽 550025;2中國科學(xué)院地理科學(xué)與資源研究所/生態(tài)網(wǎng)絡(luò)觀測與模擬重點(diǎn)實(shí)驗(yàn)室, 北京 100101;3中國科學(xué)院大學(xué)資源與環(huán)境學(xué)院, 北京 100049;4中國農(nóng)業(yè)科學(xué)院農(nóng)業(yè)資源與農(nóng)業(yè)區(qū)劃研究所/耕地培育技術(shù)國家工程實(shí)驗(yàn)室,北京 100081;5宣漢縣農(nóng)業(yè)技術(shù)推廣站, 四川宣漢 636150)

【目的】氣候變暖對小麥生長發(fā)育有重要影響。然而,中國不同氣候區(qū)小麥生長發(fā)育對溫度升高的響應(yīng)程度仍未系統(tǒng)量化。因此,急需闡明不同氣候區(qū)增溫及不同時(shí)段增溫對小麥產(chǎn)量及發(fā)育期持續(xù)時(shí)間的影響程度,揭示小麥產(chǎn)量及發(fā)育期對增溫的響應(yīng)規(guī)律?!痉椒ā勘疚乃鸭?990—2017年間已發(fā)表的關(guān)于中國小麥全生育期田間持續(xù)增溫條件下小麥產(chǎn)量變化的21篇文獻(xiàn),運(yùn)用整合分析(Meta-analysis)量化田間不同增溫幅度及不同時(shí)段增溫對中國小麥產(chǎn)量及生育期的影響程度,系統(tǒng)闡明其在不同氣候區(qū)的差異及規(guī)律?!窘Y(jié)果】(1)亞熱帶季風(fēng)區(qū)增溫(0—3℃)顯著增加小麥產(chǎn)量、千粒重和穗粒數(shù),其平均增幅分別為8.2%、6.3%和4.7%;溫帶季風(fēng)區(qū)增溫(0—3℃)顯著增加小麥產(chǎn)量、穗粒數(shù)和穗數(shù),其平均增幅分別為6.8%、3.9%和5.5%,而溫帶大陸性氣候區(qū)增溫(0—3℃)顯著降低小麥產(chǎn)量、千粒重和穗粒數(shù),其平均降幅分別為10.2%、5.9%和8.3%。其中,亞熱帶季風(fēng)區(qū)增溫0—2℃,小麥產(chǎn)量顯著提高了8.5%,而增溫2—3℃時(shí),小麥并未增產(chǎn);溫帶季風(fēng)氣候區(qū)小麥增產(chǎn)愈為明顯,當(dāng)增溫2—3℃時(shí)小麥的增產(chǎn)幅度達(dá)14.5%;相反,在溫帶大陸性氣候區(qū)增溫0—2℃和2—3℃時(shí),小麥分別顯著減產(chǎn)10.1%和15.9%。(2)亞熱帶季風(fēng)區(qū)和溫帶大陸性氣候區(qū)增溫(0—3℃)小麥全生育期持續(xù)時(shí)間分別縮短了3.3%和7.1%,相反,在溫帶季風(fēng)區(qū),增溫并未明顯改變小麥全生育期持續(xù)時(shí)間;與此同時(shí)溫帶大陸性氣候區(qū)和溫帶季風(fēng)氣候區(qū)的生殖期持續(xù)時(shí)間并無明顯變化,而亞熱帶季風(fēng)區(qū)小麥生殖生長持續(xù)時(shí)間卻顯著增加(8.7%)。(3)總體來看(季風(fēng)氣候區(qū)所有獨(dú)立研究結(jié)果)夜間增溫0—2℃和2—3℃對小麥產(chǎn)量有顯著影響,小麥分別增產(chǎn)10.5%和15.0%?!窘Y(jié)論】田間增溫會(huì)顯著影響中國糧食主產(chǎn)區(qū)小麥產(chǎn)量以及發(fā)育期持續(xù)時(shí)間,但不同氣候區(qū)及不同時(shí)段增溫對小麥生長和發(fā)育的影響不同。本研究結(jié)果可為未來氣候變化新態(tài)勢下中國糧食主產(chǎn)區(qū)種植制度優(yōu)化與合理布局提供科學(xué)依據(jù)。

持續(xù)增溫;小麥產(chǎn)量;氣候區(qū);增溫時(shí)段;增溫幅度;Meta-analysis

0 引言

【研究意義】2013年發(fā)布的IPCC第五次評估報(bào)告指出,全球年均氣溫增加趨勢明顯,近30年平均氣溫增加幅度較1990年前約上升了0.85℃[1]。近年,中國糧食主產(chǎn)區(qū)溫度升高明顯,尤其是小麥主產(chǎn)區(qū)積溫顯著增加[2]。小麥作為中國三大主要糧食作物之一,勢必會(huì)受到氣候變暖的顯著影響,其安全生產(chǎn)風(fēng)險(xiǎn)隨之增大,并對中國糧食安全造成潛在威脅[3-4]。目前,增溫對中國小麥產(chǎn)量影響的研究結(jié)果不一,甚至截然相反[5]。因此,闡明和量化增溫對中國糧食主產(chǎn)區(qū)小麥產(chǎn)量的影響程度具有重要意義。【前人研究進(jìn)展】有研究表明,溫度每升高1.0℃,小麥產(chǎn)量將會(huì)減少4%—7%[2]。相反,也有研究認(rèn)為溫度每升高1.0—1.5℃,小麥產(chǎn)量會(huì)提高15%—20%[6]。前人研究結(jié)果的不一致可能是由于試驗(yàn)所處地域氣候的特殊性及差異導(dǎo)致。例如,千懷遂等[7]研究表明,亞熱帶季風(fēng)區(qū)小麥生長季每增溫1℃,小麥將增產(chǎn)135—320 kg·hm-2;而位于溫帶季風(fēng)氣候區(qū)的河南北部的增溫試驗(yàn)表明,增溫1℃小麥產(chǎn)量顯著降低了240—340 kg·hm-2[7]。CERES-Wheat模型研究結(jié)果顯示,當(dāng)增溫2—3℃時(shí),華北及長江中下游地區(qū)小麥均有增產(chǎn)趨勢,而西北地區(qū)春小麥將會(huì)減產(chǎn)30%—60%[8]。另外,全球氣候變暖同時(shí)伴隨著晝夜增溫幅度的不均衡[9],不同程度地造成小麥產(chǎn)量增加或降低[10-11]。位于河北固城的增溫試驗(yàn)表明,當(dāng)夜間增溫2.5℃時(shí),小麥減產(chǎn)26.6%[10];相反,位于江蘇省的增溫試驗(yàn)表明,白天增溫約0.9℃或夜間增溫約1.1℃時(shí),小麥分別增產(chǎn)40.1%和18.3%[11]。可見,不同時(shí)段增溫同樣對小麥產(chǎn)量影響顯著。因此,系統(tǒng)量化不同氣候區(qū)和不同時(shí)段增溫對中國糧食主產(chǎn)區(qū)小麥產(chǎn)量的影響程度具有重要的理論和實(shí)踐價(jià)值?!颈狙芯壳腥朦c(diǎn)】目前,由于田間增溫對小麥產(chǎn)量影響的試驗(yàn)耗費(fèi)較大,因此試驗(yàn)數(shù)量稀少;且現(xiàn)有研究多基于某試驗(yàn)點(diǎn)[7-10],即增溫對小麥的影響程度受試驗(yàn)點(diǎn)所處地區(qū)特定氣候和環(huán)境條件的影響,具有較強(qiáng)的局限性和特殊性。為避免上述問題,應(yīng)對中國糧食主產(chǎn)區(qū)內(nèi)獨(dú)立試驗(yàn)或樣本進(jìn)行整合分析,系統(tǒng)闡明增溫對中國糧食主產(chǎn)區(qū)內(nèi)不同氣候區(qū)的小麥產(chǎn)量及發(fā)育期持續(xù)時(shí)間的影響?!緮M解決的關(guān)鍵問題】通過對國內(nèi)外已發(fā)表(1990—2017年)的有關(guān)田間增溫對小麥產(chǎn)量及發(fā)育期持續(xù)時(shí)間影響的文章中數(shù)據(jù)進(jìn)行提取收集,運(yùn)用整合分析(Meta-analysis),定量分析中國糧食主產(chǎn)區(qū)內(nèi)不同氣候區(qū)及不同時(shí)段增溫對小麥產(chǎn)量及發(fā)育期持續(xù)時(shí)間的影響,探討增溫對小麥生長發(fā)育影響的一般規(guī)律,以期為未來氣候變化新態(tài)勢下中國糧食主產(chǎn)區(qū)種植制度優(yōu)化與合理布局提供科學(xué)依據(jù)。

1 數(shù)據(jù)與方法

1.1 文獻(xiàn)收集

為了系統(tǒng)全面地揭示增溫對中國糧食主產(chǎn)區(qū)小麥產(chǎn)量的影響,本研究從web of science、中國知網(wǎng)、萬方和百度學(xué)術(shù)等文獻(xiàn)數(shù)據(jù)庫對1990—2017年期間發(fā)表的文獻(xiàn)進(jìn)行檢索。選取增溫(warming、infrared heating、increasing temperature),小麥產(chǎn)量(yield),生育期(growing periods)等關(guān)鍵詞進(jìn)行文獻(xiàn)收集。篩選文獻(xiàn)采用以下標(biāo)準(zhǔn)來進(jìn)行:(1)田間試驗(yàn);(2)試驗(yàn)處理結(jié)果至少含有均值、標(biāo)準(zhǔn)偏差SD(或標(biāo)準(zhǔn)誤差SE)和重復(fù)數(shù)3個(gè)要素,其中重復(fù)數(shù)至少為3次;(3)試驗(yàn)處理必須包含對照和增溫處理;(4)需清楚地說明增溫方式、冠層增溫度數(shù)以及持續(xù)時(shí)間。例如,為了更好模擬氣候變暖對小麥的影響,增溫設(shè)施多選取田間開放式增溫方式[12]:紅外線輻射和紅外線反射方式。同時(shí),獲取每個(gè)獨(dú)立試驗(yàn)的基本信息:試驗(yàn)點(diǎn)的地理位置(經(jīng)度、緯度和海拔),氣候類型,土地利用方式和土壤理化性質(zhì)以及小麥種植期間農(nóng)田肥料的投入量(kg·hm-2)等。由于全生育期的田間紅外增溫試驗(yàn)需要較大的資金投入,其數(shù)量有限,因此本文針對全生育期增溫對小麥生長發(fā)育的影響,篩選出符合上述條件的文獻(xiàn)共21篇,包含19個(gè)點(diǎn)位的試驗(yàn)數(shù)據(jù)(表1)。

1.2整合分析方法

1.3 數(shù)據(jù)分析

表1 整合分析所用19個(gè)增溫試驗(yàn)點(diǎn)位信息表

STM:亞熱帶季風(fēng)區(qū);NTM:溫帶季風(fēng)區(qū);NTC:溫帶大陸性氣候區(qū) STM indicates subtropical monsoon climate; NTM indicates temperate monsoon climate; NTC indicates temperate continental climate

表2 不同分類條件下的增溫對小麥產(chǎn)量和生育期影響異質(zhì)性檢驗(yàn)

2 結(jié)果

2.1 不同氣候區(qū)全生育期持續(xù)增溫對小麥產(chǎn)量及構(gòu)成的影響

綜合亞熱帶季風(fēng)區(qū)、溫帶季風(fēng)區(qū)以及溫帶大陸性氣候區(qū)這3種氣候區(qū),研究全生育期平均溫度增加0—3℃對小麥產(chǎn)量、千粒重、穗粒數(shù)以及穗數(shù)的影響。結(jié)果顯示,增溫(0—3℃)時(shí)產(chǎn)量和穗數(shù)顯著增加了3.1%和3.8%(<0.05),而千粒重以及穗粒數(shù)均無明顯變化(圖1-a)。

然而,不同氣候區(qū)小麥產(chǎn)量對增溫的響應(yīng)明顯不同(圖1-b)。總體來說,全生育期持續(xù)增溫(0—3℃)對溫帶季風(fēng)區(qū)和亞熱帶季風(fēng)區(qū)的小麥均有增產(chǎn)效果,并且亞熱帶季風(fēng)區(qū)小麥產(chǎn)量增幅(8.2%,<0.05)大于溫帶季風(fēng)區(qū)小麥產(chǎn)量增幅(6.8%,<0.05);而溫帶大陸性氣候區(qū)小麥產(chǎn)量減少10.2%(<0.5)。具體來說,在亞熱帶季風(fēng)區(qū)增溫0—2℃對小麥產(chǎn)量有明顯的提升作用(8.5%,<0.05),然而增溫2—3℃時(shí)小麥產(chǎn)量未明顯增加;在溫帶季風(fēng)區(qū)增溫0—2℃至2—3℃時(shí),小麥的增產(chǎn)效果逐漸加強(qiáng)(2.6%—14.5%,<0.05);相反,在溫帶大陸性氣候區(qū)增溫0—2℃至2—3℃時(shí),小麥產(chǎn)量顯著降低,降幅由10.1%變?yōu)?5.9%(<0.05)。

不同氣候區(qū)增溫對小麥千粒重的影響顯著(圖1-c)??傮w來說,全生育期持續(xù)增溫(0—3℃)對亞熱帶季風(fēng)區(qū)小麥千粒重增加明顯(6.3%,<0.05);相反,溫帶大陸性氣候區(qū)增溫顯著降低了小麥千粒重(5.9%,<0.05);但溫帶季風(fēng)氣候區(qū)增溫并未明顯影響小麥千粒重。具體來說,在亞熱帶季風(fēng)區(qū)和溫帶季風(fēng)區(qū)增溫0—2℃后,小麥千粒重分別顯著增加6.8%和3.7%(<0.05),但增溫至2—3℃時(shí)小麥千粒重均未明顯增加;相反,在溫帶大陸性氣候增溫0—2℃至2—3℃時(shí),小麥千粒重顯著降低,降幅為4.5%—11.2%(<0.05)。

a表示綜合不同氣候區(qū)增溫0—3℃對小麥產(chǎn)量(GY)、千粒重(TKW)、穗粒數(shù)(GNE)和穗數(shù)(ENP)的影響;b—e分別表示不同氣候區(qū)不同增溫幅度對小麥產(chǎn)量、千粒重、穗粒數(shù)和穗數(shù)的影響。點(diǎn)和誤差線分別代表變化百分?jǐn)?shù)及其95%的置信區(qū)間,如果95%的置信區(qū)間沒有跨越零線表示增溫處理對小麥相關(guān)生理指標(biāo)有顯著影響;左側(cè)為增溫幅度,右側(cè)括號內(nèi)數(shù)值代表樣本數(shù)。下同

不同氣候區(qū)小麥穗粒數(shù)對增溫的響應(yīng)不一(圖1-d)。總體來說,全生育期持續(xù)增溫(0—3℃)使亞熱帶季風(fēng)區(qū)和溫帶季風(fēng)區(qū)小麥穗粒數(shù)分別顯著增加4.7%和3.9%,而溫帶大陸性氣候區(qū)增溫使小麥穗粒數(shù)顯著降低(8.3%,<0.05)。具體來說,溫帶季風(fēng)區(qū)和亞熱帶季風(fēng)區(qū)增溫0—2℃對小麥穗粒數(shù)有顯著提升作用(5.7%和4.3%,<0.05),然而增溫2—3℃時(shí)小麥穗粒數(shù)均未明顯增加;當(dāng)增溫0—2℃至2—3℃時(shí),溫帶大陸性氣候區(qū)小麥穗粒數(shù)顯著降低,降幅為7.3%—15.6%(<0.05)。

另外,圖1-e顯示,全生育期持續(xù)增溫(0—3℃)時(shí),溫帶季風(fēng)區(qū)小麥穗數(shù)增加顯著(5.5%,<0.05),對溫帶大陸性氣候區(qū)和亞熱帶季風(fēng)區(qū)小麥穗數(shù)無顯著影響。具體來說,增溫0—2℃至2—3℃時(shí),亞熱帶季風(fēng)區(qū)和溫帶季風(fēng)區(qū)小麥穗數(shù)均由變化不明顯變?yōu)轱@著增加(9.6%和10.5%,<0.05),而溫帶大陸性氣候區(qū)的小麥穗數(shù)均無顯著變化。

2.2 全生育期持續(xù)增溫對不同氣候區(qū)小麥生育期持續(xù)時(shí)間的影響

圖2顯示,不同氣候區(qū)小麥全生育期持續(xù)時(shí)間對增溫的響應(yīng)相似。整體來看,當(dāng)增溫0—3℃時(shí),亞熱帶季風(fēng)區(qū)和溫帶大陸性氣候區(qū)的小麥整個(gè)生育期持續(xù)時(shí)間均顯著縮短(-3.3%和-7.1%,<0.05),但溫帶季風(fēng)區(qū)小麥全生育期持續(xù)時(shí)間并未受到增溫的顯著影響。當(dāng)增溫幅度為0—2℃時(shí),亞熱帶季風(fēng)區(qū)和溫帶大陸性氣候區(qū)的小麥全生育期持續(xù)時(shí)間分別縮短3.8%和5.5%(<0.05);當(dāng)增溫2—3℃時(shí),溫帶大陸性氣候區(qū)小麥全生育期持續(xù)時(shí)間縮短的更為明顯(-12.3%,<0.05),而溫帶季風(fēng)區(qū)小麥全生育期持續(xù)時(shí)間并無顯著變化。

圖2 不同氣候區(qū)小麥生育期持續(xù)時(shí)間對不同增溫幅度的響應(yīng)

綜合所有氣候區(qū)來看(圖3),當(dāng)增溫0—3℃時(shí),小麥營養(yǎng)生長期持續(xù)時(shí)間顯著縮短(8.1%,<0.05),而小麥生殖生長期持續(xù)時(shí)間并未受增溫影響;而將氣候區(qū)分開進(jìn)行分析時(shí)發(fā)現(xiàn)(圖4),溫帶季風(fēng)區(qū)和溫帶大陸性氣候區(qū)的小麥生殖生長期持續(xù)時(shí)間均未發(fā)生顯著變化,但亞熱帶季風(fēng)區(qū)小麥生殖生長期持續(xù)時(shí)間顯著增加(8.7%,<0.05)。

2.3 不同時(shí)段增溫對小麥產(chǎn)量及構(gòu)成的影響

綜合不同增溫時(shí)段,研究小麥生長季平均溫度增加0—3℃對小麥產(chǎn)量、千粒重、穗粒數(shù)以及穗數(shù)的影響,由圖5-a可以看出,小麥產(chǎn)量和穗數(shù)分別顯著增加了3.1%和3.8%,而千粒重以及穗粒數(shù)均無明顯變化。

本研究將不同增溫時(shí)段分為全天和夜間增溫。圖5顯示,不同增溫時(shí)段對小麥產(chǎn)量及構(gòu)成影響顯著。綜合不同氣候區(qū)來看,全天不同幅度增溫對產(chǎn)量影響均不顯著;夜間增溫0—3℃時(shí),小麥顯著增產(chǎn)9.9%(<0.05)(圖5-b),當(dāng)增溫幅度為0—2℃和2—3℃時(shí),夜間增溫均使小麥產(chǎn)量顯著增加(10.5%—15.0%,<0.05)。

圖3 小麥營養(yǎng)生長期持續(xù)時(shí)間和生殖生長期持續(xù)時(shí)間對不同增溫幅度的響應(yīng)

圖4 小麥生殖生長期在不同氣候區(qū)增溫0—3℃的響應(yīng)

綜合不同氣候區(qū)來看,不同時(shí)段增溫對小麥千粒重影響差異明顯(圖5-c)。全天增溫使小麥千粒重顯著減少(-3.6%,<0.05),夜間增溫使小麥千粒重顯著增加(5.3%,<0.05);當(dāng)增溫0—2℃至2—3℃時(shí),全天增溫使小麥千粒重由變化不顯著變?yōu)轱@著減少(-6.2%,<0.05),夜間增溫使小麥千粒重由顯著增加(6.4%,<0.05)變?yōu)轱@著減少(-6.9%,<0.05)。

同樣,不同時(shí)段增溫對小麥穗粒數(shù)影響差異明顯(圖5-d)。整體來看,全天增溫對小麥穗粒數(shù)無顯著影響,夜間增溫0—3℃使小麥穗粒數(shù)顯著增加(3.5%,<0.05)。當(dāng)夜間增溫幅度為0—2℃時(shí),小麥穗粒數(shù)顯著增加(4.4%,<0.05),但增溫2—3℃時(shí)小麥穗粒數(shù)變化不顯著。

另外,不同時(shí)段增溫對小麥穗數(shù)影響有差異(圖5-e)。整體來看,夜間增溫對小麥穗數(shù)影響不顯著,全天增溫使小麥穗數(shù)顯著增加(5.8%,<0.05);當(dāng)增溫0—2℃時(shí),全天和夜間增溫小麥穗數(shù)變化均不顯著;當(dāng)增溫2—3℃時(shí),全天和夜間增溫分別使小麥穗數(shù)顯著增加8.7%和17.1%(<0.05)。

2.4 不同時(shí)段增溫對小麥生育期持續(xù)時(shí)間的影響

由圖6和圖7可知,綜合所有氣候區(qū),全天增溫(0—3℃)小麥全生育期持續(xù)時(shí)間顯著縮短5.7%(<0.05);當(dāng)全天增溫0—2℃和2—3℃時(shí),小麥全生育期持續(xù)時(shí)間顯著縮短5.4%和6.1%(<0.05),而開花—成熟期的持續(xù)時(shí)間均無顯著變化;另外,夜間增溫(0—3℃)對小麥全生育期持續(xù)時(shí)間無顯著影響,而開花—成熟期卻顯著延長了8.0%,其中在0—2℃和2—3℃兩個(gè)增溫幅度下夜間增溫均未使小麥全生育期發(fā)生顯著變化,但開花—成熟期的持續(xù)時(shí)間卻分別顯著增加10.4%和6.2%。

a表示綜合不同時(shí)段增溫0—3℃對小麥產(chǎn)量(GY)、千粒重(TKW)、穗粒數(shù)(GNE)和穗數(shù)(ENP)的影響;b—e 分別表示不同增溫時(shí)段及幅度對小麥產(chǎn)量、千粒重、穗粒數(shù)和穗數(shù)的影響

圖6 不同增溫時(shí)段小麥生育期持續(xù)時(shí)間對增溫幅度的響應(yīng)

圖7 不同增溫時(shí)段的小麥開花期-成熟期持續(xù)時(shí)間對不同增溫幅度的響應(yīng)

3 討論

3.1 全生育期持續(xù)增溫對不同氣候區(qū)小麥產(chǎn)量及生育期影響差異性

本研究表明,亞熱帶季風(fēng)區(qū)全生育期增溫0—3℃使小麥產(chǎn)量顯著增加7.5%(圖1-b),雖與前人研究結(jié)果相似[11, 21],但小麥增產(chǎn)幅度對增溫的響應(yīng)仍有所差異。這可能是由于獨(dú)立試驗(yàn)中氣候年型的差異導(dǎo)致水熱條件不均衡對試驗(yàn)結(jié)果的影響。例如,2004—2009年間,南京地區(qū)增溫0—2℃時(shí),小麥產(chǎn)量分別提高16.3%—40.1%[11, 21],但2010—2014年間,該地區(qū)增溫0—2℃卻造成小麥平均減產(chǎn)26.2%[23-24]。因此,本研究運(yùn)用整合分析,可排除某個(gè)獨(dú)立試驗(yàn)中特殊氣候年型及點(diǎn)位特征,進(jìn)而反映該區(qū)域小麥產(chǎn)量對田間增溫的一般規(guī)律。值得一提的是,當(dāng)增溫0—2℃時(shí),亞熱帶季風(fēng)區(qū)小麥增產(chǎn)8.2%,而增溫2—3℃時(shí),該氣候區(qū)小麥產(chǎn)量無顯著變化。這說明,增溫超過2℃對小麥增產(chǎn)無積極作用甚至可能出現(xiàn)負(fù)面效應(yīng),即適度增溫可在亞熱帶季風(fēng)區(qū)增加小麥產(chǎn)量[25]。小麥穗數(shù)、穗粒數(shù)和千粒重作為產(chǎn)量構(gòu)成要素,在亞熱帶季風(fēng)區(qū)增溫0—3℃時(shí),穗粒數(shù)與千粒重分別顯著增加了4.7%和6.3%,這與前人研究結(jié)果一致[11, 26-27]。亞熱帶季風(fēng)區(qū)小麥生殖期顯著延長了8.7%(圖4);另外,有研究證明增溫可顯著提高耐熱性小麥的灌漿速率[28],從而提高籽粒充實(shí)度。因此,該地區(qū)小麥千粒重增加可能是由灌漿速率加快和灌漿持續(xù)時(shí)間延長共同決定的[29-30]。

溫帶季風(fēng)區(qū)增溫0—3℃使小麥產(chǎn)量顯著增加6.8%,而且增溫2—3℃的小麥增產(chǎn)幅度(14.5%,<0.05)大于增溫0—2℃(圖1-b),這與前人研究結(jié)果一致[31-34]。例如,位于溫帶季風(fēng)氣候區(qū)的山東禹城、河北固城以及江蘇豐縣等地的增溫試驗(yàn)表明,當(dāng)增溫約1.0℃時(shí),千粒重增加6.3%,小麥產(chǎn)量增加12%[29];增溫2—3℃時(shí)小麥產(chǎn)量增加18%—20%[33-34]。由于溫帶季風(fēng)區(qū)冬季寒冷干燥,秋冬季適度增溫總體有利于小麥產(chǎn)量的提升[35],因此本研究中增溫(0—3℃)有利于該氣候區(qū)小麥增產(chǎn)。從產(chǎn)量構(gòu)成要素來看,本研究增溫0—3℃使小麥穗粒數(shù)和穗數(shù)分別增加3.9%和5.5%,與前人研究結(jié)果類似,但是其增產(chǎn)幅度有所差異[2, 22]。前人研究發(fā)現(xiàn),當(dāng)增溫2—3℃時(shí),穗數(shù)和穗粒數(shù)平均顯著增加27.4%和20.0%,且小麥產(chǎn)量增加23%[22];而本研究小麥穗數(shù)和產(chǎn)量分別顯著增加了10.5%和14.5%。冬季積溫升高可使小麥穗分化時(shí)間加長[31]、有效穗數(shù)增加[32],進(jìn)而使小麥穗數(shù)和產(chǎn)量增加。另外,增溫(0—3℃)對小麥生殖生長持續(xù)時(shí)間影響不顯著(圖4),與前人研究結(jié)果一致[34,36]。進(jìn)一步分析發(fā)現(xiàn),整個(gè)生育期持續(xù)時(shí)間對增溫(0—3℃)的響應(yīng)卻有顯著差異,在溫帶季風(fēng)區(qū),本研究增溫0—3℃對小麥全生育期無顯著影響(圖2),而有研究預(yù)測本世紀(jì)末隨著溫度升高會(huì)使小麥生育期顯著縮短27%[3]。

增溫(0—3℃)使溫帶大陸性氣候區(qū)小麥產(chǎn)量顯著減少10.2%(圖1-b),尤其是增溫2—3℃時(shí)小麥減產(chǎn)幅度(-15.9%)顯著大于0—2℃(-10.0%)。溫帶大陸性氣候區(qū)小麥產(chǎn)量增溫脅迫指數(shù)較高[37],也就是說該氣候區(qū)小麥易受到增溫脅迫而減產(chǎn)。例如,寧夏和甘肅等地的增溫試驗(yàn)表明,增溫(0—3℃)降低了0.5%—20% 的小麥產(chǎn)量,且隨著增溫幅度的升高(0—2℃升高至2—3℃),小麥減產(chǎn)幅度由無顯著變化增加到20%[38-40]。從小麥產(chǎn)量構(gòu)成要素來看,小麥產(chǎn)量、千粒重和穗粒數(shù)分別顯著減少了10.2%、5.9%和8.3%,有研究表明增溫0—3℃可使小麥光合速率下降,穗粒數(shù)和千粒重減少20%和20.8%,產(chǎn)量減少18.5%[38],同時(shí)增溫也會(huì)使小麥呼吸速率提升[41],最終導(dǎo)致小麥干物質(zhì)積累減少、千粒重和產(chǎn)量降低[38-39]。對于小麥生育期持續(xù)時(shí)間來說,增溫可使小麥生育期持續(xù)時(shí)間顯著縮短[38-40]。例如,寧夏引黃灌區(qū)增溫2—3℃時(shí),小麥全生育期顯著縮短18—22 d[38]。本研究發(fā)現(xiàn),增溫(0—3℃)不僅使全生育期持續(xù)時(shí)間顯著縮短了7.1%,同時(shí)也使小麥營養(yǎng)生長期縮短,導(dǎo)致小麥生長及生殖過程中營養(yǎng)供應(yīng)不足[42],這可能也是小麥產(chǎn)量減少的原因之一。

目前,利用作物模型模擬預(yù)測氣候變暖對小麥產(chǎn)量的影響成為熱點(diǎn)之一[43-46]。例如,APSIM- Wheat模型模擬結(jié)果顯示當(dāng)前澳大利亞平均每增溫1℃,小麥產(chǎn)量降低5.3%,其中降水和CO2濃度升高均對小麥產(chǎn)量有一定的補(bǔ)償作用;在中國蘭州隴東雨養(yǎng)地區(qū)增溫1.5℃范圍內(nèi),隨著溫度的升高小麥逐漸減產(chǎn)。CERES-Wheat模型預(yù)測結(jié)果顯示氣候變暖造成東北和西北地區(qū)春小麥產(chǎn)量下降,而華北及長江中下游地區(qū)小麥均有增產(chǎn)趨勢[8];中國黃淮海地區(qū)20年(1990—2009年)歷史冬小麥產(chǎn)量數(shù)據(jù)可知,每升高1℃,小麥增產(chǎn)0.62%—4.78%[47]。與本研究整合分析所得結(jié)果的趨勢一致。模型模擬可能忽視了小麥生育期內(nèi)病蟲害或者品種更替等影響;另外,增溫很大程度上伴隨著CO2濃度升高,模型模擬過程中,如未考慮CO2濃度的變化,很可能會(huì)低估小麥產(chǎn)量的變化趨勢。模型研究表明,在IPCC的SRES A2和B2情景下,至2050年時(shí)增溫2℃會(huì)降低1.6%—2.5%的灌溉區(qū)冬小麥產(chǎn)量,然而考慮增溫帶來的CO2濃度變化后,增溫則會(huì)增加小麥產(chǎn)量[48]。

3.2 全生育期不同時(shí)段增溫小麥產(chǎn)量及生育期的影響差異性

本研究表明,綜合不同氣候區(qū)研究結(jié)果來看,全天增溫0—3℃對中國小麥產(chǎn)量影響幅度不明顯。由于不同氣候區(qū)水熱條件、灌溉條件以及小麥品種耐熱性的差異,在亞熱帶季風(fēng)區(qū)、溫帶大陸性氣候區(qū)和溫帶季風(fēng)氣候區(qū),相同幅度的全天增溫(0— 3℃)會(huì)使小麥產(chǎn)量出現(xiàn)增加[21,39]或降低[24,37-38]截然不同的趨勢,不同氣候區(qū)增溫對小麥的正、負(fù)效應(yīng)可能是導(dǎo)致本研究基于所有氣候區(qū)得出的全天增溫對小麥產(chǎn)量無明顯影響的原因。值得注意的是,綜合亞熱帶季風(fēng)區(qū)和溫帶季風(fēng)區(qū)所有研究數(shù)據(jù)進(jìn)行整合分析,夜間增溫0—3℃仍然可使小麥產(chǎn)量顯著增加10.1%。研究表明,夜間增溫對小麥產(chǎn)量的影響更加明顯,出現(xiàn)顯著增產(chǎn)[11,30,49]或減產(chǎn)[10,23,26,50]的趨勢。這可能是由于植物光合作用受源-庫關(guān)系調(diào)控,夜間增溫使小麥呼吸作用增強(qiáng),呼吸消耗加快不利于干物質(zhì)積累,會(huì)造成千粒重和產(chǎn)量的減少[5,10,26]。夜間增溫雖顯著加快了小麥夜間呼吸作用,但同時(shí)也刺激小麥在白天的光合作用,使干物質(zhì)積累增加[51-52]。另外也有研究表明夜間增溫會(huì)促進(jìn)冬小麥地上部的生長發(fā)育,提高小麥籽粒淀粉合成酶活性和千粒重[49],從而使小麥產(chǎn)量增加。例如江蘇南京的增溫試驗(yàn)表明,夜間增溫0—3℃可使小麥顯著增產(chǎn)19.6%[42]。本研究中夜間增溫未顯著改變小麥整個(gè)生育期持續(xù)時(shí)間,但延長了生殖生長期(開花期至成熟期)持續(xù)時(shí)間(圖7),生殖生長期的延長可能會(huì)使灌漿期延長而增加小麥千粒重,因此夜間增溫使開花成熟期持續(xù)時(shí)間延長以及千粒重增加,這有可能是造成小麥增產(chǎn)的原因。

3.3 研究不足與展望

由于小麥田間增溫試驗(yàn)成本較高且相關(guān)研究數(shù)量較少,可用于整合分析的文獻(xiàn)和數(shù)據(jù)有限,增加了本文分析結(jié)果的局限性。另外,本文只研究了年均增溫對中國糧食主產(chǎn)區(qū)內(nèi)不同氣候區(qū)的小麥產(chǎn)量和生育期的影響,并未進(jìn)一步系統(tǒng)量化不同季節(jié)中增溫幅度對小麥產(chǎn)量的影響,以及不同氣候區(qū)中不同增溫時(shí)段對小麥產(chǎn)量的影響,這也是下一步研究小麥對增溫響應(yīng)的重點(diǎn)之一。21世紀(jì)末年均增溫有可能達(dá)到5℃[1],但由于收集數(shù)量的限制,本文只分析了0—3℃增溫對小麥生長發(fā)育的影響。最后,由于雨養(yǎng)和灌溉小麥對增溫響應(yīng)的差異性[40],今后應(yīng)著眼于基于水、熱交互作用下小麥產(chǎn)量的變化,進(jìn)一步明確增溫在不同環(huán)境下對小麥生長發(fā)育的影響。

4 結(jié)論

全生育期持續(xù)增溫(0—3℃)對不同氣候區(qū)小麥產(chǎn)量影響顯著,亞熱帶季風(fēng)區(qū)和溫帶季風(fēng)區(qū)的小麥產(chǎn)量分別顯著增加8.2%和6.8%,而溫帶大陸性氣候區(qū)小麥產(chǎn)量則顯著減少10.2%。當(dāng)增溫幅度由0—2℃提升至2—3℃時(shí),溫帶季風(fēng)區(qū)增產(chǎn)越為明顯,溫帶大陸性氣候區(qū)減產(chǎn)幅度由10.1%增大至15.9%,而亞熱帶季風(fēng)區(qū)小麥增產(chǎn)越不顯著。其次,亞熱帶季風(fēng)區(qū)和溫帶大陸性氣候區(qū)小麥全生育期持續(xù)時(shí)間均顯著縮短了3.3%和4.0%。其中,亞熱帶季風(fēng)區(qū)小麥生殖生長期卻顯著延長了8.7%。值得注意的是,綜合不同氣候區(qū)來看,全天增溫對中國小麥產(chǎn)量無顯著影響,而季風(fēng)區(qū)夜間增溫0—3℃可使小麥產(chǎn)量顯著增加9.9%,其中,夜間增溫延長了小麥生殖生長期(開花期—成熟期)持續(xù)時(shí)間。綜上所述,田間增溫會(huì)顯著影響中國糧食主產(chǎn)區(qū)小麥產(chǎn)量以及生育期持續(xù)時(shí)間,但不同氣候區(qū)及不同時(shí)段增溫對小麥生長和發(fā)育的影響不同。因此,為應(yīng)對未來氣候變化而對中國小麥主產(chǎn)區(qū)種植制度進(jìn)行調(diào)整時(shí),應(yīng)綜合考慮不同氣候區(qū)小麥對增溫響應(yīng)的特點(diǎn),從而對現(xiàn)有種植制度進(jìn)行合理優(yōu)化與布局。

[1] IPCC. Climate Change 2013: The physical science basis.. Cambridge&New York: Cambridge University Press, 2013.

[2] Hatfield J L, Boote K J, Kimball B A, Ziska L H, Lzaurralde R C, Ort D, Thomson A M, Wolfe D.Climate impacts on agriculture: Implications for crop production., 2011, 103(2): 351-370.

[3] 張建平, 趙艷霞, 王春乙, 何勇. 氣候變化對我國華北地區(qū)冬小麥發(fā)育和產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2006, 17(7): 1179-1184.

Zhang J P, Zhao Y X, Wang C Y, He Y. Effects of climate change on winter wheat growth and yield in North China., 2006, 17(7): 1179-1184. (in Chinese)

[4] 趙鴻, 李鳳民, 熊友才, 張強(qiáng), 王潤元, 楊啟國.西北干旱區(qū)不同海拔高度地區(qū)氣溫變化對春小麥生長的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2009, 20(4): 887-893.

Zhao H, Li F M, Xiong Y C, Zhang Q, Wang R Y, Yang Q G. Effects of air temperature change on spring wheat growth at different altitudes in northwest arid area., 2009, 20(4): 887-893. (in Chinese)

[5] 夏云. 氣候變化對中國小麥產(chǎn)量的影響[D]. 南昌: 江西農(nóng)業(yè)大學(xué), 2016.

Xia Y. The impact of climate change on wheat yield in China[D]. NanChang: Jiangxi Agricultural University, 2016. (in Chinese)

[6] Tack J, Barkley A, Nalley L L. Effect of warming temperatures on US wheat yields., 2015, 112(22): 6931-6936.

[7] 千懷遂, 魏東嵐. 氣候?qū)幽鲜⌒←湲a(chǎn)量的影響及其變化研究. 自然資源學(xué)報(bào), 2000, 15(2): 149-154.

Qian H S, Wei D L. Impacts of climate on wheat yield and their changes in Henan province., 2000, 15(2): 149-154. (in Chinese)

[8] 居輝, 熊偉, 許吟隆, 林而達(dá)氣候變化對我國小麥產(chǎn)量的影響. 作物學(xué)報(bào), 2005, 31(10): 1340-1343.

Ju H, Xiong W, Xu Y l, Lin E D. Impacts of climate change on wheat yield in China., 2005, 31(10): 1340-1343. (in Chinese)

[9] Vose R S, Easterling D R, Gleason B. Maximum and minimum temperature trends for the globe: An update through 2004., 2005, 32(23): 822-826.

[10] 房世波, 譚凱炎, 任三學(xué). 夜間增溫對冬小麥生長和產(chǎn)量影響的實(shí)驗(yàn)研究. 中國農(nóng)業(yè)科學(xué), 2010, 43(15): 3251-3258.

Fang S B, Tan K Y, Ren S X. Winter wheat yields decline with spring higher night temperature by controlled experiments., 2010, 43(15): 3251-3258. (in Chinese)

[11] 田云錄, 陳金, 董文軍, 鄧艾興, 張衛(wèi)建. 開放式增溫下非對稱性增溫對冬小麥生長特征及產(chǎn)量構(gòu)成的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2011, 22(3): 681-686.

Tian Y L, Chen J, Dong W J, Deng A X, Zhang W J. Effects of asymmetric warming on the growth characteristics and yield components of winter wheat under free air temperature increased., 2011, 22(3): 681-686. (in Chinese)

[12] 牛書麗, 韓興國, 馬克平, 萬師強(qiáng). 全球變暖與陸地生態(tài)系統(tǒng)研究中的野外增溫裝置. 植物生態(tài)學(xué)報(bào), 2007, 31(2): 262-271.

NIu S L, Han X G, Ma K P, Wan S Q. Field facilities in global warming and terrestrial ecosystem research., 2007, 31(2): 262-271. (in Chinese)

[13] Zhao X, Liu S L, Pu C, Zhang X Q, XUE J F, Zhang R, Wang Y Q, Lai R, Zhang H L, Chen F. Methane and nitrous oxide emissions under no-till farming in China: A meta-analysis., 2016, 22(4): 1372-1384.

[14] Taova S. GetData digitizing program code: description, testing, training. INDC International Nuclear Data Committee, International Atomic Energy Agency, 2013.

[15] Larry V, Hedges J G, Curtis P S. The Meta-analysis of response ratios in experimental ecology., 1999, 80(4): 1150-1156.

[16] Chen X, Hu B, Yu R. Spatial and temporal variation of phenological growing season and climate change impacts in temperate eastern China., 2005, 11(7): 1118-1130.

[17] Rosenberg M S, Adams D C, Gurevitch J. Metawin: Statistical software for meta-analysis with resampling tests., 1998, 73(1): 126-128.

[18] Liu S X, Mo X G, Lin Z H, Xu Y Q, JI J J, WEN G, Richey J. Crop yield responses to climate change in the Huang-Huai-Hai Plain of China., 2010, 97(8): 1195-1209.

[19] Sanchez B, Rasmussen A, Porter J R. Temperatures and the growth and development of maize and rice: A review., 2014, 20(2): 408-417.

[20] Wallace B C, Lajeunesse M J, Dietz G, Dahabrech I J, Trikalions T A, Schmid C H.OpenMEE: Intuitive, open-source software for meta-analysis in ecology and evolutionary biology., 2017, 8(8): 941-947.

[21] Tian Y L, Chen J, Chen C Q, DENG A X, SONG Z W, ZHENG C Y, HOOGMOED W, ZHANG W J. Warming impacts on winter wheat phenophase and grain yield under field conditions in Yangtze Delta Plain, China., 2012, 134(3): 193-199.

[22] 譚凱炎, 房世波, 任三學(xué). 增溫對華北冬小麥生產(chǎn)影響的試驗(yàn)研究. 氣象學(xué)報(bào), 2012, 70(4): 902-908.

Tan K Y, Fang S B, Ren S X. Experiment study of winter wheat growth and yield response to climate warming., 2012, 70(4): 902-908. (in Chinese)

[23] 田思勰, 羅雪頂, 董京銘, 劉鳳鳳, 吳雪亞, 張耀鴻夜間增溫及免耕對冬小麥生長及養(yǎng)分吸收利用的影響. 江蘇農(nóng)業(yè)科學(xué), 2015, 43(9): 111-114.

Tian S X, Luo X D, Dong J M, Liu F F, Wu X Y, Zhang Y H. Effects of night warming and no tillage on growth and nutrient uptake and utilization of winter wheat., 2015, 43(9): 111-114. (in Chinese)

[24] Wang J Q, Liu X Y, Zhang X H, smith P, Li L Q, Filley T R, Cheng K, Shen M X, He Y B, Pan G X. Size and variability of crop productivity both impacted by CO2enrichment and warming-a case study of 4 year field experiment in a Chinese paddy.,&, 2016, 221: 40-49.

[25] 楊絢, 湯緒, 陳葆德, 田展, 鐘洪麟氣候變暖背景下高溫脅迫對中國小麥產(chǎn)量的影響. 地理科學(xué)進(jìn)展, 2013, 32(12): 1771-1779.

Yang X, Tang X, Chen B D, Tian Z, ZHONG H L. Impacts of heat stress on wheat yield due to climatic warming in China., 2013, 32(12): 1771-1779. (in Chinese)

[26] 房世波, 譚凱炎, 任三學(xué), 張新時(shí)氣候變暖對冬小麥生長和產(chǎn)量影響的大田實(shí)驗(yàn)研究. 中國科學(xué): 地球科學(xué), 2012, 55(6): 1021-1027.

Fang S B, Tan K Y, Ren S X, Zhang X S. Field experimental study on effects of climate warming on growth and yield of winter wheat., 2012, 55(6): 1021-1027. (in Chinese)

[27] 高素華, 郭建平, 趙四強(qiáng), 張宇, 潘亞茹高溫對我國小麥生長發(fā)育及產(chǎn)量的影響. 大氣科學(xué), 1996, 20(5): 599-605.

Gao S H, Guo J P, Zhao S Q, Zhang Y, Pan Y R. The impacts of “higher-temperature” on wheat growth and yield in China., 1996, 20(5): 599-605. (in Chinese)

[28] 胡剛元. 溫度對冬小麥灌漿時(shí)間和灌漿速度的影響. 安徽農(nóng)業(yè)科學(xué), 2012, 40(26): 12836-12837.

Hu G Y. Effects of temperature on filling time and filling rate during grain filling period of winter wheat (Linn)., 2012, 40(26): 12836-12837. (in Chinese)

[29] 苗永杰. 高溫脅迫對小麥籽粒灌漿特性及主要品質(zhì)形狀的影響[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2016.

Miao Y J. Effect of heat stress on grain filling and major quality of common wheat [D]. Beijing: Chinese Academy of Agricultural Sciences, 2016. (in Chinese)

[30] Chen J, Tian Y, Zhang X, Zheng C Y, Song Z W, Deng A X, Zhang W J. Nighttime warming will increase winter wheat yield through improving plant development and grain growth in North China., 2013, 33(2): 397-407.

[31] 張明響. 黃淮麥區(qū)不同小麥品種的產(chǎn)量及其相關(guān)因素分析[D]. 北京: 中國農(nóng)業(yè)科學(xué)院, 2013.

Zhang M X. Analysis of different wheat varieties yield and its related factors in Huang-Huai wheat area[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013. (in Chinese)

[32] 田云錄, 鄭建初, 張彬, 陳金, 董文軍, 楊飛, 張衛(wèi)健. 麥田開放式晝夜不同增溫系統(tǒng)的設(shè)計(jì)及增溫效果. 中國農(nóng)業(yè)科學(xué), 2010, 43(18): 3724-3731.

Tian Y L, Zheng J C, Zhang B, Chen J, Dong W J, Yang F, Zhang W J. Design of free air temperature increasing (FATI) system for upland with three diurnal warming scenarios and their effects., 2010, 43(18): 3724-3731. (in Chinese)

[33] Fang S B, Cammarano D, Zhou G STAN K Y, REN S XEffects of increased day and night temperature with supplemental infrared heating on winter wheat growth in North China., 2015, 64: 67-77.

[34] Hou R X, Ouyang Z, Li Y S, WILSON G V, LI H X.Is the change of winter wheat yield under warming caused by shortened reproductive period?, 2012, 2(12): 2999-3008.

[35] 李向東, 張德奇, 王漢芳, 邵運(yùn)輝方保停, 呂風(fēng)榮, 岳俊芹, 馬富舉越冬前增溫對小麥生長發(fā)育和產(chǎn)量的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2015, 26(3): 839-846.

Li X D, Zhang D Q, Wang H F, Shao Y H, Fang B T, Lü F R, Yue J Q, Ma F J. Impact of temperature increment before the over-wintering period growth and development and grain yield of winter wheat., 2015, 26(3): 839-846. (in Chinese)

[36] 王斌, 顧蘊(yùn)倩, 羅衛(wèi)紅, 戴劍鋒, 張巍, 亓春杰.中國冬小麥種植區(qū)光熱資源及其配比的時(shí)空演變特征分析. 中國農(nóng)業(yè)科學(xué), 2012, 45(2): 228-238.

Wang B, Gu Y Q, Luo W H, Dai J F, Zhang W, QI C J. Analysis of the temporal and spatial changes of photo-thermal resources in winter wheat growing regions in China., 2012, 45(2): 228-238. (in Chinese)

[37] 肖國舉, 張強(qiáng), 張峰舉, 羅成科, 王潤元.增溫對寧夏引黃灌區(qū)春小麥生產(chǎn)的影響. 生態(tài)學(xué)報(bào), 2011, 31(21): 6588-6593.

Xiao G J, Zhang Q, Zhang F J, Luo C K, Wang R Y. The impact of rising temperature on spring wheat production in the yellow river irrigation region of Ningxia., 2011, 31(21): 6588-6593. (in Chinese)

[38] 張凱, 王潤元, 馮起, 王鶴齡, 趙鴻, 趙陽, 雷俊模擬增溫和降水變化對半干旱區(qū)春小麥生長及產(chǎn)量的影響. 農(nóng)業(yè)工程學(xué)報(bào), 2015, 31(增刊1): 161-170.

Zhang K, Wang R Y, Feng Q, Wang H L, Zhao H, Zhao Y, Lei J. Effects of simulated warming and precipitation change on growth characteristics and grain yield of spring wheat in semi-arid area., 2015, 31(S1): 161-170. (in Chinese)

[39] Guo J X, Wei X L, Qiang X, Zhao J S, Jing WEffects of temperature increase and elevated CO2concentration, with supplemental irrigation, on the yield of rain-fed spring wheat in a semiarid region of China., 2005, 74(3): 243-255.

[40] 謝英添. 農(nóng)田開放式CO2濃度和溫度增高對冬小麥生長發(fā)育和產(chǎn)量的影響[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2013.

Xie Y T. Effect of free air CO2enrichment and free air temperature increase on growth and yield in wheat[D]. Nanjing: Nanjing Agricultural University, 2013. (in Chinese)

[41] 于振文, 潘慶民, 姜東, 張永麗, 王東9000kg/公頃小麥?zhǔn)┑颗c生理特性分析. 作物學(xué)報(bào), 2003, 29(1): 37-43.

Yu Z W, Pan Q M, Jiang D, Zhang Y L, Wang D. Analysis of the amount of nitrogen applied and physiological characteristics in wheat of the yield level of 9000 kg per hectare., 2003, 29(1): 37-43. (in Chinese)

[42] 田云錄. 冬小麥生產(chǎn)力對晝夜不同增溫的響應(yīng)研究[D]. 南京: 南京農(nóng)業(yè)大學(xué), 2011.

Tian Y L. Response of winter wheat productivity to asymmetric warming region[D]. Nanjing: Nanjing Agricultural University, 2011. (in Chinese)

[43] Innes P J, Tan D KY, Van Ogtrop F. Effects of high- temperature episodes on wheat yields in New South Wales, Australia., 2015, 208: 95-107.

[44] 楊軒, 王自奎, 曹銓, 張小明, 沈禹穎. 隴東地區(qū)幾種旱作作物產(chǎn)量對降水與氣溫變化的響應(yīng). 農(nóng)業(yè)工程學(xué)報(bào), 2016, 32(9): 106-114.

Yang X, Wang Z K, Cao Q, Zhang X M, Shen Y Y. Effects of precipitation and air temperature changes on yield of several crops in Eastern Gansu of China., 2016, 32(9): 106-114. (in Chinese)

[45] Pirttioja N, Carter T R, Fronzek S. Temperature and precipitation effects on wheat yield across a European transect: A crop model ensemble analysis using impact response surfaces., 2015, 65(8): 87-105.

[46] Ahmed M, Akram M N, Asim M. Calibration and validation of APSIM-Wheat and CERES-Wheat for spring wheat under rainfed conditions: Models evaluation and application., 2016, 123: 384-401.

[47] 陳群, 于歡, 侯雯嘉, 付偉, 耿婷, 陳長青. 氣候變暖對黃淮海地區(qū)冬小麥生育進(jìn)程與產(chǎn)量的影響. 麥類作物學(xué)報(bào), 2014, 34(10): 1363-1372.

Chen Q, Yu H, Hou W J, Fu W, Geng T, Chen C Q. Impacts of climate warming on growth development process and yield of winter wheat in Huang-Huai-Hai region of China., 2014, 34(10): 1363-1372. (in Chinese).

[48] Xiong W, Conway D, Lin E, Xu Y, Ju H, Jiang J, Holman I, Li Y. Future cereal production in China: Modelling the interaction of climate change, water availability and socio-economic scenarios., 2009, 19(1): 34-44.

[49] 石姣姣, 江曉東, 邱思齊. 晝夜不同增溫處理對小麥生長發(fā)育和產(chǎn)量的影響. 江蘇農(nóng)業(yè)科學(xué), 2015, 13(1): 82-84.

Shi J J, Jiang X D, Qiu S Q. Effects of different warming treatments at night and day on growth and yield of wheat., 2015, 13(1): 82-84. (in Chinese)

[50] Tian Y L, Cheng Y, Jin C, Chang Q C, Deng A X, Song Z W, Zhang B X, Zhang W J. Climatic warming increases winter wheat yield but reduces grain nitrogen concentration in East China., 2014, 9(4): e95108.

[51] McCormick A j, Cramer M d, Watt D A. Sink strength regulates photosynthesis in sugarcane., 2006, 171(4): 759-770.

[52] Paul M, Pellny T, Goddijn O. Enhancing photosynthesis with sugar signals., 2001, 6(5): 197-200.

(責(zé)任編輯 楊鑫浩)

Wheat Yield and Growing Period in Response to Field Warming in Different Climatic Zones in China

GAO MeiLing1, ZAHNG XuBo2, SUN ZhiGang2,3, SUN Nan4, LI ShiJi2,3, GAO YongHua5,ZHANG ChongYu1

(1College of Life Sciences, Guizhou University, Guiyang 550025;2Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences/Key Laboratory of Ecosystem Network Observation and Modeling, Beijing 100101;3College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049;4Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences/National Engineering Laboratory for Improving Quality of Arable Land, Beijing 100081;5Agricultural Technology Extension Station of Xuanhan County, Xuanhan 636150, Sichuan)

【Objective】Global warming has been recognized as a key impact factor for wheat growth and development. However, the responses of wheat growth and development to warming are still remain unclear, and have not been systemically quantified in different climate regions of main wheat producing area in China. Therefore, there is a special need to systematically quantify the magnitude and mechanisms of field warming impacts on wheat yield and growing period at different periods in a day and the main climatic regions. 【Method】This study collected 21 published literatures between 1990-2017 from nationwide with the effects of field warming on wheat yield and development. In addition, the Meta-analysis was used to systemically quantify the magnitude of field warming during entire wheat growing season on wheat yield and growing period at different climate regions. 【Result】The results indicated that: (1) Field warming (0-3 °C) significantly increased the wheat yield, thousand kernel weight, and grain number per spike under subtropical monsoon climate whose the average growth rates were 8.2%, 6.3%, and 4.7%, respectively, and significantly increased the wheat yield, spike numbers, and grain number per spike under temperate monsoon climate whose the average growth rates were 6.8%, 3.9% and 5.5%; By contrary, field warming (0-3 °C) reduced the wheat yield, thousand kernel weight and grain number per spike under temperate continental climate whose the average change rates were 10.2%, 5.9%, and 8.3%, respectively. Specifically, the wheat yield significantly were increased (8.5%) by 0-2 °C of field warming and were not significantly changed by 2-3 °C of field warming under subtropical monsoon climate; The increment of wheat yield by 2-3 °C of field warming was 14.5% under temperate monsoon climate; On the contrary, wheat yield were significantly reduced by 10.1% and 15.9% by 0-2 °C and 2-3 °C of field warming under temperate continental climate, respectively. (2) The entire duration of wheat growing period was shorten by 3.3% and 7.1% by field warming (0-3 °C) under subtropical monsoon climate and temperate monsoon climate, but was not changed apparently under temperate continental climate. At the same time, the duration of wheat reproductive period in temperate monsoon climate and temperate continental climate were not changed significantly, while the duration of reproductive growth in subtropical monsoon climate was increased significantly (8.7%). (3) On the whole, though the effects of warming period in a day on wheat yield and development were varied among different climatic regions, the wheat yield were significantly increased by 10.5% and 15.0% under 0-2 °C and 2-3 °C of night warming within all climatic regions. 【Conclusion】 The effect magnitude of field warming on wheat yield and growing period was varied under different climatic regions and the period in a day. The findings of this study could provide scientific base for rational optimization and arrangement of cropping system within the main producing areas in China under new climate change situations.

continuous warming; wheat yield; climatic regions; warming period; warming degree; Meta-analysis

2017-08-13;

2017-11-17

國家重點(diǎn)研發(fā)計(jì)劃(2017YFC0503805)、國家自然科學(xué)基金項(xiàng)目(31570472)、中國科學(xué)院“百人計(jì)劃”項(xiàng)目

高美玲,E-mail:gml1390210244@163.com。

張旭博,E-mail:zhangxb@igsnrr.ac.cn。通信作者孫志剛,E-mail:sun.zhigang@igsnrr.ac.cn

猜你喜歡
氣候區(qū)溫帶全生育期
第31期 參考答案
Facts of Yellowstone
各氣候區(qū)被動(dòng)建筑節(jié)能技術(shù)實(shí)用性分析
科技資訊(2017年23期)2017-09-09 13:08:43
冷涼氣候區(qū)不同形態(tài)氮肥對蘋果根系氮代謝的影響
湖南省2016年審定通過的水稻新品種(下)
中國稻米(2017年2期)2017-04-28 08:00:06
2016年靖遠(yuǎn)縣春玉米全生育期農(nóng)業(yè)氣象條件分析
濕熱氣候區(qū)建筑防熱研究進(jìn)展
湖南省2015年審定通過的水稻新品種(4)
中國稻米(2016年2期)2016-06-29 09:53:29
中國不同氣候區(qū)土壤濕度特征及其氣候響應(yīng)
生態(tài)脆弱的溫帶地區(qū)草原生態(tài)移民分析——以甘肅省古浪縣為例
浠水县| 东光县| 自治县| 遂平县| 交城县| 遵义县| 北票市| 商丘市| 黄骅市| 德昌县| 喀喇沁旗| 区。| 九龙县| 印江| 临城县| 平湖市| 嘉祥县| 蓬安县| 德令哈市| 天津市| 阿鲁科尔沁旗| 汝南县| 延吉市| 明光市| 江门市| 齐齐哈尔市| 海淀区| 临湘市| 山阴县| 郴州市| 凉山| 南岸区| 平定县| 婺源县| 体育| 利辛县| 张家口市| 安庆市| 钟祥市| 孝昌县| 台前县|