邢佳毅 劉 偉
(北京市農林科學院蔬菜研究中心,農業(yè)部都市農業(yè)華北重點實驗室,北京 100097)
嫁接作為一種園藝技術最早起源于2 000多年前的東亞,當時是用于解決以有限的耕地集約化種植蔬菜,20世紀末傳入歐洲,之后傳入北美(Kubota et al.,2008)?,F(xiàn)今,嫁接主要用于提高作物產量、減少病蟲害發(fā)生以及降低種植成本等(Rivard &Louws,2008;Mudge et al.,2009;Rivard et al.,2010;Haroldsen et al.,2012)。嫁接的優(yōu)勢主要體現(xiàn)在以下幾方面:提高優(yōu)良品種的產量潛力(Oztekin et al.,2009)、提高作物適應不良環(huán)境的能力(Rivard et al.,2010)、減少化學物質(藥劑和肥料)的使用(Louws et al.,2010)、提高作物對水分和土壤等資源的利用率(Schwarz et al.,2012)、通過表觀遺傳學產生有益的基因型變異(Albacete et al.,2015)、提高果實品質等(Lee et al.,2010;S á nchez-Rod rí guez et al.,2013)。
番茄(Solanum lycopersicumL.)作為重要的園藝作物之一,隨著其在設施生產中的發(fā)展,連作障礙、次生鹽漬化、青枯病以及根結線蟲等土傳病害日益嚴重(Thompson et al.,2007)。選擇適宜的砧木嫁接不僅能夠提高番茄果實產量、改善品質(Flores et al.,2010),還能夠提高植株抵御病毒、細菌、真菌和線蟲等生物脅迫的能力(Kunwar et al.,2015),以及增強植株的耐熱性、耐寒性、耐鹽性、耐旱性、耐弱光能力等(Venema et al.,2008;Colla et al.,2010;Schwarz et al.,2010)。目前,關于嫁接番茄的研究主要集中在砧木對于接穗的影響,砧木能夠通過韌皮部和木質部為接穗的生長提供水分、養(yǎng)分、激素、代謝產物、多肽、有機小分子以及核酸等物質(Esta? et al.,2005;Villalta et al.,2008;Dun et al.,2009)。砧木中的 mRNA能夠通過韌皮部傳遞到接穗中,調控葉片形態(tài)的發(fā)育(Kim et al.,2001)。
雖然嫁接在番茄上應用廣泛,但對于嫁接如何提高番茄抗逆性的機制仍然不太清楚。本文就近年來番茄嫁接中砧木與接穗之間有關養(yǎng)分吸收與運輸、激素調控、基因與蛋白表達等方面的研究進行簡要綜述,以期為嫁接在番茄抗逆栽培和品種改良方面提供理論參考。
優(yōu)良的番茄砧木往往根系發(fā)達,具有更強的水分和養(yǎng)分吸收能力,能夠促進作物的生長發(fā)育,為作物抗逆性的提高提供生理基礎(Martinez-Rodriguez et al.,2008;Flores et al.,2010)。眾所周知,砧木對于養(yǎng)分和水分的攝取能夠影響植株的表型,但是這其中的生理機制還知之甚少。
研究表明,與Florida47自根苗相比,以Beaufort和Multifort為砧木的番茄嫁接苗對水分和N素的利用率均有所提高,并且產量也分別提高了近27%和30%(Djidonou et al.,2013)。砧木LA1777能夠增加接穗Moneymaker葉片中C素和N素的積累,其中C素含量增加主要是由于葉片中淀粉的累積,從而提高了番茄植株的耐寒性(Venema et al.,2008)。Khah等(2006)也證實,番茄嫁接后植株能夠通過提高P素的利用率來提高產量。在干旱條件下,由于植株缺乏蒸騰作用,導致作物根系對N素的吸收和轉運出現(xiàn)問題(Robredo et al.,2011);干旱脅迫還能抑制N代謝過程中酶的活性,從而降低植株對N的吸收(Li & Lascano,2011)。S á nchez-Rod rí guez等(2013)研究表明,以Zarina為砧木進行嫁接能夠提高干旱條件下番茄植株對N的吸收和光呼吸作用,增加番茄葉片對的光合同化產物。Cristina等(2017)采用4種不同的嫁接組合來研究低P脅迫對番茄生長發(fā)育的影響,通過分析韌皮部汁液和葉片中的離子種類以及各激素含量變化,發(fā)現(xiàn)低P脅迫能夠影響番茄植株對P、Ca、S和Mn元素的吸收并引起乙烯和細胞分裂素的含量變化,最后篩選出在低P環(huán)境下能夠穩(wěn)定生長的砧木Hp-type。此外,砧木還能增強番茄接穗對于 K+、Ca2+和 Mg2+的吸收(Savvas et al.,2010)。雖然養(yǎng)分吸收和同化看起來對于砧木提高植株的活力非常重要,但是除了Albacete等(2009)關于75 mmol·L-1NaCl處理下嫁接能夠通過提高番茄植株韌皮部汁液中的K+/Na+比值來提高植株的抗鹽性以及增加產量的報道外,鮮有關于嫁接植株體內養(yǎng)分濃度與產量的相關性研究。
砧木不僅能夠增強番茄植株對養(yǎng)分的吸收,在有些情況下還能減少植株對有毒離子的吸收和轉運(Savvas et al.,2010)。例如,在硼(B)元素過量的環(huán)境下,以Arnold為砧木的番茄嫁接苗中編碼B轉運蛋白的基因表達量下降,從而減少根系對B的吸收以及該元素在莖部的積累(Gioia et al.,2017)。
砧木不但可以調節(jié)番茄植株對營養(yǎng)元素的吸收和運輸,而且能夠通過提高植株體內化合物的含量和活性來調節(jié)生長發(fā)育(Fernaandez-Garciaa et al.,2004),并因此增強植株的抗逆性(Ghanem et al.,2008;S á nchez-Rod rí guez et al.,2012b)。在鹽分脅迫條件下,嫁接能夠提高番茄過氧化氫酶(CAT)、抗壞血酸過氧化物酶(APX)、脫氫抗壞血酸還原酶(DHAR)和谷胱甘肽還原酶(GR)等抗氧化酶的活性(He et al.,2009)。而在高溫脅迫條件下,嫁接番茄植株體內谷胱甘肽過氧化物酶(GPX)和CAT的活性增強,導致各組織中的H2O2含量增加,從而提高番茄的耐熱性(Rosa et al.,2003)。Angelika和Dietmar(2013)研究表明,嫁接能夠緩解弱光對于番茄生長發(fā)育的抑制,與自根苗相比,以Piccolino和Classy為砧木的嫁接番茄果實中類胡蘿卜素(包括番茄紅素和β-胡蘿卜素)以及糖、酸的含量更高。在干旱脅迫條件下,采用Zarina作砧木能夠提高植株的抗壞血酸、酚類、黃酮類、番茄紅素和β-胡蘿卜素等抗氧化物質的含量,從而提高櫻桃番茄的產量和果實品質(S á nchez-Rod rí guez et al.,2012a)。
到目前為止,關于番茄嫁接的大部分研究還是集中在篩選養(yǎng)分利用率高的砧木,或者與嫁接苗栽培配套的灌溉與施肥措施上,而從生理水平和分子水平上揭示這種高養(yǎng)分利用率的發(fā)生機制的研究還有待加強。
在嫁接番茄中,砧木可以通過激素調節(jié)來影響接穗的生長(Holbrook et al.,2002;P é rez-Alfocea et al.,2010)。例如,以耐鹽野生品種為砧木嫁接栽培品種,可以提高番茄的產量和品質,原因在于砧木能夠增強調節(jié)葉面積與葉片衰老的根源性離子和激素因子的供應能力(Santa et al.,2002;Fern á ndez-Gar cí a et al.,2004)。在 75 mmol·L-1NaCl處理下,與對照相比,番茄嫁接苗葉片木質部中反玉米素(t-Z)、脫落酸(ABA)和吲哚乙酸(IAA)的濃度均發(fā)生變化(Albacete et al.,2008,2010)。此外,在鹽分脅迫條件下,將野生型番茄嫁接到一個能夠持續(xù)表達異戊烯基腺苷轉移酶(IPT)基因(調控細胞分裂素合成)的砧木(35S∶∶IPT)上,結果發(fā)現(xiàn)與野生型自根苗相比,嫁接苗的產量提高了30%,這種產量上的差異很可能是由于嫁接促進了番茄植株莖部的發(fā)育并減少了花的敗育,因為嫁接苗中t-Z的濃度比對照高1.5~2.0倍,而這種激素能夠促進發(fā)育的果實中細胞的分化和膨大,從而提高單果質量(Ghanem et al.,2011)。Ghanem等(2011)還指出,鹽分脅迫能夠通過降低番茄莖部細胞分裂素(CK)的濃度來減少果實產量,而采用35S∶∶IPT砧木嫁接后,嫁接苗根部產生的CK能夠通過韌皮部傳遞到植株地上部分,從而緩解鹽分脅迫帶來的危害。還有報道指出,在嫁接番茄中CK等激素能夠通過調節(jié)庫源活力來提高植株的抗逆性(Albacete et al.,2014),而 Dodd等(2009)將ABA缺失突變體(fl acca)嫁接到正常的野生型番茄砧木上,發(fā)現(xiàn)根部產生的ABA能夠調控葉片氣孔的發(fā)育。
目前在豌豆(Pisum sativum)和擬南芥(Arabidopsis thaliana)中已經證實,激素信號的傳遞往往與類胡蘿卜素等化合物的代謝有關(Dun et al.,2009;Sieburth & Lee,2010),鑒別出這些分子及其信號元件能夠更好地提高嫁接番茄適應逆境的能力。
番茄作為模式植物已經完成了全基因組測序,并得到了許多性狀鮮明的突變體,這為在嫁接中篩選優(yōu)質砧木,以及研究在番茄根部特異表達的基因如何影響地上部的形態(tài)發(fā)育提供了有利條件(Asins et al.,2010;Harada,2010)。
轉錄組學和蛋白組學的方法是研究嫁接番茄砧木與接穗之間基因和蛋白表達變化的重要方法(Vitale et al.,2014)。Turhan等(2016) 通 過SDS-PAGE和免疫印跡的方法發(fā)現(xiàn),與自根苗相比,以Beril、Logure和Valiant為砧木的番茄嫁接苗能夠通過提高葉片中熱激蛋白HSP23和HSP60的含量來抵抗高溫脅迫。Muneer等(2016)對以B-blocking為砧木的番茄嫁接苗分別進行低溫(15℃)和高溫(30 ℃)處理,發(fā)現(xiàn)溫度脅迫下植株能夠產生H2O2和兩種形式的活性氧,并且嫁接苗中超氧化物歧化酶(SOD)、CAT和APX的含量也更高,通過2-DE技術共鑒定出87個差異表達蛋白,這些蛋白參與了防御、應激反應,離子結合、運輸,光合作用和蛋白質合成等過程。Georgia等(2017)采用營養(yǎng)液膜技術(NFT)研究發(fā)現(xiàn),低溫脅迫條件下耐低溫砧木LA1777能夠提高番茄植株莖部的干、鮮質量,葉面積,根干質量,氣孔導度,胞間CO2濃度和過氧化物酶活性等;對番茄植株葉片進行轉錄組分析,共篩選出361個差異表達基因,對這些基因進行功能分類發(fā)現(xiàn)纖維素合成可能是植株在低溫下的響應機制之一。
近年來的研究發(fā)現(xiàn),一些特異的RNA分子能夠通過韌皮部傳遞來調控作物的器官發(fā)育(Harada,2010),而在模式植物煙草(Nicotiana benthamiana)中已經證實,利用轉錄后基因沉默技術(PTGS)對砧木中的特定基因進行沉默后,這種siRNA同樣能夠傳遞到接穗中(Kasai et al.,2011)。在嫁接番茄中開展類似試驗,有利于更好地了解嫁接番茄的抗逆機制。
雖然嫁接番茄在提高植株抗逆性方面的作用已經被證實,但由于具有多重抗性的優(yōu)良砧木較少,目前在生產上嫁接番茄的應用面積并不是很大。鑒于此,一方面要加強對于野生番茄資源的挖掘和選育,培育出更多的優(yōu)良砧木品種;另一方面,要加深嫁接番茄砧木與接穗之間關于信號傳遞和基因表達等方面的研究,闡明嫁接番茄的抗逆機制,更好地利用嫁接這一手段來鑒定、開發(fā)和創(chuàng)造新的遺傳多樣性,從而提高番茄適應逆境的能力。
另外,Velez-Ramirez等(2014,2105)在研究嫁接番茄耐持續(xù)光照的試驗中,將敏感型的A131接穗和耐受型的CLT接穗同時嫁接到A131上,結果發(fā)現(xiàn)與根部相比,提高植株莖部的耐光照性更能提高番茄的產量,因此培育耐光照的接穗比耐光照的砧木更加重要,這一結果為研究嫁接番茄植株響應抗逆境的信號發(fā)生部位提供了新思路。
Albacete A,Ghanem M E,Mar tí nez-And ú jar C,Acosta M,S á nchez-Bravo J,Mar tí nez V,Lutts S,Dodd I C,P é rez-Alfocea F.2008.Hormonal changes in relation to biomass partitioning and shoot growth impairment in salinized tomato(Solanum lycopersicumL.)plants.Journal of Experimental Botany,59:4119-4131.
Albacete A,Mar tí nez-And ú jar C,Ghanem M E,Acosta M,S á nchez-Bravo J,Asins M J,Cuartero J,Lutts S,Dodd I C,P é rez-Alfocea F.2009.Rootstock-mediated changes in xylem ionic and hormonal status are correlated with delayed leaf senescence,and increased leaf area and crop productivity in salinized tomato.Plant Cell Environ,32:928-938.
Albacete A,Ghanem M E,Dodd I C,P é rez-Alfocea F.2010.Principal component analysis of hormone profling data suggests an important role for cytokinins in regulating leaf growth and senescence of salinized tomato.Plant Signaling and Behavior,5:45-48.
Albacete A,Cantero-Navarro E,Balibrea M E,Gro?kinsky D K,de la Cruz Gonz á lez M,Mar tí nez-And ú jar C,Smigocki A C,Roitsch T,P é rez-Alfocea F.2014.Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity.Journal of Experimental Botany,65(20):6081-6095.
Albacete A,Mar tí nez-And ú jar C,Mar tí nez-P é rez A,Thompson A J,Dodd I C,P é rez-Alfocea F.2015.Unravelling rootstock×scion interactions to improve food security.Journal of Experimental Botany,66:2211-2226.
Angelika K,Dietmar S.2013.Grafting:a possibility to enhance health-promoting and flavour compounds in tomato fruits of shaded plants? Scientia Horticulturae,149:97-107.
Asins M J,Bola rí n M C,P é rez-Alfocea F,Esta? M T,Mar tí nez-And ú jar C,Albacete A,Villalta I,Bernet G P,Dodd I C,Carbonell E A.2010.Genetic analysis of physiological components of salt tolerance conferred bySolanumrootstocks.What is the rootstock doing for the scion? Theoretical and Applied Genetics,121(1):105-115.
Colla G,Rouphael Y,Leonardi C,Bie Z L.2010.Role of grafting invegetable crops grown under saline conditions.Scientia Horticulturae,127:147-155.
Cristina M A,Juan M R,Ian C D,Alfonso A,F(xiàn)rancisco P A.2017.Hormonal and nutritional features in contrasting rootstock-mediated tomato growth under low-phosphorus nutrition.Frontiers in Plant Science,8:533-526.
Djidonou D,Xin Z,Eric H S,Karen E K.2013.Yield,water-,and nitrogen-use efficiency in field-grown,grafted tomatoes.HortScience,48:485-492.
Dodd I C,Theobald J C,Richer S K,Davies W J.2009.Partial phenotypic reversion of ABA-deficient flacca tomato(Solanum lycopersicum)scions by a wild-type rootstock:normalizing shoot ethylene relations promotes leaf area but does not diminish whole plant transpiration rate.Journal of Experimental Botany,60:4029-4039.
Dun E A,Brewer P B,Beveridge C A.2009.Strigolactones:discovery of the elusive shoot branching hormone.Trends in Plant Science,14:364-372.
Esta? M T,Martinez-Rodrigues M M,Perez-Alfoce F,F(xiàn)lowers T J,Bolarin M C.2005.Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot.Journal of Experimental Botany,56(412):703-712.
Fernaandez-Garciaa N,Carvajal M,Olmos E.2004.Graft union formation in tomato plants:peroxidase and catalase involvement.Annals of Botany,93:53-60.
Fern á ndez-Gar cí a N,Ma rtí nez V,Carvajal M.2004.Effect of salinity on growth,mineral composition,and water relations of grafted tomato plants.Journal of Plant Nutrition & Soil Science,167(5):616-622.
Flores F B,Sanchez-Bel P,Estan M T,Martinez-Rodriguez M M,Moyano E,Morales B,Campos J F,Garcia-Abel lá n J O,Egea M I,F(xiàn)ern á ndez-Garcia N,Romojaro F,Bola rí n M C.2010.The effectiveness of grafting to improve tomato fruit quality.Scientia Horticulturae,125:211-217.
Georgia N,Dimitrios S,Vassilis P,Anastasios K,Rita M Z,Dirk K H,Ellen Z,Dietmar S.2017.Rootstock sub-optimal temperature tolerance determines transcriptomic responses after long-term root cooling in rootstocks and scions of grafted tomato plants.Frontiers in Plant Science,8:911-925.
Ghanem M E,Albacete A,Mar tí nez-And ú jar C,Acosta M,Romero-Aranda R,Dodd I C,Lutts S,P é rez-Alfocea F.2008.Hormonal changes during salinity-induced leaf senescence in tomato(Solanum lycopersicumL.).Journal of Experimental Botany,59:3039-3050.
Ghanem M E,Albacete A,Smigocki A C,F(xiàn) ré bort I,Posp í ?ilov á H,Ma rtí nez-And ú jar C,Acosta M,S á nchez-Bravo J,Lutts S,Dodd I C,P é rez-Alfocea F.2011.Rootsynthesized cytokinins improve shoot growth and fruit yield in salinized tomato(Solanum lycopersicumL.)plants.Journal of Experimental Botany,62(1):125-140.
Gioia F D,Aprile A,Sabella E,Santamaria P,Pardossi A,Miceli A,de Bellis L,Nutricati E.2017.Grafting response to excess boron and expression analysis of genes coding boron transporters in tomato.Plant Biology,19(5):728-735.
Harada T.2010.Grafting and RNA transport via phloem tissue in horticultural plants.Scientia Horticulturae,125:545-550.
Haroldsen V M,Szczerba M W,Aktas H,Lopez-Baltazar J,Odias M J,Chi-Ham C L,Labavitch J M,Bennett A B,Powell A L.2012.Mobility of transgenic nucleic acids and proteins within grafted rootstocks for agricultural improvement.Frontiers in Plant Science,3:39-51.
He Y,Zhu Z,Yang J,Ni X,Zhu B.2009.Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity.Environmental &Experimental Botany,66:270-278.
Holbrook N M,Shashidhar V R,James R A,Munns R.2002.Stomatal control in tomato with ABA-defcient roots:response of grafted plants to soil drying.Journal of Experimental Botany,53:1503-1514.
Kasai A,Bai S,Li T,Harada T.2011.Graft-transmitted siRNA signal from the root induces visual manifestation of endogenous posttranscriptional gene silencing in the scion.PLoS One,6(2):e16895.
Khah E M,Kakava E,Mavromatis A,Chachalis D,Goulas C.2006.Effect of grafting on growth and yield of tomato(Lycopersicon esculentumMill.)in greenhouse and open-feld.Journal of Applied Horticulture,8:3-7.
Kim M,Canio W,Kessler S,Sinha N.2001.Developmental changes due to long-distance movement of ahomeobox fusion transcript in tomato.Science,293:287-289.
Kubota C,McClure M A,Kokalis-Burelle N,Bausher M G,Rosskopf E N.2008.Vegetable grafting:history,use,and current technology status in North America.HortScience,43(6):1664-1669.
Kunwar S,Paret M L,Olson S M,Ritchie L,Rich J,F(xiàn)reeman J,Theodore M.2015.Grafting using rootstocks with resistance toRalstonia solanacearumagainstMeloidogyne incognitain tomato production.Plant Disease,99:119-124.
Lee J M,Kubota C,Tsau S J,Bie Z,Echevarria P H,Morra L,Oda M.2010.Current status of vegetable grafting:diffusion,grafting techniques,automation.Scientia Horticulturae,127:93-105.
Li H,Lascano R J.2011.Deficit irrigation for enhancing sustainable water use:comparison of cotton nitrogen uptake and prediction of lint yield in a multivariate autoregressive state-space model.Environmental & Experimental Botany,71:224-231.
Louws F J,Rivard C L,Kubota C.2010.Grafting fruiting vegetables to manage soilborne pathogens,foliar pathogens,arthropods and weeds.Scientia Horticulturae,127:127-146.
Martinez-Rodriguez M M,Estan M T,Moyano E,Garcia-Abellan J O,F(xiàn)lores F B,Campos J F,Al-Azzawi M J,F(xiàn)lowers T J,Bolarin M C.2008.The effectiveness of grafting to improve salt tolerance in tomato when an‘excluder’genotype is used as scion.Environmental & Experimental Botany,63:392-401.
Mudge K,Janick J,Scofeld S,Goldschmidt E E.2009.A history of grafting.Horticultural Reviews,35:437-493.
Muneer S,Ko C H,Wei H,Chen Y,Jeong B R.2016.Physiological and proteomic investigations to study the response of tomato graft unions under temperature stress.PLoS One,11(6):e0157439.
Oztekin G B,Giuffrida F,Tuzel Y,Leonardi C.2009.Is the vigour of grafted tomato plants related to root characteristics? Journal of Food Agriculture and Environment,7:364-368.
P é rez-Alfocea F,Albacete A,Ghanem M E,Dodd I C.2010.Hormonal regulation of source-sink relations to maintain crop productivity under salinity:a case study of root-to-shoot signalling in tomato.Functional Plant Biology,37:592-603.
Rivard C L,Louws F J.2008.Grafting to manage soilborne disease in heirloom tomato production.HortScience,43:2104-2111.
Rivard C L,O’Connell S,Peet M M,Louws F J.2010.Grafting tomato with interspecific rootstock to manage diseases caused bySclerotium rolfsiiand southern root-knot nematode.Plant Disease,94(8):1015-1021.
Robredo A,P é rez-L ó pez U,Miranda-Apodaca J,Lacuesta M,Mena-Petite A,Mu?oz-Rueda A.2011.Elevated CO2reduces the drought effect on nitrogen metabolism in barley plants during drought and subsequent recovery.Environmental & Experimental Botany,71:399-408.
Rosa M R,Juan M R,Esteban S,Luis R.2003.Does grafting provide tomato plants an advantage against H2O2production under conditions of thermal shock? Physiologia Plantarum,117:44-50.
Santa C A,Martinez-Rodriguez M M,Perez-Alfocea F,Romero-Aranda R,Maria C B.2002.The rootstock effect on the tomato salinity response depends on the shoot genotype.Plant Science,162:825-831.
Savvas D,Savva A,Ntatsi G,Ropokis A,Karapanos I,Krumbein A,Olympios C.2010.Effects of three commercial rootstocks on mineral nutrition,fruit yield,and quality of salinized tomato.Journal of Plant Nutrition & Soil Science,174:154-162.
S á nchez-Rod rí guez E,Leyva R,Cons tá n-Aguilar C,Romero L,Ruiz J M.2012a.Grafting under water stress in tomato cherry:improving the fruit yield and quality.Annals of Applied Biology,161:302-312.
S á nchez-Rod rí guez E,Mdm R W,Blasco B,Leyva R,Romero L,Ruiz J M.2012b.Antioxidant response resides in the shoot in reciprocal grafts of drought-tolerant and drought-sensitive cultivars in tomato under water stress.Plant Science,188(3):89-96.
S á nchez-Rod rí guez E,Romero L,Ruiz J M.2013.Role of grafting in resistance to water stress in tomato plants:ammonia production and assimilation.Journal of Plant Growth Regulation,32:831-842.
Schwarz D,Rouphael Y,Colla G,Venema J H.2010.Grafting as a tool to improve tolerance of vegetables to abiotic stresses:thermal stress,water stress and organic pollutants.Scientia Horticulturae,127:162-171.
Schwarz D,?ztekin G B,Yukzel T,B rü ckner B,Krumbein A.2012.Rootstockscan enhance tomato growth and quality characteristics at low potassium supply.Scientia Horticulturae,149:70-79.
Sieburth L E,Lee D K.2010.BYPASS1:how a tiny mutant tells a big story about root-to-shoot signaling.Journal of Integrative Plant Biology,52:77-85.
Thompson A J,Andrews J,Mulholland B J,McKee J M T,Hilton H W,Horridge J S,F(xiàn)arquhar G D,Smeeton R C,Smillie I R A,Black C R,Taylor I B.2007.Overproduction of abscisic acid in tomato increases transpiration effciency and root hydraulic conductivity and in uences leaf expansion.Plant Physiology,143:1905-1917.
Turhan E,Ergin S,Aydogan C,Ozturk N.2016.Influence of grafting on heat shock proteins of tomato(Lycopersicon esculentumMill)plants under heat stress.Journal of Biotechnology,231:27.
Velez-Ramirez A I,Ieperen W V,Dick V,Pieter M J A V P,Heuvelink E,Millenaar F F.2014.A single locus confers tolerance to continuous light and allows substantial yield increase in tomato.Nature Communications,5:4549-4562.
Velez-Ramirez A I,Ieperen W V,Dick V,Millenaar F F.2015.Continuous-light tolerance in tomato is graft-transferable.Planta,241:285-290.
Venema J H,Dijk B E,Bax J M,van Hasselt P R,Elzenga J T M.2008.Grafting tomato(Solanum lycopersicum)onto the rootstock of ahigh-altitude accession ofSolanum habrochaitesimproves suboptimal-temperature tolerance.Environmental & Experimental Botany,63:359-367.
Villalta I,Reina-S á nchez A,Bola rí n M C,Cuartero J,Belver A,Venema K,Carbonell E A,Asins M J.2008.Genetic analysis of Na+and K+concentrations in leaf and stem as physiological components of salt tolerance in tomato.Theoretical and Applied Genetics,116:869-880.
Vitale A,Rocco M,Arena S,Giuffrida F,Cassaniti C,Scaloni A,Lomaglio T,Guarnaccia V,Polizzi G,Marra M,Leonardi C.2014.Tomato susceptibility toFusariumcrown and root rot:effect of grafting combination and proteomic analysis of tolerance expression in the rootstock.Plant Physiology & Biochemistry,83:207-216.