国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

干旱半干旱區(qū)土壤微生物空間分布格局的成因

2018-01-29 06:36:49黃藝黃木柯柴立偉趙嫣然
生態(tài)環(huán)境學報 2018年1期
關鍵詞:古菌干旱區(qū)格局

黃藝,黃木柯,柴立偉,趙嫣然

北京大學環(huán)境科學與工程學院,北京 100871

干旱是地球表面的主要特征之一(Pointing et al.,2012),干旱地區(qū)(Drylands)占據陸地表面41%以上的面積(Safriel et al.,2005)。干旱程度常用干旱指數AI(Aridity Index)來反映,其含義是年平均降水量與年平均蒸發(fā)量的比值(Safriel et al.,2005),其中干旱指數在0.05~0.20之間的地區(qū)為干旱區(qū)(Arid regions),0.20~0.50之間的地區(qū)為半干旱區(qū)(Semi-arid regions)。干旱半干旱區(qū)的總面積為3.83×107km2,是陸地生態(tài)系統(tǒng)的重要組成部分,聚集了超過38%的世界人口,是人類重要的居住和生活場所(Safriel et al.,2005;Reynolds et al.,2007)。然而,干旱半干旱區(qū)降水稀少且分布不均、蒸發(fā)強烈(Whitford,2002),土壤營養(yǎng)元素缺乏,水分及有機質含量低(Noy-Meir,1979;Saul-Tcherkas et al.,2009),對氣候變化和人為活動干擾都極為敏感,容易退化為沒有生產力的荒漠(Hagemann et al.,2015)。根據模型預測,隨著氣候變化的加劇,干旱區(qū)的面積還將逐漸擴大(Burke et al.,2006;Dai,2013;Fu et al.,2014)。如何在干旱半干旱環(huán)境下發(fā)展生產、提高生活水平,同時又不引起該地區(qū)的生態(tài)退化,成為環(huán)境生態(tài)領域的重要研究課題。其中,探索干旱條件下,提高土壤穩(wěn)定性、維持可持續(xù)生產力和生物多樣性的理論和方法,又是該研究的核心問題之一。

地表生物空間分布格局的研究(Lozupone et al.,2007;Ramette et al.,2007;Bell et al.,2009),是理解生態(tài)系統(tǒng)完整性和生物多樣性形成及維持機制,保護生態(tài)系統(tǒng)穩(wěn)定和生物多樣性的基礎(Ferrier et al.,2004;Stuart et al.,2004;Green et al.,2006)。在干旱半干旱環(huán)境下,土壤中的微生物群落不僅是土壤中碳、氮、磷等營養(yǎng)元素生物地球化學循環(huán)的主要驅動力(Green et al.,2004),還與成土過程及土壤的保水保肥能力有密切關系(Evans et al.,1999)。因此,研究干旱半干旱區(qū)土壤微生物空間分布格局及其影響因素,探索該區(qū)土壤微生物空間分布格局的形成機制,對保護該區(qū)生態(tài)系統(tǒng),維持穩(wěn)定的地上生態(tài)系統(tǒng)生產力等顯得尤為重要。本文對近10年來國內外在干旱半干旱區(qū)進行土壤微生物群落空間分布的相關研究進行綜述,并對未來的研究提出建議,以促進干旱半干旱土壤微生物的深入研究。

1 干旱半干旱區(qū)土壤微生物具有空間分布格局

生物的空間分布格局是指在空間的不同位置分布的生物群落不同,并且可能受一定因素的影響呈現某種特殊的分布規(guī)律。在微生物空間分布格局的研究中,常用微生物群落的生物量、物種組成、個體豐度或多樣性在空間上的分異來描述微生物的空間分布格局。

對于微生物是否存在空間分布格局一直存在廣泛的討論及爭議。傳統(tǒng)觀點認為微生物在全球呈隨機分布,即“everything is everywhere”,微生物不存在空間分布格局(Becking,1934;De et al.,2006;O'Malley,2008)。但越來越多的研究證明,微生物在空間上具有一定的分布格局。在干旱半干旱區(qū)土壤微生物空間分布格局的研究中,盡管有部分研究指出在較小的局域(local)尺度上(<10 km),土壤細菌群落的豐富度、物種的多樣性在空間分布上不存在顯著差異(Saul-Tcherkas et al.,2011;Hortal et al.,2013;Steven et al.,2013),但綜合考慮微生物生物量、物種組成等的空間分異,認為干旱半干旱區(qū)土壤微生物呈非隨機分布,具有一定的空間分布格局(Fierer et al.,2005;Tsiknia et al.,2014;Maestre et al.,2015)。

此外,總結目前有關細菌、真菌及古菌優(yōu)勢菌群的分布研究可知,干旱半干旱區(qū)不同的微生物類群均存在空間分布格局(Maestre et al.,2015)。表1列出了近年來在干旱半干旱區(qū)土壤中發(fā)現的細菌群落的優(yōu)勢門。由表可知,干旱半干旱區(qū)土壤中細菌群落的優(yōu)勢門與其他陸地生態(tài)系統(tǒng)中常見的優(yōu)勢門類似(Janssen,2006;Fierer et al.,2012;Barnard et al.,2013),主要為放線菌門(Actinobacteria)、變形菌門(Proteobacteria)、酸桿菌門(Acidobacteria)和擬桿菌門(Bacteroidetes)。而且,全球尺度下,不同地區(qū)的干旱半干旱區(qū)的細菌群落的優(yōu)勢門不同,其相對豐度也不同。

相較于細菌,干旱半干旱區(qū)土壤真菌及古菌群落的研究十分有限。現有研究表明,土壤真菌群落的優(yōu)勢門主要為子囊菌門(Ascomycota)及擔子菌門(Basidiomycota)(Maestre et al.,2015,Bastida et al.,2014;Martirosyan et al.,2016;Rao et al.,2016)。就古菌群落而言,一些研究認為古菌群落的優(yōu)勢門主要為泉古菌門(Crenarchaeota)(Fierer et al.,2012;Angel et al.,2013;Valverde et al.,2015),而Wang et al.(2015)在中國干旱半干旱區(qū)的研究發(fā)現泉古菌門中熱變形菌綱(Thermoprotei)占據主要優(yōu)勢地位,此外,廣古菌門(Euryarchaeota)中的嗜鹽古菌綱(Halobacteria)也是干旱半干旱區(qū)古菌群落的優(yōu)勢綱。

2 干旱半干旱區(qū)土壤微生物空間分布格局的影響因素

在實際觀察到的干旱半干旱區(qū)土壤微生物存在空間分布格局的基礎上,大量研究關注了降水、植被及土壤理化性質等環(huán)境因素和地理距離與微生物的群落組成、生物量、多樣性及個體豐度之間的關系,試圖揭示影響干旱半干旱區(qū)土壤微生物分布的成因?,F有的研究結果表明,環(huán)境因素及地理距離都會影響干旱半干旱區(qū)土壤微生物的分布格局,并且微生物類群不同,時空尺度不同,影響其空間分布格局的主要因素則隨之不同。

2.1 環(huán)境因素顯著影響干旱半干旱區(qū)土壤微生物的空間分布格局

2.1.1 氣候因素的影響

水參與微生物新陳代謝的諸多反應,是微生物生存和生長必不可少的物質之一。因此,在干旱脅迫下,降水作為一種限制因子能顯著影響土壤微生物的空間分布格局。諸多研究顯示,干旱半干旱區(qū),土壤微生物群落的總生物量(Huang et al.,2015,Zhao et al.,2016)、細菌(Cregger et al.,2012)、真菌(Maestre et al.,2015)及放線菌的生物量與年平均降水量呈顯著正相關關系(Chen et al.,2015)。細菌群落及真菌群落的物種多樣性也會隨降水的增加而顯著增加(Navarro-Gonzalez,2003;Maestre et al.,2015)。就細菌群落而言,環(huán)境越是干旱,降水對其多樣性的影響越大(Wang et al.,2015)。Chen et al.(2015)及 Tripathi et al.(2017)的研究甚至認為,在這種水分受到限制的干旱半干旱環(huán)境下,降水是影響土壤細菌群落分布格局的最主要的決定性因素。

不同于細菌及真菌,古菌在年平均降水量較低,相對干旱的地區(qū)多樣性反而更高(Chen et al.,2015)。可能的原因是古菌能生活于高溫、高鹽等各種極端環(huán)境下,在干旱這種極端環(huán)境下,古菌可能也占據了特殊的生態(tài)位,能適應干旱脅迫而正常生長。因此,加強干旱半干旱地區(qū)土壤中古菌群落空間分布格局的研究,對維持該地區(qū)生態(tài)系統(tǒng)的穩(wěn)定性,及開發(fā)土壤微生物資源具有重要意義。

降水除了影響干旱半干旱區(qū)土壤微生物生物量、多樣性的分布外,還會影響個體豐度的分布格局。年平均降水量較高,相對濕潤的地區(qū),細菌群落中酸桿菌門(Actinobacteria)(Wang et al.,2015;Maestre et al.,2015),浮霉菌門(Plancomycene)(Wang et al.,2015),及疣微菌門(Verrucomicrobia)(Maestre et al.,2015)的相對豐度顯著高于較干旱的地區(qū),而綠灣菌門(Chloroflexi)、放線菌門(Actinobacteria)、α-變形菌門(α-Proteobacteria)(Maestre et al.,2015;Wang et al.,2015;Taketani et al.,2017)、擬桿菌門(Bacteroidetes)、厚壁菌門(Firmicutes)及芽單胞菌門(gemmatimonadetes)(Niederberger et al.,2015)的相對豐度在干旱地區(qū)反而相對較高。

2.1.2 土壤理化性質的影響

土壤理化性質直接決定了土壤微生物生存的環(huán)境,進而影響土壤微生物群落(Wardle,2004;De Deyn et al.,2005)。在干旱半干旱區(qū),土壤含水率(SWC)、pH、土壤電導率、有機質含量(SOM)、氮元素、磷元素(Pajares et al.,2016)、陰陽離子的含量(Li et al.,2012)等諸多因素都影響土壤微生物的空間分布格局,其中土壤含水率(SWC)、pH及土壤養(yǎng)分如有機質、氮素含量等對其影響較大。

水分是干旱半干旱環(huán)境下土壤微生物活動的重要限制因素,因此土壤微生物的生物量(Schlesinger et al.,1990;Fliesbach et al.,1994;Sarig et al.,1996;Bell et al.,2008)及多樣性(Navarro-Gonzalez,2003;Zeglin et al.,2011;Bell et al.,2014;Armstrong et al.,2016)會隨土壤含水率的增加而增加。Taniguchi et al.(2012)通過進一步的相關性分析指出,土壤含水率在0%~15%范圍內時,干旱半干旱區(qū)土壤細菌、真菌群落的多樣性與土壤含水率呈顯著正相關關系。

很多研究強調pH是影響微生物群落分布的關鍵因素(Fierer et al.,2009;Jesus et al.,2009;Jones et al.,2009),在干旱半干旱環(huán)境中,土壤的pH與叢枝菌根真菌(Bainard et al.,2014)及古菌(Wang et al.,2015)的多樣性均呈顯著正相關,pH通過影響它們的多樣性來改變其空間分布格局。就細菌群落而言,雖然土壤pH與土壤細菌群落多樣性的相關性不顯著(Wang et al.,2015),但是土壤pH可通過改變細菌群落的個體豐度進而改變干旱半干旱區(qū)細菌群落的空間分布(Fierer et al.,2006;Wang et al.,2015)。例如,Wang et al.(2015)研究指出,干旱半干旱環(huán)境下,細菌群落中絕大多數優(yōu)勢門的相對豐度與土壤pH呈負相關關系,但放線菌門(Actinobacteria)、厚壁菌門(Firmicutes)及綠灣菌門(Chloroflexi)的相對豐度卻與土壤pH呈顯著正相關關系。另外,諸多在國家、洲際水平等較大空間尺度下的研究指出,土壤pH是細菌空間分布格局的最重要的決定性的影響因素(Fierer et al.,2006;Lauber et al.,2009;Chu et al.,2010;Griffiths et al.,2011)。而目前干旱半干旱區(qū)的相關研究結果表明,pH也會影響細菌群落的空間分布格局,但不是最重要的決定性因素。分析其原因可能是在干旱半干旱區(qū)的相關研究中,調查的空間尺度不夠大,pH值集中在6~10之間,變化較小,掩蓋了pH值對細菌群落空間分布的影響。

干旱半干旱區(qū)土壤貧瘠,土壤養(yǎng)分是微生物活動的重要限制因素,對土壤微生物群落的分布格局具有重要影響(Chen et al.,2015;Zhao et al.,2016)。Hu et al.(2014)對中國干旱半干旱區(qū)的草地生態(tài)系統(tǒng)的研究發(fā)現,土壤微生物群落總生物量、細菌、真菌的生物量與土壤有機碳(SOC)含量呈顯著正相關。土壤細菌群落的多樣性與土壤總有機碳(TOC)及總氮(TN)呈顯著正相關(Wang et al.,2015)。主要原因是土壤養(yǎng)分特別是有機質、氮素含量的提高有利于土壤微生物種群數量及微生物生物量的積累(Nishiyama et al.,2001;Ralte et al.,2005)。此外,土壤養(yǎng)分還會影響細菌群落中的個體豐度的分布格局,Bastida et al.(2016)的研究發(fā)現細菌群落中的放線菌門(Actinobacteria)及變形菌門(Proteobacteria),真菌群落中的擔子菌門(Basidiomycota)的相對豐度均與土壤中溶解性有機碳(DOC)的含量呈顯著正相關。然而,細菌群落中的酸桿菌門(Acidobacteria)、擬桿菌門(Bacteroidetes)、厚壁菌門(Firmicutes)、藍細菌(Cyanobacteria)、芽單胞菌門(Gemmatimonadetes)、綠灣菌門(Chloroflexi)及疣微菌門(Verrucomicrobia),真菌群落中的子囊菌(Ascomycota)、球囊菌門(Glomeromycota)及壺菌門(Chytridiomycota)的相對豐度隨土壤中溶解性有機碳(DOC)的含量的增加而減少。

2.1.3 植被的影響

地上植被的凋落物、根系等均會對地下的微生物群落產生影響(De Deyn et al.,2005)。在干旱半干旱環(huán)境下,地上植被對地下土壤微生物群落的空間分布格局的影響尤為明顯。研究表明,干旱半干旱區(qū)灌叢覆蓋下的土壤微生物群落與無灌叢覆蓋的有顯著差異(Nicol et al.,2003;Bachar et al.,2012)。灌叢覆蓋下的土壤微生物群落總生物量,以及細菌和真菌等各類群的生物量均顯著高于裸地(Ben-David et al.,2011;Yu et al.,2011;Bachar et al.,2012;Hortal et al.,2015),并隨灌叢面積的增大而增加(Hortal et al.,2013)。Chen et al.(2015)進一步指出土壤微生物群落總生物量,及細菌和真菌的生物量均與地上植被的年凈初級生產力相關,且呈駝峰型(hump-shaped)變化,即當地上植被的年凈初級生產力在中等水平時,土壤微生物的生物量最大。與微生物生物量的分布特征類似,灌叢覆蓋下細菌群落的物種多樣性顯著高于無灌叢覆蓋的裸地(Bachar et al.,2012;Chen et al.,2015),且地上植被種類越多、豐富度越高,細菌群落的物種多樣性也越高(Wang et al.,2015)。這主要是由于干旱半干旱區(qū)土壤養(yǎng)分匱乏,土壤資源富集于灌叢周圍,土壤養(yǎng)分由灌叢向外逐步遞減形成灌叢“肥島”,使得灌叢下微生物的生物量及多樣性顯著高于無灌叢覆蓋的地區(qū)。因此,干旱半干旱區(qū)地上植被與土壤微生物的空間分布格局之間存在耦合關系,即地上灌叢斑塊狀的分布格局導致地下微生物也呈現斑塊狀的分布格局(Herman et al.,1995;Ben-David et al.,2011;Bachar et al.,2012)。

此外,不同種類灌木的凋落物養(yǎng)分含量、冠幅形狀及面積大小不同,使得不同種類的灌木對養(yǎng)分的積累程度不同。諸多研究強調了干旱半干旱區(qū)地上植被對微生物空間分布格局的影響與植物的種類密切相關(Saul-Tcherkas et al.,2009;Yu et al.,2011;Bainard et al.,2014;Hortal et al.,2015;Martirosyan et al.,2016)。

2.2 地理距離對干旱半干旱區(qū)土壤微生物空間分布格局具有顯著影響

地理距離強調擴散限制對微生物空間分布格局的影響(Fierer,2008),表2總結了地理距離與干旱半干旱區(qū)土壤微生物空間分布格局關系的相關研究,結果表明,其他環(huán)境因素一致,地理距離是顯著影響干旱半干旱區(qū)微生物的空間分布格局的重要因素,但二者作用的相對大小存在尺度效應。在較大的區(qū)域尺度下,地理距離是干旱半干旱區(qū)土壤微生物空間分布格局的決定性因素,而在較小的局域尺度上,主要受環(huán)境因素的影響。例如,Pasternak et al.(2013)的研究表明,在0.5~100 km的區(qū)域尺度上,地理距離顯著影響細菌群落的分布格局,但在1 cm~500 m的局域尺度上,地理距離的影響不顯著,而土壤質地、有機質含量及土壤含水率始終與細菌群落的分布呈顯著相關。Wang et al.(2015)研究發(fā)現,在干旱半干旱區(qū)土壤細菌群落結構的相似性與地理距離及環(huán)境因素均呈顯著負相關關系,說明環(huán)境因素及地理距離均是影響細菌群落分布格局的重要因素。方差分解分析結果表明,地理距離能解釋 36.02%的差異,而環(huán)境因素只能解釋24.06%的差異。因此,相較于環(huán)境因素,地理距離對土壤細菌群落的空間分布格局的影響作用更大。

表2 環(huán)境因素及地理距離對干旱半干旱區(qū)微生物群落的影響Table 2 The impacts of environmental factors (Env.) and geographic distances (Dist.) on soil microbial communities in arid and semi-arid regions

3 干旱半干旱區(qū)土壤微生物空間分布格局的形成機制

對干旱半干旱區(qū)土壤微生物空間分布格局及影響因素的研究,揭示了該類區(qū)域的微生物分布規(guī)律。在此基礎上,目前僅有少數研究關注干旱半干旱區(qū)土壤微生物空間分布格局的形成機制。這類研究往往借鑒宏觀生態(tài)學中的生態(tài)位理論、中性理論等,對干旱半干旱區(qū)土壤微生物空間分布格局的形成機制進行了探討,為宏觀理論在微生物生態(tài)學中的適用性研究提供了重要依據。

3.1 生態(tài)位理論及中性理論

生態(tài)位理論認為物種都有各自適應的環(huán)境,即生態(tài)位。在某環(huán)境中存在的物種都是最適應該環(huán)境的生物,不同的環(huán)境一定存在不同的物種,并且環(huán)境差異越大,物種組成的差異也就越大。所以,生態(tài)位理論強調確定性過程,如環(huán)境因素、生境間的異質性、物種間的相互作用等決定物種的存在及其相對豐度(Dumbrell et al.,2010;Ofiteru et al.,2010;Gilbert et al.,2012)。在微生物空間分布格局的研究中,生態(tài)位理論強調環(huán)境對微生物的選擇作用(Vanwonterghem et al.,2014)。中性理論認為物種在生態(tài)上是等價的,即具有相同的出生、死亡、遷入和遷出的概率,隨機的擴散等不確定性因素對群落結構具有決定性作用(Sloan et al.,2007)。盡管這兩個理論表面上是對立的,但在對微生物空間分布格局進行解釋時,這兩個理論并不互相排斥(Chave,2010;Dumbrell et al.,2010)。許多研究結果表明,微生物空間分布格局是生態(tài)位理論及中性理論共同作用的結果(Bissett et al.,2010;Ofiteru et al.,2010;Burke et al.,2011;Caruso et al.,2011;Logares et al.,2013;Stegen et al.,2013)。

3.2 干旱半干旱區(qū)土壤微生物空間分布格局的形成機制具有生境依賴性

最新的研究開始嘗試采用生態(tài)位理論及中性理論解釋干旱半干旱區(qū)土壤微生物空間分布格局的成因。Wang et al.(2017)在4000 km區(qū)域尺度上的研究發(fā)現,干旱半干旱區(qū)土壤微生物空間分布格局的形成機制具有生境依賴性,即不同的生境中,微生物空間分布格局的形成機制不同。該研究發(fā)現在高寒草原生態(tài)系統(tǒng)(alphine grassland)中細菌群落的空間分布格局僅是確定性過程,即生態(tài)位理論作用的結果。而在荒漠生態(tài)系統(tǒng)(desert)中細菌群落的空間分布格局僅是隨機性過程,即中性理論作用的結果,這可能是由于荒漠生態(tài)系統(tǒng)中生存的動物及植物非常有限,降低了微生物被動擴散的可能性,在這種情況下,擴散限制會成為影響微生物空間分布格局的決定性因素。

4 研究展望

在干旱半干旱區(qū)土壤微生物存在空間分布格局的研究基礎上,通過分析環(huán)境因素及地理距離與微生物群落生物量、群落組成及個體豐度間的關系,了解影響干旱半干旱區(qū)土壤微生物的因素,進而探討其空間分布格局的形成機制,以期為維持干旱半干旱區(qū)陸地生態(tài)系統(tǒng)的穩(wěn)定性及生產力提供理論依據。從上述對目前研究結果的綜述得知,,目前對干旱半干旱區(qū)土壤微生物的空間分布格局的影響因素及形成機制仍缺乏系統(tǒng)的認識,未來有待從以下4個方面,對該領域進行更加深入系統(tǒng)的研究。

(1)研究干旱半干旱區(qū)古菌及真菌的空間分布格局。對干旱半干旱區(qū)古菌及真菌的研究遠滯后于細菌,而古菌及真菌在干旱脅迫下,會表現出與細菌完全不同的分布特征。這意味著,在干旱環(huán)境下,古菌與真菌空間分布格局的影響因素及驅動機制可能與細菌截然不同,有待進一步研究。這將為干旱半干旱區(qū)的生態(tài)修復,提供理論基礎。

(2)擴大干旱半干旱區(qū)土壤微生物空間分布格局研究的空間尺度。在較小尺度上的研究,僅發(fā)現微生物存在空間分布格局,較難找出其分布規(guī)律,而擴大研究的空間尺度,能深入地揭示微生物分布格局的成因。比如,許多研究表明,pH對土壤細菌群落空間分布格局具有決定性作用,而干旱環(huán)境下的研究結果并不支持這一結論。這是因為在現有的研究中,pH值的變化范圍比較小,掩蓋了pH對微生物空間分布格局的影響作用;也有可能是因為在干旱環(huán)境下,土壤pH會影響微生物的空間分布,但不是決定性的因素。因此,還需要擴大研究的空間尺度做進一步研究。

(3)進一步研究干旱半干旱區(qū)土壤微生物空間分布格局的形成機制。目前大部分的研究僅關注干旱半干旱區(qū)土壤微生物空間分布格局及影響因素的現象描述,僅極少數研究應用生態(tài)理論及中性理論對其成因進行解釋。而這些少量研究所獲得的結論,存在一定的片面性。這些問題是源于研究技術手段、研究尺度等,還是源于干旱半干旱區(qū)特有現象,都需要進一步研究。

(4)研究干旱半干旱區(qū)土壤微生物與植物群落空間分布格局的耦合關系。植物可以通過對土壤營養(yǎng)輸入、內生菌、根際微生物等影響土壤微生物群落。微生物群落可以通過分解凋落物、調控土壤的營養(yǎng)來影響地上植物的生長。兩者相互影響、相互改變,共同驅動各自群落結構的改變。土壤微生物群落與植物群落是否存在耦合的空間分布格局,一直是生態(tài)學中的研究熱點。在干旱半干旱區(qū)出現“肥島效應”的獨特環(huán)境下,比較該區(qū)土壤微生物及植物群落的空間分布格局及影響因素,有助于理解土壤微生物及植物空間分布格局間的聯系。

ANGEL R, CONRAD R. 2013. Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event [J].Environmental Microbiology, 15(10): 2799-2815.

ANGEL R, SOARES M I M, UNGAR E D, et al. 2010. Biogeography of soil archaea and bacteria along a steep precipitation gradient [J]. The ISME Journal, 4(4): 553-563.

ARMSTRONG A, VALVERDE A, RAMOND J, et al. 2016. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input [J]. Scientific Reports, 6: 34434.

BACHAR A, AL-ASHHAB A, SOARES M I M, et al. 2010. Soil Microbial Abundance and Diversity Along a Low Precipitation Gradient [J].Microbial Ecology, 60(2): 453-461.

BACHAR A, SOARES M I M, GILLOR O. 2012. The Effect of Resource Islands on Abundance and Diversity of Bacteria in Arid Soils [J].Microbial Ecology, 63(3): 694-700.

BAINARD L D, BAINARD J D, HAMEL C, et al. 2014. Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem [J]. FEMS Microbiology Ecology, 88(2):333-344.

BARNARD R L, OSBORNE C A, FIRESTONE M K. 2013. Responses of soil bacterial and fungal communities to extreme desiccation and rewetting [J]. The ISME Journal, 7(11): 2229-2241.

BASTIDA F, HERNáNDEZ T, GARCíA C. 2014. Metaproteomics of soils from semiarid environment: Functional and phylogenetic information obtained with different protein extraction methods [J]. Journal of Proteomics, 101(7): 31-42.

BASTIDA F, MORENO J L, HERNANDEZ T, et al. 2006. Microbiological degradation index of soils in a semiarid climate [J]. Soil Biology and Biochemistry, 38(12): 3463-3473.

BASTIDA F, TORRES I F, MORENO J L, et al. 2016. The active microbial diversity drives ecosystem multifunctionality and is physiologically related to carbon availability in Mediterranean semi-arid soils [J].Molecular Ecology, 25(18): 4660-4673.

BECKING L G M B. 1934. Geobiologie of inleiding tot de milieukunde[M]. The Hague: W P Van Stockum and Zoon.

BELL C W, ACOSTA-MARTINEZ V, MCINTYRE N E, et al. 2009.Linking Microbial Community Structure and Function to Seasonal Differences in Soil Moisture and Temperature in a Chihuahuan Desert Grassland [J]. Microbial Ecology, 58(4): 827-842.

BELL C W, TISSUE D T, LOIK M E, et al. 2014. Soil microbial and nutrient responses to 7 years of seasonally altered precipitation in a Chihuahuan Desert grassland [J]. Global Change Biology, 20(5):1657-1673.

BELL C, MCINTYRE N, COX S, et al. 2008. Soil microbial responses to temporal variations of moisture and temperature in a Chihuahuan Desert Grassland [J]. Microbial Ecology, 56(1): 153-167.

BEN-DAVID E A, ZAADY E, SHER Y, et al. 2011. Assessment of the spatial distribution of soil microbial communities in patchy arid and semi-arid landscapes of the Negev Desert using combined PLFA and DGGE analyses [J]. FEMS Microbiology Ecology, 76(3): 492-503.

BISSETT A, RICHARDSON A E, BAKER G, et al. 2010. Life history determines biogeographical patterns of soil bacterial communities over multiple spatial scales [J]. Molecular Ecology, 19(19): 4315-4327.

BURKE C, STEINBERG P, RUSCH D, et al. 2011. Bacterial community assembly based on functional genes rather than species [J].Proceedings of the National Academy of Sciences of the United States of America, 108(34): 14288-14293.

BURKE E J, BROWN S J, CHRISTIDIS N. 2006. Modeling the Recent Evolution of Global Drought and Projections for the Twenty-First Century with the Hadley Centre Climate Model [J]. Journal of Hydrometeorology, 7(5): 1113-1125.

CARUSO T, CHAN Y, LACAP D C, et al. 2011. Stochastic and deterministic processes interact in the assembly of desert microbial communities on a global scale [J]. The ISME Journal, 5(9): 1406.

CASTRO H F, CLASSEN A T, AUSTIN E E, et al. 2010. Soil microbial community responses to multiple experimental climate change drivers[J]. Applied and Environmental Microbiology, 76(4): 999-1007.

CHAVE J. 2010. Neutral theory and community ecology [J]. Ecology Letters, 7(3): 241-253.

CHEN D, MI J, CHU P, et al. 2015. Patterns and drivers of soil microbial communities along a precipitation gradient on the Mongolian Plateau[J]. Landscape Ecology, 30(9): 1669-1682.

CHU H, FIERER N, LAUBER C L, et al. 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes [J]. Environmental Microbiology, 12(11): 2998-3006.

CLARK J S, CAMPBELL J H, GRIZZLE H, et al. 2009. Soil Microbial Community Response to Drought and Precipitation Variability in the Chihuahuan Desert [J]. Microbial Ecology, 57(2): 248-260.

CREGGER M A, SCHADT C W, MCDOWELL N G, et al. 2012. Response of the Soil Microbial Community to Changes in Precipitation in a Semiarid Ecosystem [J]. Applied and Environmental Microbiology,78(24): 8587-8594.

DAI A. 2013. Increasing drought under global warming in observations and models [J]. Nature Climate Change, 3(1): 52-58.

DE DEYN G B, VAN DER PUTTEN W H. 2005. Linking aboveground and belowground diversity [J]. Trends in Ecology and Evolution,20(11): 625-633.

DE W R, BOUVIER T. 2006. 'Everything is everywhere, but, the environment selects'; what did Baas Becking and Beijerinck really say? [J]. Environmental Microbiology, 8(4): 755-758.

DUMBRELL A J, NELSON M, HELGASON T, et al. 2010. Relative roles of niche and neutral processes in structuring a soil microbial community [J]. The ISME Journal, 4(3): 337-345.

DUNBAR J, TAKALA S, BARNS S M, et al. 1999. Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning [J]. Applied and Environmental Microbiology,65(4): 1662-1669.

EVANS R D, JOHANSEN J R. 1999. Microbiotic crusts and ecosystem processes [J]. Critical Reviews in Plant Science, 18(2): 183-225.

EVENARI M, SHANAN L, TADMOR N. 1982. The Negev: the challenge of a desert [M]. Cambridge: Harvard University Press.

FERRIER S, POWELL G V, RICHARDSON K S, et al. 2004. Mapping more of terrestrial biodiversity for global conservation assessment [J].Bioscience, 54(12): 1101-1109.

FIERER N, CARNEY K M, HORNER-DEVINE M C, et al. 2009. The biogeography of ammonia-oxidizing bacterial communities in soil [J].Microbial Ecology, 58(2): 435-445.

FIERER N, JACKSON J A, VILGALYS R, et al. 2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays [J]. Applied and Environmental Microbiology, 71(7):4117-4120.

FIERER N, JACKSON R B. 2006. The diversity and biogeography of soil bacterial communities [J]. Proceedings of the National Academy of Sciences of the United States of America, 103(3): 626-631.

FIERER N, LADAU J. 2012. Predicting microbial distributions in space and time [J]. Nature Methods, 9(6): 549-551.

FIERER N, LEFF J W, ADAMS B J, et al. 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes [J]. Proceedings of the National Academy of Sciences of the United States of America, 109(52): 21390-21395.

FIERER N. 2008. Microbial biogeography: patterns in microbial diversity across space and time [J]. Accessing Uncultivated Microorganisms:from the Environment to Organisms and Genomes and Back: 95-115.

FLIESBACH A, SARIG S, STEINBERGER Y. 1994. Effects of water pulses and climatic conditions on microbial biomass kinetics and microbial activity in a Yermosol of the central Negev [J]. Arid Land Research and Management, 8(4): 353-362.

FU Q, FENG S. 2014. Responses of terrestrial aridity to global warming[J]. Journal of Geophysical Research Atmospheres, 119: 7863-7875.

GILBERT J A, STEELE J A, CAPORASO J G, et al. 2012. Defining seasonal marine microbial community dynamics [J]. The ISME Journal, 6(2): 298.

GREEN J L, HOLMES A J, WESTOBY M, et al. 2004. Spatial scaling of microbial eukaryote diversity [J]. Nature, 432(7018): 747-750.

GREEN J, BOHANNAN B J M. 2006. Spatial scaling of microbial biodiversity [J]. Trends in Ecology and Evolution, 21(9): 501-507.

GRIFFITHS R I, THOMSON B C, JAMES P, et al. 2011. The bacterial biogeography of British soils [J]. Environmental Microbiology, 13(6):1642-1654.

GUNNIGLE E, FROSSARD A, RAMOND J B, et al. 2017. Diel-scale temporal dynamics recorded for bacterial groups in Namib Desert soil[J]. Scientific reports, 7: 40189.

HAGEMANN M, HENNEBERG M, FELDE V J M N, et al. 2015.Cyanobacterial Diversity in Biological Soil Crusts along a Precipitation Gradient, Northwest Negev Desert, Israel [J]. Microbial Ecology, 70(1): 219-230.

HERMAN R P, PROVENCIO K R, HERRERAMATOS J, et al. 1995.Resource islands predict the distribution of heterotrophic bacteria in chihuahuan desert soils [J]. Applied and Environmental Microbiology,61(5): 1816-1821.

HOLMES A. 2000. Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils [J]. FEMS Microbiology Ecology, 33(2): 111-120.HORTAL S, BASTIDA F, ARMAS C, et al. 2013. Soil microbial community under a nurse-plant species changes in composition,biomass and activity as the nurse grows [J]. Soil Biology and Biochemistry, 64: 139-146.

HORTAL S, BASTIDA F, MORENO J L, et al. 2015. Benefactor and allelopathic shrub species have different effects on the soil microbial community along an environmental severity gradient [J]. Soil Biology and Biochemistry, 88: 48-57.

HU Y, XIANG D, VERESOGLOU S D, et al. 2014. Soil organic carbon and soil structure are driving microbial abundance and community composition across the arid and semi-arid grasslands in northern China[J]. Soil Biology and Biochemistry, 77(1): 51-57.

HUANG G, LI Y, SU Y G. 2015. Effects of increasing precipitation on soil microbial community composition and soil respiration in a temperate desert, Northwestern China [J]. Soil Biology and Biochemistry, 83:52-56.

JANSSEN P H. 2006. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes [J]. Applied and Environmental Microbiology, 72(3): 1719-1728.

JESUS E D C, MARSH T L, TIEDJE J M, et al. 2009. Changes in land use alter the structure of bacterial communities in Western Amazon soils[J]. The ISME Journal, 3(9): 1004-1011.

JONES R T, ROBESON M S, LAUBER C L, et al. 2009. A comprehensive survey of soil acidobacterial diversity using pyrosequencing and clone library analyses [J]. The ISME Journal, 3(4): 442-453.

KIM M, BOLDGIV B, SINGH D, et al. 2013. Structure of soil bacterial communities in relation to environmental variables in a semi-arid region of Mongolia [J]. Journal of Arid Environments, 89: 38-44.

LAUBER C L, HAMADY M, KNIGHT R, et al. 2009. Pyrosequencingbased assessment of soil pH as a predictor of soil bacterial community structure at the continental scale [J]. Applied & Environmental Microbiology, 75(15): 5111-5120.

LI M, LI Y, CHEN W F, et al. 2012. Genetic diversity, community structure and distribution of rhizobia in the root nodules of Caragana spp. from arid and semi-arid alkaline deserts, in the north of China [J].Systematic and Applied Microbiology, 35(4): 239-245.

LOGARES R, LINDSTR?M E S, LANGENHEDER S, et al. 2013.Biogeography of bacterial communities exposed to progressive long-term environmental change [J]. The ISME Journal, 7(5): 937.

LOZUPONE C A, KNIGHT R. 2007. Global patterns in bacterial diversity[J]. Proceedings of the National Academy of Sciences of the United States of America, 104(27): 11436-11440.

MAESTRE F T, DELGADO-BAQUERIZO M, JEFFRIES T C, et al. 2015.Increasing aridity reduces soil microbial diversity and abundance in global drylands [J]. Proceedings of the National Academy of Sciences of the United States of America, 112(51): 15684-15689.

MARTIROSYAN V, UNC A, MILLER G, et al. 2016. Desert Perennial Shrubs Shape the Microbial-Community Miscellany in Laimosphere and Phyllosphere Space [J]. Microbial Ecology, 72(3): 659-668.

NAVARRO-GONZALEZ R. 2003. Mars-Like Soils in the Atacama Desert,Chile, and the Dry Limit of Microbial Life [J]. Science, 302(5647):1018-1021.

NEILSON J W, QUADE J, ORTIZ M, et al. 2012. Life at the hyperarid margin: novel bacterial diversity in arid soils of the Atacama Desert,Chile [J]. Extremophiles, 16(3): 553-566.

NICOL G W, GLOVER L A, PROSSER J I. 2003. Spatial Analysis of Archaeal Community Structure in Grassland Soil [J]. Applied and Environmental Microbiology, 69(12): 7420-7429.

NIEDERBERGER T D, SOHM J A, GUNDERSON T E, et al. 2015.Microbial community composition of transiently wetted Antarctic Dry Valley soils [J]. Frontiers in Microbiology, 6(9): 1-12

NISHIYAMA M, SUMIKAWA Y, GUAN G, et al. 2001. Relationship between microbial biomass and extractable organic carbon content in volcanic and non-volcanic ash soil [J]. Applied Soil Ecology, 17(2):183-187.

NOY-MEIR I. 1979. Structure and function of desert ecosystems [J]. Israel Journal of Botany, 28(1): 1-19.

OFITERU I D, LUNN M, CURTIS T P, et al. 2010. Combined niche and neutral effects in a microbial wastewater treatment community [J].Proceedings of the National Academy of Sciences of the United States of America, 107(35): 15345.

O'MALLEY M A. 2008. ‘Everything is everywhere: but the environment selects’: ubiquitous distribution and ecological determinism in microbial biogeography [J]. Studies in History & Philosophy of Science Part C Studies in History & Philosophy of Biological &Biomedical Sciences, 39(3): 314-325.

PAJARES S, ESCALANTE A E, NOGUEZ A M, et al. 2016. Spatial heterogeneity of physicochemical properties explains differences in microbial composition in arid soils from Cuatro Cienegas, Mexico [J].Peerj, 4: e2459.

PASTERNAK Z, AL-ASHHAB A, GATICA J, et al. 2013. Spatial and Temporal Biogeography of Soil Microbial Communities in Arid and Semiarid Regions [J]. Plos One, 8(7): e69705.

POINTING S B, BELNAP J. 2012. Microbial colonization and controls in dryland systems [J]. Nature Reviews Microbiology, 10(8): 551-562.

RALTE V, PANDEY H N, BARIK S K, et al. 2005. Changes in microbial biomass and activity in relation to shifting cultivation and horticultural practices in subtropical evergreen forest ecosystem of north-east India[J]. Acta Oecologica, 28(2): 163-172.

RAMETTE A, TIEDJE J M. 2007. Biogeography: An Emerging Cornerstone for Understanding Prokaryotic Diversity, Ecology, and Evolution [J]. Microbial Ecology, 53(2): 197-207.

RAO S, CHAN Y, BUGLER-LACAP D C, et al. 2016. Microbial Diversity in Soil, Sand Dune and Rock Substrates of the Thar Monsoon Desert,India [J]. Indian Journal of Microbiology, 56(1): 35-45.

REYNOLDS J F, SMITH D M S, LAMBIN E F, et al. 2007. Global Desertification: Building a Science for Dryland Development [J].Science, 316(5826): 847-851.

SAFRIEL U N, ADEEL Z. 2005. Dryland Systems [C] HASSAN I R,SCHOLES R, ASH N. Ecosystems and human well-being: current state and trends. Washington: Island Press: 623-662.

SARIG S, FLIESSBACH A, STEINBERGER Y. 1996. Microbial biomass reflects a nitrogen and phosphorous economy of halophytes grown in salty desert soil [J]. Biology and Fertility of Soils, 21(1): 128-130.

SAUL-TCHERKAS V, STEINBERGER Y. 2009. Substrate utilization patterns of desert soil microbial communities in response to xeric and mesic conditions [J]. Soil Biology and Biochemistry, 41(9): 1882-1893.

SAUL-TCHERKAS V, STEINBERGER Y. 2011. Soil microbial diversity in the vicinity of a Negev Desert shrub-Reaumuria negevensis [J].Microbial Ecology, 61(1): 64-81.

SAUL-TCHERKAS V, UNC A, STEINBERGER Y. 2013. Soil Microbial Diversity in the Vicinity of Desert Shrubs [J]. Microbial Ecology,65(3): 689-699.

SCHLESINGER W H, REYNOLDS J F, CUNNINGHAM G L, et al. 1990.Biological feedbacks in global desertification [J]. Science(Washington), 247(4946): 1043-1048.

SLOAN W T, WOODCOCK S, LUNN M, et al. 2007. Modeling Taxa-Abundance Distributions in Microbial Communities using Environmental Sequence Data [J]. Microbial Ecology, 53(3): 443-455.STEGEN J C, LIN X, FREDRICKSON J K, et al. 2013. Quantifying community assembly processes and identifying features that impose them[J]. The ISME Journal, 7(11): 2069-2079.

STEVEN B, GALLEGOS-GRAVES L V, BELNAP J, et al. 2013. Dryland soil microbial communities display spatial biogeographic patterns associated with soil depth and soil parent material [J]. FEMS Microbiology Ecology, 86(1): 101-113.

STUART S N, CHANSON J S, COX N A, et al. 2004. Status and trends of amphibian declines and extinctions worldwide [J]. Science, 306(5702):1783-1786.

TAKETANI R G, KAVAMURA V N, MENDES R, et al. 2015. Functional congruence of rhizosphere microbial communities associated to leguminous tree from Brazilian semiarid region [J]. Environmental Microbiology Reports, 7(1): 95-101.

TAKETANI R G, LANCONI M D, KAVAMURA V N, et al. 2017. Dry Season Constrains Bacterial Phylogenetic Diversity in a Semi-Arid Rhizosphere System [J]. Microbial Ecology, 73(1): 153-161.

TANIGUCHI T, USUKI H, KIKUCHI J, et al. 2012. Colonization and community structure of root-associated microorganisms of Sabina vulgaris with soil depth in a semiarid desert ecosystem with shallow groundwater [J]. Mycorrhiza, 22(6): 419-428.

TRIPATHI B M, MOROENYANE I, Sherman C, et al. 2017. Trends in Taxonomic and Functional Composition of Soil Microbiome Along a Precipitation Gradient in Israel [J]. Microbial Ecology, 74(1): 168-176.TSIKNIA M, PARANYCHIANAKIS N V, VAROUCHAKIS E A, et al.2014. Environmental drivers of soil microbial community distribution at the Koiliaris Critical Zone Observatory [J]. FEMS microbiology ecology, 90(1): 139-152.

VALVERDE A, MAKHALANYANE T P, SEELY M, et al. 2015.Cyanobacteria drive community composition and functionality in rock–soil interface communities [J]. Molecular Ecology, 24(4): 812-821.

VANWONTERGHEM I, JENSEN P D, DENNIS P G, et al. 2014.Deterministic processes guide long-term synchronised population dynamics in replicate anaerobic digesters [J]. The ISME Journal,8(10): 2015-2028.

WAKELIN S A, ANAND R R, REITH F, et al. 2012. Bacterial communities associated with a mineral weathering profile at a sulphidic mine tailings dump in arid Western Australia [J]. FEMS Microbiology Ecology, 79(2): 298-311.

WANG X B, Lü X T, YAO J, et al. 2017. Habitat-specific patterns and drivers of bacterial β-diversity in China's drylands [J]. The ISME Journal, 11: 1345-1358.

WANG X, VAN NOSTRAND J D, DENG Y, et al. 2015. Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China's grasslands [J]. FEMS Microbiology Ecology, 91(12): 1-10.

WARDLE D A, BARDGETT R D, KLIRONOMOS J N, et al. 2004.Ecological linkages between aboveground and belowground biota [J].Science, 304(5677): 1629-163.

WHITFORD W G. 2002. Ecology of Desert Systems [M]. New York,London: Academic Press.

YAO M, RUI J, NIU H, et al. 2017. The differentiation of soil bacterial communities along a precipitation and temperature gradient in the eastern Inner Mongolia steppe [J]. Catena, 152: 47-56.

YU J, STEINBERGER Y. 2011. Vertical Distribution of Microbial Community Functionality under the Canopies of Zygophyllum dumosum and Hammada scoparia in the Negev Desert, Israel [J].Microbial Ecology, 62(1): 218-227.

ZEGLIN L H, DAHM C N, BARRETT J E, et al. 2011. Bacterial Community Structure Along Moisture Gradients in the Parafluvial Sediments of Two Ephemeral Desert Streams [J]. Microbial Ecology,61(3): 543-556.

ZHAO C, MIAO Y, YU C, et al. 2016. Soil microbial community composition and respiration along an experimental precipitation gradient in a semiarid steppe [J]. Scientific Reports, 6: 24317.

猜你喜歡
古菌干旱區(qū)格局
不同pH和氧氣條件下土壤古菌與海洋古菌的競爭適應機制*
土壤學報(2022年3期)2022-08-26 12:15:26
變油為氣,“榨干”廢棄油田
大自然探索(2022年5期)2022-07-11 03:10:33
海洋古菌
黑龍江半干旱區(qū)飼用谷子高產栽培技術
干旱區(qū)生態(tài)修復的實踐——以古爾班通古特沙漠為例
科學(2020年6期)2020-02-06 08:59:54
格局
聯手共建 努力打造大調解工作格局
人民調解(2019年5期)2019-03-17 06:55:16
氣候變化背景下西北干旱區(qū)旱澇的變化規(guī)律
干旱區(qū)影響水面蒸發(fā)的氣象因素多元回歸分析
小人物的大格局
小說月刊(2015年12期)2015-04-23 08:51:10
苗栗市| 监利县| 耒阳市| 彭州市| 若羌县| 安仁县| 卓尼县| 柳林县| 苏尼特右旗| 蛟河市| 鲁甸县| 大方县| 灵寿县| 芮城县| 哈巴河县| 通化县| 额尔古纳市| 新密市| 新郑市| 民权县| 萝北县| 平江县| 福鼎市| 汽车| 炎陵县| 玉环县| 喜德县| 安泽县| 济阳县| 台中市| 射阳县| 马山县| 高阳县| 尼木县| 桓仁| 肥西县| 昌邑市| 恩平市| 德兴市| 阳城县| 琼结县|