陳其國 韋淑亞 章萍
(1武漢職業(yè)技術(shù)學院生物工程學院,武漢430074;2浙江省杭州市富陽區(qū)委農(nóng)業(yè)和農(nóng)村工作辦公室,杭州311400;第一作者:chenqiguo1008@126.com)
真菌Magnaporthe grisea引起的稻瘟病是最具毀滅性的水稻病害之一,嚴重影響水稻生產(chǎn)和糧食安全,通過選育和利用抗病品種來防控稻瘟病是既經(jīng)濟又有效的手段[1]。然而,由于稻瘟病菌毒性小種的不斷變異,迫使水稻育種在探索持久抗性的同時,采用多基因聚合和基因輪換等利用抗病基因的策略。
隨著水稻和稻瘟病菌全基因組測序計劃的完成[2-3],從分子水平上認識水稻與稻瘟病菌的互作機制已成為可能。深入解析病原菌效應分子、無毒基因-抗性基因的互作及水稻應答稻瘟病菌入侵的信號調(diào)控網(wǎng)絡(luò)等,對通過遺傳育種和基因工程等手段改良品種抗病性,從而保障水稻安全生產(chǎn)具有十分重要的意義。
激發(fā)子(elicitor)是指參與誘導植物產(chǎn)生防衛(wèi)反應的一類信號物質(zhì),包括來源于病原菌的外源性激發(fā)子以及植物自身產(chǎn)生的內(nèi)源性激發(fā)子[4]。外源激發(fā)子也稱為真激發(fā)子,是來自病原菌的信號分子,包括病原菌相關(guān)分子模式(pathogen-associated molecular patterns,PAMPs)和效應分子(effectors)。內(nèi)源激發(fā)子是植物細胞間信號傳導系統(tǒng)的組成部分,如病菌侵染過程中引起植物細胞壁降解得到的果膠寡聚物等。
稻瘟病菌激發(fā)子類型多樣,如鞘脂、幾丁質(zhì)和小分子分泌蛋白等。有些分泌蛋白為無毒蛋白,和水稻中的抗病蛋白之間符合“基因?qū)颉奔僬f,如AvrPiz-t是一個無毒基因,編碼1個103氨基酸組成的分泌蛋白,能夠直接被寄主細胞內(nèi)的抗病基因Piz-t產(chǎn)物所識別,從而觸發(fā)免疫反應[5]。
在與病原菌協(xié)同進化的過程中,水稻形成了復雜的防衛(wèi)反應機制,進化出兩層先天免疫系統(tǒng)來應對稻瘟病菌的侵染。第1層為病原菌相關(guān)模式分子誘發(fā)的免疫反應(PAMP-triggered immunity,PTI),第 2層為效應分子誘發(fā)的免疫反應(Effector-triggered immunity,ETI)[6-8]。這兩種免疫反應誘導水稻產(chǎn)生抗病性,通??煞譃?個步驟:第1步,信號感知,即水稻通過各種受體來識別病原物中的PAMPs或效應分子;第2步,信號經(jīng)G蛋白、Ca2+流等傳遞并放大后,進一步激活絲裂原活化蛋白激酶和NADPH氧化酶,釋放活性氧;第3步,誘導防衛(wèi)基因表達,積累抗病原物的次級代謝產(chǎn)物,加厚細胞壁,侵入位點的細胞程序性死亡等[6-8]。
遭受稻瘟病菌侵染后,水稻表達的模式識別受體(pattern recognition receptors,PRR)可特異識別病原菌的PAMPs,從而激活對稻瘟病菌的防衛(wèi)反應。這種由PRR識別PAMPs并誘導的防衛(wèi)反應,是寄主的基礎(chǔ)免疫反應,簡稱 PTI[7]。
幾丁質(zhì)是真菌細胞壁的重要組分,作為一種經(jīng)典的PAMP,由其誘導的PTI研究得較為深入。研究表明,PTI誘導效應隨幾丁質(zhì)聚合度的提高而增強,且聚合度小于5的幾丁質(zhì)短鏈不足以引起免疫反應[9]。糖蛋白OsCEBiP是一種分布于細胞膜上的模式識別受體,包含一個跨膜結(jié)構(gòu)域和兩個LysM結(jié)構(gòu)域,可特異識別并結(jié)合幾丁質(zhì)寡聚糖[10-12]。除OsCEBiP外,細胞膜上還存在其他的幾丁質(zhì)識別受體,如LYP4和LYP6[13]。但僅有OsCEBiP或LYP4/6,不能將幾丁質(zhì)信號由胞外向胞內(nèi)傳輸,受體激酶OsCERK1則可分別與這些受體結(jié)合形成復合體,完成信號的接力[11,14]。緊接著,OsCERK1通過胞質(zhì)結(jié)構(gòu)域磷酸化OsRacGEF1的C端S549,從而激活OsRacGEF1,而OsRacGEF1是鳥嘌呤核苷酸交換因子,能激活小GTP酶OsRac1[15]。因此,由OsCEBiP/OsCERK1-OsRacGEF1-OsRac1組成的模塊構(gòu)成了PTI免疫反應早期階段的重要信號通路。OsRac1被激活后,將通過多種途徑開啟下游的防衛(wèi)反應。其一,Os-Rac1通過激活NADPH氧化酶OsRbohB,迅速產(chǎn)生活性氧[16],并通過抑制ROS清除相關(guān)基因如OsMT2b的表達,確保ROS的積累[17]。其二,OsRac1通過調(diào)控NADPH氧化酶和肉桂酰輔酶A還原酶OsCCR1的活性,控制木質(zhì)素的合成,而木質(zhì)素是植物防衛(wèi)反應中的重要因子,因為它形成了病原菌無法降解的機械壁壘[18]。其三,OsRac1通過介導絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)級聯(lián)反應,誘導下游免疫應答。具體過程包括:OsRac1與OsMAPK3/6互作,并通過OsMKK4將其激活,激活后的OsMAPK3/6進入核內(nèi)進一步磷酸化激活bHLH轉(zhuǎn)錄因子RAI1,隨后RAI結(jié)合在靶標基因PAL和OsWRKY19的啟動子區(qū)域,從而啟動這2個防衛(wèi)相關(guān)基因的表達,進而調(diào)控細胞程序化死亡、植保素合成和病程相關(guān)基因表達等進程[19-20]。
在上述免疫應答通路中,OsRac1有激活態(tài)(GTP結(jié)合型)和失活態(tài)(GDP結(jié)合型)兩種構(gòu)象,對信號的轉(zhuǎn)導起著分子開關(guān)的作用。鳥苷酸交換因子OsSWAP70A[21]和OsRacGEF1[15],參與催化OsRac1由GDP結(jié)合態(tài)轉(zhuǎn)變成GTP結(jié)合態(tài),激活OsRac1蛋白。反之,Rho GTP酶激活蛋白SPIN6催化OsRac1由GTP結(jié)合態(tài)轉(zhuǎn)變成GDP結(jié)合態(tài),令其失活[22]。此外,OsRac1不是獨自發(fā)揮功能,而是與其他蛋白如OsRAR1、HSP90和HSP70形成了一個或多個免疫復合體,共同參與信號的傳遞[23]。而OsRAR1又能夠與OsSGT1直接互作,在免疫應答中發(fā)揮協(xié)同或拮抗作用[24]。RACK1A則與復合體中的OsRAR1、OsSGT1等直接互作,發(fā)揮支架蛋白作用[25]。進一步研究發(fā)現(xiàn),Hop/Sti1-Hsp90分子伴侶復合體能促進PRRs成熟,并依賴Sar1途徑將其從內(nèi)質(zhì)網(wǎng)運輸?shù)劫|(zhì)膜上。質(zhì)膜上,Hop/Sti1、Hsp90與OsRac1以復合體形式存在,可能起鏈接OsCERK1和OsRac1的作用[26]。
除了上述由OsRac1介導的MAPK通路外,最近又發(fā)現(xiàn)一條獨立于OsRac1的MAPK激活通路。OsCEBiP識別幾丁質(zhì)信號后,導致OsCERK1磷酸化,激活OsCERK1磷酸化胞質(zhì)激酶 OsRLCK185,OsRLCK185再與OsMAPKKKε互作并將其激活,活化的OsMAPKKKε再激活 OsMKK4/5,最后,OsMKK4/5激活OsMPK3/6,從而開啟下游的免疫反應[27]。此外,OsRLCK176也能與OsCERK1互作,位于OsCERK1的下游[28],可能與OsRLCK185功能冗余。
雖然水稻擁有PTI免疫系統(tǒng),但很多情況下仍然遭受稻瘟病菌的侵染并感病,這是因為稻瘟病菌能分泌一些效應分子,抑制PAMPs誘導的PTI免疫反應[7-8,29-30]。然而,水稻也進化出基于R蛋白的第二道防線,能識別或感知病原菌的效應分子,啟動ETI免疫反應。被相應R蛋白識別并克服的病原菌效應分子,也稱為無毒蛋白。截至目前,水稻上鑒定的稻瘟病抗性基因已多達24個[31],從稻瘟病菌中鑒定的無毒基因也有13個,分別為 PWL1[32]、PWL2[33]、PWL2D[34]、AvrPita[35]、ACE1[36]、AvrPik[37]、AvrPii[37-38]、AvrPia[37,39]、Avr1-CO39[40]、AvrPib[41]、AvrPiz-t[5]、AvrPi9[42]和 AvrPi54[43]。
R蛋白通過直接或間接地與效應分子互作,從而感知病原菌入侵并誘導抗病反應。據(jù)報道,Pita/AvrPita[35]、Pikh-1/AvrPik[37]、Pia/AvrPia[39,44]、Pi-CO39/Avr1-CO39[40,44]和 Pi54/AvrPi54[43]等組合可直接發(fā)生互作。以 Pi54/AvrPi54為例,無毒基因AvrPi54位于稻瘟病菌的4號染色體,編碼一個由153個氨基酸組成的分泌蛋白(N末端是19個氨基酸長的信號肽序列),能與抗性蛋白Pi54的富亮氨酸重復區(qū)發(fā)生物理互作[43]。相比之下,Pii/AvrPii[38]、Piz-t/AvrPiz-t[5]等組合不直接發(fā)生互作,而是需借助其他“助手”蛋白來完成相互識別。以Pii/AvrPii為例,無毒基因AvrPii編碼70個氨基酸的小分泌蛋白,與OsExo70-F2和OsExo70-F3形成復合體,而OsExo70-F3作為一種“誘餌”能直接與無毒蛋白互作,一旦互作會立即被Pii識別并啟動防衛(wèi)反應[38]。還有種特殊的情況,即R蛋白雖能與無毒蛋白直接互作,但仍需要“助手”蛋白的參與,如Pib/AvrPib組合。作為防衛(wèi)蛋白Pib監(jiān)測靶標蛋白ABIP1的磷酸化,當效應分子AvrPib進入寄主體內(nèi)時,與ABIP1結(jié)合并使其磷酸化,一旦監(jiān)測到磷酸化,Pib作為防衛(wèi)蛋白的能力便被激活,從而與AvrPib效應蛋白互作,啟動防衛(wèi)反應[41]。
在病原菌-水稻的長期協(xié)同進化過程中,稻瘟病菌也擁有了一些維持毒性的機制。一種有效的措施就是避免PAMPs如幾丁質(zhì)被寄主識別,如效應分子Slp1可以與CEBiP競爭性結(jié)合幾丁質(zhì)寡糖,從而阻斷其被CEBiP識別[45]。再如α-1,3-葡聚糖可加固稻瘟病菌細胞壁,防止被水稻的降解酶水解,從而阻斷幾丁質(zhì)釋放,延緩寄主的免疫應答[46]。
在PTI或ETI介導的免疫應答過程中,常常會釋放大量活性氧攻擊病原菌,而稻瘟病菌也有多種方式調(diào)節(jié)寄主細胞的氧化還原狀態(tài)以保護自己。稻瘟病菌DES1基因編碼一個富含絲氨酸、在絲狀子囊菌中非常保守的蛋白,DES1通過抑制水稻細胞活性氧爆發(fā)來降低自身對氧化脅迫的敏感性,并阻止寄主防衛(wèi)相關(guān)基因的表達,確保菌絲的順利侵染[47]。類似地,稻瘟病菌MoHYR1基因編碼谷胱甘肽過氧化物酶,能參與清除寄主細胞內(nèi)活性氧,將水稻體內(nèi)的活性氧維持在一個較低水平[48]。除活性氧外,由NO衍生的活性氮,也能削弱病原菌的侵染[49]。然而,稻瘟病菌NMO2基因編碼的氮酸酯單加氧酶,能催化硝基烷烴的氧化脫氮,減輕硝基氧化脅迫帶來的病原菌脂質(zhì)硝化,并維持寄主體內(nèi)氧化還原平衡,避免觸發(fā)寄主的防衛(wèi)反應[50]。
近10多年來,水稻與稻瘟病菌的互作機制研究取得了很大發(fā)展,已成為研究植物與病原菌互作的模式,如稻瘟病菌入侵全過程的動態(tài)監(jiān)測,水稻和稻瘟病菌的全基因組測序和重測序,越來越多的抗性基因和無毒蛋白的發(fā)現(xiàn)等。但稻瘟病菌與水稻之間的對話乃是一場曠日持久的“軍備競賽”,新抗性基因的產(chǎn)生又必然促進病原菌毒性基因的新變異,反之亦然。不管是PTI基礎(chǔ)免疫反應還是ETI高級防衛(wèi)體系,都是極其復雜的互作網(wǎng)絡(luò),目前的研究已經(jīng)拉開了揭示該網(wǎng)絡(luò)的序幕。后續(xù)的基礎(chǔ)研究,仍需要鑒定該網(wǎng)絡(luò)中更多的效應蛋白和抗性基因,并揭示它們的互作機制。育種上,除了聚合多個抗性基因之外,挖掘并利用更多的廣譜抗性基因可能是一個更好的途徑。
[1]鄂志國,張麗靖,焦桂愛,等.稻瘟病抗性基因的鑒定及利用進展[J].中國水稻科學,2008,22(5):533-540.
[2]Kawahara Y,de la Bastide M,Hamilton J P,et al.Improvement of the Oryza sativa Nipponbare reference genome using next generation sequence and optical map data[J].Rice,2013,6:4.
[3]Bao J,Chen M,Zhong Z,et al.Pacbio sequencing reveals transposable elements as a key contributor to genomic plasticity and virulence variation in Magnaporthe oryzae[J].Mol Plant,2017,10:1 465-1 468.
[4]Eder J and Cosio E G.Elicitors of Plant Defense Responses[J].Int Rev Cytol,1994,148:1-36.
[5]Li W,Wang B,Wu J,et al.The Magnaporthe oryzae avirulence gene AvrPiz-tencodes a predicted secreted protein that triggers the immunity in Rice mediated by the blast resistance gene Piz-t[J].Mol Plant Microbe Interact,2009,22(4):411-420.
[6]張紅生,吳云雨,鮑永美.水稻與稻瘟病菌互作機制研究進展[J].南京農(nóng)業(yè)大學學報,2012,35(5):1-8.
[7]Jones J D and Dangl J L.The plant immune system[J].Nature,2006,444:323-329.
[8]Coll N S,Epple P and Dangl J L.Programmed cell death in the plant immune system[J].Cell Death Differ,2011,18(8):1 247-1 256.
[9]Kuchitsu K,Kikuyama M,Shibuya N.N-Acetylchitooligosaccharides,biotic elicitor for phytoalexin production,induce transient membrane depolarization in suspension-cultured rice cells[J].Protoplasma,1993,174(1-2):79-81.
[10]Kaku H,Nishizawa Y,Ishii-Minami N,et al.Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor[J].Proc Natl Acad Sci USA,2006,103(29):11 086 -11 091.
[11]Shimizu T,Nakano T,Takamizawa D,et al.Two LysM receptor molecules,CEBiP and OsCERK1,cooperatively regulate chitin elicitor signaling in rice[J].Plant J,2010,64(2):204-214.
[12]Yusuke Kouzai,Keisuke Nakajima,Masahiro Hayafune.CEBiP is the major chitin oligomer-binding protein in rice and plays a main role in the perception of chitin oligomers[J].Plant Mol Biol,2014,84(4-5):519-528.
[13]Liu B,Li J F,Ao Y,et al.Lysin motif-containing proteins LYP4 and LYP6 play dual roles in peptidoglycan and chitin perception in rice innate immunity[J].Plant Cell,2012,24(8):3 406-3 419.
[14]Kouzai Y,Mochizuki S,Nakajima K,et al.Targeted gene disruption of OsCERK1 reveals its indispensable role in chitin perception and involvement in the peptidoglycan response and immunity in rice[J].Mol Plant Microbe Interact,2014,27(9):975-982.
[15]Akamatsu A,Wong H L,Fujiwara M.An OsCEBiP/OsCERK1-Os-RacGEF1-OsRac1 module is an essential early component of chitininduced rice immunity[J].Cell Host Microbe,2013,13(4):465-476.
[16]Kosami KI,Ohki I,Nagano M,et al.The crystal structure of the plant small GTPase OsRac1 reveals its mode of binding to NADPH oxidase[J].J Biol Chem,2014,289(41):28 569-28 578.
[17]Wong H L,Sakamoto T,Kawasaki T,et al.Down-regulation of metallothionein,a reactive oxygen scavenger,by the small GTPase Os-Rac1 in rice[J].Plant Physiol,2004,135(3):1 447-1 456.
[18]Kawasaki T,Koita H,Nakatsubo T,et al.Cinnamoyl-CoA reductase,a key enzyme in lignin biosynthesis,is an effector of small GTPase Rac in defense signaling in rice[J].Proc Natl Acad Sci USA,2006,103(1):230-235.
[19]Lieberherr D,Thao N P,Nakashima A,et al.A sphingolipid elicitorinducible mitogen-activated protein kinase is regulated by the small GTPase OsRac1 and heterotrimeric G-protein in rice[J].Plant Physiol,2005,138(3):1 644-1 652.
[20]Kim S H,Oikawa T,Kyozuka J,et al.The bHLH Rac Immunity1(RAI1)is activated by OsRac1 via OsMAPK3 and OsMAPK6 in rice immunity[J].Plant Cell Physiol,2012,53(4):740-754.
[21]Yamaguchi K,Imai K,Akamatsu A,et al.SWAP70 functions as a Rac/Rop guanine nucleotide-exchange factor in rice [J].Plant J,2012,70(3):389-397.
[22]Liu J,Park C H,He F,et al.The RhoGAP SPIN6 associates with SPL11 and OsRac1 and negatively regulates programmed cell death and innate immunity in rice [J].PLoS Pathog,2015,11(2):e1004629.
[23]Thao N P,Chen L,Nakashima A,et al.RAR1 and HSP90 form a complex with Rac/Rop GTPase and function in innate-immune responses in rice[J].Plant Cell,2007,19(12):4 035-4 045.
[24]Wang Y,Gao M,Li Q,et al.OsRAR1 and OsSGT1 physically interact and function in rice basal disease resistance[J].Mol Plant Microbe Interact,2008,21(3):294-303.
[25]Nakashima A,Chen L,Thao NP,et al.RACK1 Functions in rice innate immunity by interacting with the Rac1 immune complex[J].Plant Cell,2008,20(8):2 265-2 279.
[26]Chen L,Hamada S,Fujiwara M,et al.The Hop/Sti1-Hsp90 chaperone complex facilitates the maturation and transport of a PAMP receptor in rice innate immunity[J].Cell Host Microbe,2010,7(3):185-196.
[27]Wang C,Wang G,Zhang C,et al.OsCERK1-mediated chitin perception and immune signaling requires receptor-like cytoplasmic kinase 185 to activate an MAPK cascade in rice[J].Mol Plant,2017,10(4):619-633.
[28]Ao Y,Li Z,Feng D,et al.OsCERK1 and OsRLCK176 play important roles in peptidoglycan and chitin signaling in rice innate immunity[J].Plant J,2014,80(6):1 072-1 084.
[29]Dangl J L and Jones J D.Plant pathogens and integrated defense responses to infection[J].Nature,2001,411(6839):826-833.
[30]Nimchuk Z,Eulgem T,HoltⅢB F,et al.Recognition and response in the plant immune system [J].Annu Rev Genet,2003,37:579-609.
[31]國家水稻數(shù)據(jù)中心.稻瘟病主效抗性基因列表[DB/OL].[2017-12-10].http://www.ricedata.cn/gene/gene_pi.htm.
[32]Kang S,Sweigard J A,Valent B.The PWL host specificity gene family in the blast fungus Magnaporthe grisea[J].Mol Plant Microbe Interact,1995,8(6):939-948.
[33]Sweigard J A,Carroll A M,Kang S,et al.Identification,cloning,and characterization of PWL2,a gene for host species specificity in the rice blast fungus[J].Plant Cell,1995,7(8):1 221-1 233.
[34]Schneider D R,Saraiva A M,Azzoni A R,et al.Overexpression and purification of PWL2D,a mutant of the effect or protein PWL2 from Magnaporthe grisea[J].Protein Expr Purif,2010,74:24-31.
[35]Orbach M J,Farrall L,Sweigard J A,et al.A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta[J].Plant Cell,2000,12(11):2 019-2 032.
[36]Collemare J,Pianfetti M,Houlle A E,et al.Magnaporthe grisea avirulence gene ACE1 belongs to an infection-specific gene cluster involved in secondary metabolism[J].New Phytol,2008,179(1):196-208.
[37]Yoshida K,Saitoh H,Fujisawa S,et al.Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae[J].Plant Cell,2009,21(5):1 573-1 591.
[38]Fujisaki K,Abe Y,Ito A,et al.Rice Exo70 interacts with a fungal effector,AVR-Pii,and is required for AVR-Pii-triggered immunity[J].Plant J,2015,83(5):875-887.
[39]Miki S,Matsui K,Kito H,et al.Molecular cloning and characterization of the AVR-Pia,locus from a Japanese field isolate of Magnaporthe oryzae[J].Mol Plant Pathol,2009,10(3):361-374.
[40]Ribot C,Césari S,Abidi I,et al.The Magnaporthe oryzae effector AVR1-CO39 is translocated into rice cells independently of a fungal-derived machinery[J].Plant J,2013,74(1):1-12.
[41]Zhang S,Wang L,Wu W,et al.Function and evolution of Magnaporthe oryzae avirulence gene AvrPib responding to the rice blast resistance gene Pib[J].Sci Rep,2015,5:11 642.
[42]Wu J,Kou Y,Bao J,et al.Comparative genomics identifies the Magnaporthe oryzae avirulence effector AvrPi9 that triggers Pi9-mediated blast resistance in rice[J].New Phytol,2015,206(4):1 463-1 475.
[43]Ray S,Singh P K,Gupta D K,et al.Analysis of Magnaporthe oryzae genome reveals a fungal effector,which is able to induce resistance response in transgenic rice line containing resistance gene,Pi54[J].Front Plant Sci,2016,7:1140.
[44]Cesari S,Thilliez G,Ribot C,et al.The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia and AVR1-CO39 by direct binding [J].Plant Cell,2013,25(4):1 463-1 481.
[45]Mentlak T A,Kombrink A,Shinya T,et al.Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease[J].Plant Cell,2012,24(1):322-335.
[46]Fujikawa T,Sakaguchi A,Nishizawa Y,et al.Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants[J].PLoS Pathog,2012,8(8):e1002882.
[47]Chi M H,Park S Y,Kim S,et al.A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host[J].PLoS Pathog,2009,5(4):e1000401.
[48]Huang K,Czymmek K J,Caplan J L,et al.HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus[J].PLoS Pathog,2011,7(4):e1001335.
[49]Bellin D,Asai S,Delledonne M,et al.Nitric oxide as a mediator for defense responses [J].Mol Plant Microbe Interact,2013,26(3):271-277.
[50]Marroquin-Guzman M,Hartline D,Wright JD,et al.The Magnaporthe oryzae nitrooxidative stress response suppresses rice innate immunity during blast disease[J].Nat Microbiol,2017,2:17054.