国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

腦缺血再灌注損傷與自噬關系的研究進展

2018-01-16 16:21楊綜述娟審校
中風與神經(jīng)疾病雜志 2018年3期
關鍵詞:溶酶體谷氨酸腦缺血

侯 楊綜述, 馮 娟審校

缺血性腦卒中是神經(jīng)系統(tǒng)中最為高發(fā)的疾病之一,且在腦血流再灌注后會引發(fā)一系列的病理反應從而造成更為嚴重的二次損傷。自噬是一種復雜的細胞代謝過程,在不同因素刺激下促使溶酶體吞噬細胞器等胞質(zhì)組分,廣泛參與機體的生理及病理過程,它是異于壞死和凋亡的并可作為細胞自我防御的代謝過程。腦缺血再灌注損傷(cerebral ischemia-reperfusion injury,CIRI)可激活受損后的神經(jīng)細胞發(fā)生自噬,自噬又與CIRI的發(fā)展緊密相關。本文對自噬的形成過程及其與CIRI的關系機制進行綜述,為進一步研究CIRI的治療靶點提供依據(jù)。

1 缺血再灌注損傷與自噬

缺血性卒中是最常見的神經(jīng)系統(tǒng)疾病之一,其特征在于大腦動脈阻塞導致腦部的血液循環(huán)不暢,而血流再灌注又造成血液供應再循環(huán)和氧氣、營養(yǎng)物質(zhì)再供應的二次神經(jīng)損傷[1,2]。在生理情況下,自噬通常處于較低水平,其主要作用是通過降解細胞內(nèi)的缺陷蛋白和長壽命蛋白等,為細胞提供所需的基礎營養(yǎng)物質(zhì),以實現(xiàn)生存原料的再更新循環(huán)[3];在如腦缺血損傷等病理生理情況下自噬可被激活,但其對受損細胞有利與否目前仍存在爭議,越來越多的證據(jù)支持自噬是雙刃劍的概念[4]。

1.1 炎癥損傷與自噬 炎癥損傷在缺血再灌注損傷(ischemia reperfusion injury,I/R)的病理生理過程中起著關鍵作用,抑制炎癥可改善I/R的神經(jīng)功能缺損。小膠質(zhì)細胞分為促炎癥作用的M1表型和抗炎作用的M2表型,兩者的比例決定著炎癥損傷程度。核轉(zhuǎn)錄因子-κB(nuclear transcription factor-κB,NF-κB)是M1表型的主要調(diào)節(jié)劑伴隨著高水平的腫瘤壞死因子-α( tumer necrosis factor-α,TNF-α)、誘導型一氧化氮合成酶( inducible Nitric Oxide Synthase,iNOS)、環(huán)氧化酶2( cyclooxygenase-2,COX2);環(huán)腺苷酸反應元件結合蛋白( cAMP-response element binding protein,CREB) 是NF-ΚB轉(zhuǎn)錄競爭者參與M2表型的極化伴隨著高水平白介素10( interleukin 10,IL-10)、腦源性神經(jīng)營養(yǎng)因子( brain derived neurotrophic factor,BDNF)[5,6]。研究發(fā)現(xiàn)在氧糖剝奪/再灌注( oxygen-glucose deprivation/ reoxygenation,OGD/R)發(fā)生時自噬即被激活,而在OGD/R 72 h時自噬通量卻被抑制,抑制后的自噬流可增強NF-κB通路上調(diào),M1表型標志物TNF-α、iNOS、COX2表達,促進小膠質(zhì)細胞向M1表型極化,并且通過抑制CREB通路下調(diào)M2標志物IL-10、BDNF水平[7]。

1.2 谷氨酸毒性損傷、鈣超載與自噬 N-甲基-D-天冬氨酸受體( N-methyl-D-aspartate receptor,NMDAR) 為離子型谷氨酸受體,谷氨酸可使大量的鈣離子流入神經(jīng)細胞造成鈣超載引起嚴重的神經(jīng)興奮性毒性損傷,在I/R的神經(jīng)元損傷中起關鍵作用[8]。R025-6981是NMDAR的選擇性拮抗劑,可通過抑制I/R激活的自噬發(fā)揮對I/R損傷神經(jīng)細胞的保護作用[9]。此外,Ca+內(nèi)流還依靠α-氨基-3-羥基-5-甲基-4異惡唑丙酸型谷氨酸受體( α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor,AMPAR) 形成的Ca+內(nèi)流通道完成,該通道主要由谷氨酸受體1-4組成,而谷氨酸受體的降解與自噬也密切相關[10,11]。

1.3 氧化應激與自噬 缺血組織再灌注后會引起明顯的氧化應激,伴隨著活性氧(reactive oxygen species,ROS)、活性氮( reactive nitrogen species,RNS) 等產(chǎn)生量的明顯升高,氧化應激觸發(fā)蛋白質(zhì)損傷,形成毒性蛋白質(zhì)低聚物,蛋白質(zhì)聚集和氧化細胞成分的積累,最終導致神經(jīng)元的死亡和損傷[12,13]。ROS自噬的內(nèi)部調(diào)控機制可歸納為轉(zhuǎn)錄和轉(zhuǎn)錄后調(diào)控,其包括各種分子信號途徑,如ROS-FOXO3-LC3 / BNIP3自噬,ROS-NRF2-P62自噬,ROS-HIF1-BNIP3 / NIX自噬和ROS-TIGAR-自噬;自噬也可以通過線粒體途徑、P62傳遞等途徑等調(diào)節(jié)ROS水平[14]。而RNS調(diào)節(jié)的自噬是否對缺血組織有益目前仍存在爭議,但越來越多的證據(jù)表明RNS介導的自噬會加重I/R損傷,可作為未來治療的靶點[15]。

1.4 內(nèi)質(zhì)網(wǎng)應激與自噬 內(nèi)質(zhì)網(wǎng)(endoplasmic reticulum,ER)主要負責分泌蛋白和跨膜蛋白等的合成、折疊和加工,但當ER的加工能力不能滿足蛋白質(zhì)的折疊要求時,錯誤折疊及未折疊的蛋白質(zhì)就會在ER管腔中逐漸積累導致ER應激,造成觸發(fā)信號進入一個自適應的信號網(wǎng)絡中即未折疊蛋白反應( unfolded protein response,UPR),而UPR可能會誘導細胞發(fā)生功能障礙進而引起細胞凋亡[16]。蛋白激酶R樣內(nèi)質(zhì)網(wǎng)激酶( protein kinase R-like ER kinase,PERK)、需肌醇酶1(Inositol-requiring kinase 1,IRE1 )是ER應激誘導自噬的潛在介質(zhì),一些研究發(fā)現(xiàn)在I/R中ER應激明顯增高,未折疊的蛋白通過PERK、IRE1通路激活自噬來加重神經(jīng)元的損傷[17]。一些研究發(fā)現(xiàn)激活的自噬可以降解內(nèi)質(zhì)網(wǎng)內(nèi)錯誤折疊的蛋白以減輕ER應激來發(fā)揮對細胞的保護作用[18]。

泛素-蛋白酶系統(tǒng)(ubiquitin-proteasome system,UPS)和自噬溶酶體系統(tǒng)是真核細胞內(nèi)蛋白質(zhì)降解的兩條主要途徑,兩者可相互影響且與ER應激關系密切。蛋白酶體抑制劑預處理缺氧再復氧( hypoxia-reoxygenation,H/R) 的細胞后其自噬水平顯著增強且ER應激相關蛋白如X盒結合蛋白、CCAAT/增強子結合蛋白同源蛋白表達明顯增加,而經(jīng)蛋白酶體促進劑阿霉素處理后的自噬和ER應激相關蛋白水平均顯著降低,提示UPS可負向調(diào)節(jié)自噬和ER應激水平;經(jīng)自噬激活劑預處理的H/R細胞后其自噬與UPS共同聯(lián)系蛋白即組蛋白脫乙酰酶6( histone deacetylase,HDAC6)、P62表達升高,ER應激相關蛋白和促凋亡相關蛋白csapase-3等表達降低,說明UPS、ER應激、細胞凋亡均受自噬的影響,且ER應激被自噬和UPS負向調(diào)節(jié)[19]。

1.5 線粒體功能障礙與自噬 缺血后的氧化應激和ER應激可誘發(fā)線粒體自噬,最初可通過離子穩(wěn)態(tài)來預防細胞凋亡和壞死,但過度的線粒體自噬又會導致細胞的死亡[20]。線粒體通透性轉(zhuǎn)換孔( mitochondrial permeability transition pore,mPTP)是內(nèi)膜的重要的復雜通道,其開放可導致線粒體膜電位的耗散及線粒體的腫脹,在I/R中可能刺激自噬消除異常的線粒體[21]。有研究發(fā)現(xiàn)腦缺血的酸性后處理能通過PARK2基因激活線粒體自噬來延長缺血再灌注后的時間窗[22]。而又有些觀點認為活性氮激活的線粒體自噬可能通過加速細胞內(nèi)ATP的消耗導致細胞死亡,縮短再灌注后的治療時間窗[15]。

2 自噬對缺血再灌注損傷腦組織的影響

2.1 自噬對再灌注損傷的腦組織的保護作用 CIRI引起的大腦微血管內(nèi)皮細胞( brain microvascular endothelial cells,BMEC)的損傷是血腦屏障(blood-brain barrier,BBB)被破壞的起始步驟,也是造成I/R患者預后效果不理想的主要原因,而激活后的自噬可減輕再灌注后BMEC的損傷,有益于BBB的完整性[23]。最近研究發(fā)現(xiàn)長鏈非編碼RNA(lncRNA)Malat1在OGD/R損傷后的BMEC中表達上調(diào),且這些BMEC的自噬水平和存活率均有升高;進一步研究發(fā)現(xiàn),lncRNA Malat1只能顯著降低miR-26的表達;自噬相關基因ULK2是miR-26的潛在靶標,表達與Malat1相一致與miR-26相反,而ULK2敲除后的BMEC的自噬水平和存活率均降低,因此通過激活Malat1-mir-26b-ULK2通路可提高細胞的自噬水平進而發(fā)揮對I/R中BMEC的保護作用[24]。

2.2 自噬對再灌注損傷的腦組織的損傷作用 OGD/R中神經(jīng)元的鈣蛋白酶的活性可被強烈激活,引起溶酶體發(fā)生膜透化和組織蛋白酶B釋放到胞質(zhì)溶膠,造成自噬/溶酶體的功能障礙,最終導致神經(jīng)元的死亡[25]。OGD/R還可通過激活自噬誘導谷氨酸受體的表達,通過Ca+-AMPAR通道促進Ca+內(nèi)流加重大腦缺血再灌注損傷[26]。最近研究發(fā)現(xiàn)在葉酸缺乏時I/R的皮質(zhì)神經(jīng)元中自噬體的積累增多,微管相關蛋白輕鏈及Beclin1蛋白的表達顯著增加,且作為氧化性DNA損傷的敏感標志物即8羥基脫氧鳥苷水平亦升高,提示葉酸缺乏可加強I/R腦組織自噬的激活進而加重神經(jīng)元損傷,而氧化損傷可能參與其機制[27]。

3 調(diào)節(jié)自噬保護再灌注損傷腦組織的藥物

NOD樣受體蛋白3( NOD-like receptor protein 3,NLRP3)是NOD樣受體家族的成員,當被激活時會促進炎癥因子如IL-1β、IL-18的釋放[28]。靜息信息調(diào)節(jié)器1(sirt1)可抑制NLRP3及增強自噬對缺血腦組織起保護作用[29],白藜蘆醇通過激活sirt-自噬通路,進而抑制NLRP3蛋白及其下游炎癥因子的表達,從而發(fā)揮腦缺血再灌注損傷的保護作用[30]。近期研究發(fā)現(xiàn)低溫可改善OGD/R損傷后的溶酶體和自噬流,促進海馬神經(jīng)元的自噬體和溶酶體的相互融合,間接促進自噬的發(fā)生發(fā)揮對受損神經(jīng)元作用[31]。

體內(nèi)外實驗證明右美托咪定( dexmedetomidine,DEX)可通過上調(diào)缺氧誘導因子1α( hypoxia inducible factor-1α,HIF-1α)抑制自噬,進而減輕MACO后腦梗死灶的面積及促進OGD后神經(jīng)元的存活[32]。作為神經(jīng)營養(yǎng)因子的神經(jīng)節(jié)苷脂可通過降低在MACO中過度激活的自噬來減少腦缺血面積并改善神經(jīng)功能[33]。

4 總 結

自噬與CIRI關系密切,可以被CIRI激活并通過多個方面參與其發(fā)病過程。一方面被激活的自噬可發(fā)揮對受損神經(jīng)細胞的保護作用,但另一方面又可能加重腦組織損傷,這可能與激活自噬的方式和程度有關。而對CIRI具有治療作用的不同種類的藥物對自噬的激活或抑制作用也不盡相同,通過深入研究自噬在CIRI的動態(tài)調(diào)節(jié)機制以在適當時間應用適當?shù)闹委熕幬铮蔀镃IRI的臨床治療提供新的突破。

[參考文獻]

[1]Park HR,Lee H,Lee JJ,et al. Protective Effects of Spatholobi Caulis Extract on Neuronal Damage and Focal Ischemic Stroke/Reperfusion Injury [J]. Mol Neurobiol,2017,(3):1-17.

[2]Chumboatong W,Thummayot S,Govitrapong P,et al. Neuroprotection of agomelatine against cerebral ischemia/reperfusion injury through an antiapoptotic pathway in rat [J]. Neurochem Int,2017,102:114-122.

[3]Lin NY,Beyer C,Giessl A,et al. Autophagy regulates TNFα-mediated joint destruction in experimental arthritis [J]. Ann Rheum Dis,2013,72(5):761-768.

[4]Huang XP,Ding H,Lu JD,et al. Autophagy in cerebral ischemia and the effects of traditional Chinese medicine [J]. J Integr Med,2015,13(5):289-296.

[5]Yang XW,Li YH,Zhang H,et al. Safflower Yellow regulates microglial polarization and inhibits inflammatory response in LPS-stimulated Bv2 cells [J]. Int J Immunopathol Pharmacol,2016,29(1):54-64.

[6]Zhang H,Li Y,Yu J,et al. Rho kinase inhibitor fasudil regulates microglia polarization and function [J]. Neuroimmunomodulation,2013,20(6):313-322.

[7]Xia CY,Zhang S,Chu SF,et al. Autophagic flux regulates microglial phenotype according to the time of oxygen-glucose deprivation/reperfusion [J]. Int Immunopharmacol,2016,39:140-148.

[8]Zhang C,Shen W,Zhang G. N-methyl-D-aspartate receptor and L-type voltage-gated Ca(2+) channel antagonists suppress the release of cytochrome c and the expression of procaspase-3 in rat hippocampus after global brain ischemia [J]. Neurosci Lett,2002,328(3):265-268.

[9]Dong F,Yao R,Yu H,et al. Neuroprotection of Ro25-6981 Against Ischemia/Reperfusion-Induced Brain Injury via Inhibition of Autophagy [J]. Cell Mol Neurobiol,2017,37(4):743-752.

[10]Liu SJ,Savtchouk I. Ca(2+) permeable AMPA receptors switch allegiances:mechanisms and consequences [J]. J Physiol,2012,590(1):13-20.

[11]Shehata M,Matsumura H,Okubo-Suzuki R,et al. Neuronal stimulation induces autophagy in hippocampal neurons that is involved in AMPA receptor degradation after chemical long-term depression [J]. J Neurosci,2012,32(30):10413-10422.

[12]Morales CR,Pedrozo Z,Lavandero S,et al. Oxidative stress and autophagy in cardiovascular homeostasis [J]. Antioxid Redox Signal,2014,20(3):507-518.

[13]Cao Y,Zhang L,Sun S,et al. Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells [J]. Int J Mol Med,2016,38(2):567-573.

[14]Li L,Tan J,Miao Y,et al. ROS and Autophagy:Interactions and Molecular Regulatory Mechanisms [J]. Cell Mol Neurobiol,2015,35(5):615-621.

[15]Feng J,Chen X,Shen J. Reactive nitrogen species as therapeutic targets for autophagy:implication for ischemic stroke [J]. Expert Opin Ther Targets,2017,21(3):305-317.

[16]Stengel S,Messner B,F(xiàn)alk-Paulsen M,et al. Regulated proteolysis as an element of ER stress and autophagy:Implications for intestinal inflammation [J]. Biochim Biophys Acta,2017.

[17]Feng D,Wang B,Wang L,et al. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings [J]. J Pineal Res,2017,62:3.

[18]Tripathi M,Zhang CW,Singh BK,et al. Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by Vitamin B supplementation [J]. Cell Death Dis,2016,7(12):e2513.

[19]Fan T,Huang Z,Chen L,et al. Associations between autophagy,the ubiquitin-proteasome system and endoplasmic reticulum stress in hypoxia-deoxygenation or ischemia-reperfusion [J]. Eur J Pharmacol,2016,791:157-167.

[20]Bakthavachalam P,Shanmugam PS. Mitochondrial dysfunction -Silent killer in cerebral ischemia [J]. J Neurol Sci,2017,375:417-423.

[21]Fakharnia F,Khodagholi F,Dargahi L,et al. Prevention of Cyclophilin D-Mediated mPTP Opening Using Cyclosporine-A Alleviates the Elevation of Necroptosis,Autophagy and Apoptosis-Related Markers Following Global Cerebral Ischemia-Reperfusion [J]. J Mol Neurosci,2017,61(1):52-60.

[22]Shen Z,Zheng Y,Wu J,et al. PARK2-dependent mitophagy induced by acidic postconditioning protects against focal cerebral ischemia and extends the reperfusion window [J]. Autophagy,2017,13(3):473-485.

[23]Li H,Gao A,F(xiàn)eng D,et al. Evaluation of the protective potential of brain microvascular endothelial cell autophagy on blood-brain barrier integrity during experimental cerebral ischemia-reperfusion injury [J]. Transl Stroke Res,2014,5(5):618-626.

[24]Li Z,Li J,Tang N. Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression [J]. Neuroscience,2017,354:1-10.

[25]Gerónimo-Olvera C,Montiel T,Rincon-Heredia R,et al. Autophagy fails to prevent glucose deprivation/glucose reintroduction-induced neuronal death due to calpain-mediated lysosomal dysfunction in cortical neurons [J]. Cell Death Dis,2017,8(6):e2911.

[26]Bao L,Li RH,Li M,et al. Autophagy-regulated AMPAR subunit upregulation in in vitro oxygen glucose deprivation/reoxygenation-induced hippocampal injury [J]. Brain Res,2017,1668:65-71.

[27]Zhao Y,Huang G,Chen S,et al. Folic acid deficiency increases brain cell injury via autophagy enhancement after focal cerebral ischemia [J]. J Nutr Biochem,2016,38:41-49.

[28]Qiu J,Wang M,Zhang J,et al. The neuroprotection of Sinomenine against ischemic stroke in mice by suppressing NLRP3 inflammasome via AMPK signaling [J]. Int Immunopharmacol,2016,40:492-500.

[29]Wang WR,Li TT,Jing T,et al. SIRT1 Regulates the Inflammatory Response of Vascular Adventitial Fibroblasts through Autophagy and Related Signaling Pathway [J]. Cell Physiol Biochem,2017,41(2):569-582.

[30]He Q,Li Z,Wang Y,et al. Resveratrol alleviates cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasome activation through Sirt1-dependent autophagy induction [J]. Int Immunopharmacol,2017,50:208-215.

[31]Zhou T,Liang L,Liang Y,et al. Mild hypothermia protects hippocampal neurons against oxygen-glucose deprivation/reperfusion-induced injury by improving lysosomal function and autophagic flux [J]. Exp Cell Res,2017,358(2):147-160.

[32]Luo C,Ouyang MW,F(xiàn)ang YY,et al. Dexmedetomidine Protects Mouse Brain from Ischemia-Reperfusion Injury via Inhibiting Neuronal Autophagy through Up-Regulating HIF-1α [J]. Front Cell Neurosci,2017,11:197.

[33]Li L,Tian J,Long MK,et al. Protection against Experimental Stroke by Ganglioside GM1 Is Associated with the Inhibition of Autophagy [J]. PLoS One,2016,11(1):e0144219.

猜你喜歡
溶酶體谷氨酸腦缺血
針刺對腦缺血再灌注損傷大鼠大腦皮質(zhì)細胞焦亡的影響
大連化物所發(fā)展出時空超分辨四維熒光成像 解析全細胞溶酶體
N-氨甲酰谷氨酸對灘羊乏情期誘導同期發(fā)情效果的影響
內(nèi)源性NO介導的Stargazin亞硝基化修飾在腦缺血再灌注后突觸可塑性中的作用及機制
間歇性低氧干預對腦缺血大鼠神經(jīng)功能恢復的影響
膽綠素改善大鼠腦缺血再灌注損傷的作用機制
Rab7介導線粒體和溶酶體互作機制新進展
高中階段有關溶酶體的深入分析
擴散性抑制及缺血過程中Ca2+與谷氨酸的同時在體電化學分析
淺談溶酶體具有高度穩(wěn)定性的原因