苑鑫 柏長青
支氣管哮喘是呼吸系統(tǒng)患者就診最常見原因之一。目前發(fā)現(xiàn)哮喘是一種異質(zhì)性疾病,可分多種表型,主要特點(diǎn)為氣道慢性炎癥,早期氣道呈可逆性損傷,隨著炎癥漸進(jìn)性進(jìn)展,晚期氣道損害呈不可逆性[1]。
關(guān)于哮喘的發(fā)病機(jī)制,目前進(jìn)行了多方面的研究,包括感染因素、基因易感性、環(huán)境因素等。其中由于哮喘主要表現(xiàn)為氣道的慢性炎癥,感染性因素一直是關(guān)注的熱點(diǎn)之一。臨床發(fā)現(xiàn)鼻病毒、呼吸道合胞病毒、肺炎支原體(mycoplasma pneumoniae, MP)和衣原體是引起哮喘發(fā)生、發(fā)展和急性加重最常見的病原體[2-3]。肺炎支原體由于黏附在呼吸道上皮細(xì)胞表面,不易被清除,常引起氣道的慢性炎癥,臨床癥狀以慢性咳嗽或喘息最為常見,因此MP與哮喘的關(guān)系日益受到了人們的重視。一項(xiàng)長達(dá)8年、大規(guī)模的臨床數(shù)據(jù)分析發(fā)現(xiàn),感染MP患者的哮喘發(fā)病率明顯高于非MP感染患者,早發(fā)或遲發(fā)型哮喘均與MP感染關(guān)系密切[4]。也有多項(xiàng)臨床研究提示哮喘首發(fā)或急性加重均與MP有關(guān)[5-6]。
MP經(jīng)飛沫進(jìn)入呼吸道后,通過以P1蛋白為主的黏附復(fù)合體黏附在呼吸道上皮細(xì)胞表面,對(duì)組織細(xì)胞造成損害,并通過信號(hào)轉(zhuǎn)導(dǎo)通路等途徑引起炎性反應(yīng),進(jìn)一步產(chǎn)生氣道內(nèi)慢性炎癥、氣道高反應(yīng)性和氣道結(jié)構(gòu)改變。目前關(guān)于MP與哮喘的研究,已建立了成熟的體外細(xì)胞培養(yǎng)模型、小鼠MP感染誘發(fā)哮喘模型,發(fā)病機(jī)制研究主要體現(xiàn)在以下幾個(gè)方面。
1. 細(xì)胞損傷和功能影響: MP侵入呼吸道后,可造成對(duì)氣道和外周血中多種細(xì)胞的影響:①呼吸道上皮細(xì)胞:MP黏附在呼吸道上皮細(xì)胞表面,由于MP自身不能合成營養(yǎng)要素,需從上皮細(xì)胞汲取,同時(shí)在局部產(chǎn)生的代謝產(chǎn)物如過氧化氫和氧自由基等導(dǎo)致對(duì)上皮細(xì)胞的損害。MP還可產(chǎn)生一種獨(dú)特的使細(xì)胞ADP核糖基化和空泡化的毒素-即社區(qū)獲得性呼吸窘迫綜合征(community acquired respiratory distress syndrome, CARDS)毒素,直接損害上皮細(xì)胞。上皮細(xì)胞受損后,可釋放多種炎性因子和黏液素[5]。通過體外人呼吸道上皮細(xì)胞培養(yǎng),發(fā)現(xiàn)MP感染對(duì)不同部位氣道上皮細(xì)胞的影響不一樣,大氣道產(chǎn)生轉(zhuǎn)化生長因子-b1(transforming growth factor-b1, TGF-b1)增多,小氣道產(chǎn)生趨化因子RANTES增多[7];②呼吸道巨噬細(xì)胞:巨噬細(xì)胞通過MyD-88 NF-κβ通路可清除MP[8],MP反過來可通過自噬和Toll樣受體4(Toll-like receptors-4, TLR-4)引起巨噬細(xì)胞內(nèi)部較強(qiáng)的炎癥反應(yīng)[9]; ③呼吸道肥大細(xì)胞:MP感染后,P1蛋白可誘發(fā)呼吸道肥大細(xì)胞增多,釋放白介素-4(interleukin-4, IL-4)、IL-6和腫瘤壞死因子-α(tumor necrosis factor, TNF-α)炎癥因子,可導(dǎo)致氣道高反應(yīng)性;肥大細(xì)胞在敏感狀態(tài)下也有清除MP的作用[10];④呼吸道其他炎性細(xì)胞:MP感染后,肺內(nèi)嗜酸細(xì)胞細(xì)胞增多,T細(xì)胞、B細(xì)胞聚集,主要表現(xiàn)為Th2為主的炎性反應(yīng)[11];⑤外周血中細(xì)胞的變化:樹突狀細(xì)胞增多,樹突細(xì)胞上TLR-2、TLR-4增加[12];特應(yīng)性體質(zhì)兒童合并MP感染后血中嗜酸細(xì)胞在愈合期和隨訪期升高[13]。
2. 分子和蛋白的影響: MP感染后,喘息患者肺泡灌洗液中IL-4、IL-4/干擾素(interferon- γ, IFN-γ)、免疫球蛋白E(immunoglobulin E, IgE)升高[14];外周血中發(fā)現(xiàn)IL-5、IL-9、IL-17、TNF-α,IgE、白三烯B4、嗜酸細(xì)胞陽離子蛋白(eosinophil cationic protein, ECP)、血管內(nèi)皮細(xì)胞生長因子(vascular endothelial cell growth factor, VEGF)、血管內(nèi)皮素-1(endothelin-1, ET-1)升高[13,15-16]。難治性哮喘患者血中CARDS毒素升高[17]。體外人呼吸道上皮細(xì)胞實(shí)驗(yàn)和小鼠試驗(yàn)發(fā)現(xiàn),MP感染后肺泡灌洗液中CARDS毒素和黏液素生成增多。CARDS毒素是一個(gè)相對(duì)分子量為68×103的蛋白質(zhì),由基因 MPN372編碼,具有ADP核糖基轉(zhuǎn)移活性、表面活性物質(zhì)黏附能力、使上皮細(xì)胞空泡化退化的能力。在MP不同生長的時(shí)間段CARDS毒素產(chǎn)生量不同。CARDS毒素mRNA在MP早期指數(shù)生長期時(shí)是最大量表達(dá),在中后期表達(dá)量下降。免疫熒光共聚焦顯微鏡提示MP在感染不同正常人呼吸道上皮細(xì)胞時(shí)就開始產(chǎn)生CARDS毒素[18]。所以CARDS毒素的產(chǎn)生和調(diào)節(jié)與感染的周圍環(huán)境以及MP自身生長的時(shí)間有關(guān)。CARDS毒素可通過與存在于呼吸道上皮細(xì)胞表面或內(nèi)部的膜聯(lián)蛋白A2結(jié)合, 產(chǎn)生空泡化來發(fā)生作用。CRARDS毒素能導(dǎo)致小鼠的Th-2型炎性因子IL-4、IL-13升高30倍,Th-2型趨化因子CCL17、CCL22 升高70~80倍,導(dǎo)致一系列混合性細(xì)胞炎性反應(yīng),包括嗜酸細(xì)胞增多、T細(xì)胞、B細(xì)胞聚集,黏液化生[11]。這些炎性反應(yīng)又可導(dǎo)致氣道高反應(yīng)性和順應(yīng)性下降。黏液素的產(chǎn)生是哮喘急性加重的一個(gè)環(huán)節(jié)。黏液素增多的機(jī)制主要是MP通過二?;鞍着cTLR-2結(jié)合,激活上皮細(xì)胞的NF-κB通路,使黏液素MUC5AC產(chǎn)生增加[19];也有研究發(fā)現(xiàn)MP通過上游IL-4、IL-6和IL-13的升高,上調(diào)STAT-6/STAT-3和EGFR信號(hào)通路,使黏液素產(chǎn)生增多[20]??扇苄訫P抗原可使分布在氣道平滑肌和嗜酸細(xì)胞表面的白三烯受體I型表達(dá)增加[21],血中白三烯B4濃度升高,推測(cè)白三烯通路也可能在MP導(dǎo)致的氣道高反應(yīng)性中發(fā)揮了作用。SHP-1是一種蛋白質(zhì)酪氨酸磷酸酶,在哮喘或宿主保護(hù)反應(yīng)中起負(fù)反饋調(diào)節(jié)作用。MP感染時(shí),發(fā)現(xiàn)非哮喘患者SHP-1明顯升高,但哮喘患者沒有明顯升高。敲除SHP-1后,非哮喘患者呼吸道上皮細(xì)胞表達(dá)IL-8、NF-Kb等明顯升高,而在哮喘患者中則沒明顯改變。說明SHP-1在哮喘患者呼吸道上皮MP感染后的炎性反應(yīng)中起重要的負(fù)反饋調(diào)節(jié)作用[22]。SPLUNC1是大氣道上皮細(xì)胞產(chǎn)生的一種蛋白,能下調(diào)自身濃度,降低由于MP脂蛋白引起的IL-8升高。IL-13能降低SPLUNC1的表達(dá),減少M(fèi)P的清除。哮喘患者SPLUNC1表達(dá)下降,可能會(huì)容易引起氣道細(xì)菌感染[23]。MP感染后IFN-γ被抑制,也會(huì)加重氣道炎癥和氣道高反應(yīng)性[24]。肺泡上皮細(xì)胞培養(yǎng)和小鼠動(dòng)物試驗(yàn)證實(shí),MP感染可增加 TGF-b[7],使膠原蛋白在氣道管壁沉積增多[25],并參與氣道結(jié)構(gòu)重建。
3. 基因相關(guān)性: 關(guān)于MP感染、哮喘與基因相關(guān)性方面的研究較少。有研究發(fā)現(xiàn)表面蛋白SP-A2等位基因多態(tài)性可影響宿主與MP的結(jié)合以及宿主免疫反應(yīng)。敲除SP-A基因的小鼠對(duì)支原體膜片段更敏感,更易產(chǎn)生較多的黏液素和造成中性粒細(xì)胞聚集。將人hSP-A2 223K基因轉(zhuǎn)給小鼠,與敲除SP-A基因的小鼠比較,其黏液素和中性粒細(xì)胞聚集減少。但如果將人hSP-A2 223Q基因轉(zhuǎn)給小鼠,黏液素的產(chǎn)生和中性粒細(xì)胞聚集就等同于SP-A敲除的小鼠。表面蛋白SP-A主要通過EGFR信號(hào)通路抑制支原體膜片段刺激黏液素產(chǎn)生[26]。RANTES趨化因子也叫CCR5,是一種在過敏性和感染性疾病中產(chǎn)生的趨化因子,與哮喘存在一定的相關(guān)性。目前發(fā)現(xiàn)CCR5受體基因如果存在CCR5Δ32等位基因缺失性突變,可降低哮喘發(fā)生的概率[27]。
MP是呼吸道感染最常見的病原菌之一。由于MP體外培養(yǎng)相對(duì)困難,培養(yǎng)周期長(2~4周),國內(nèi)大多實(shí)驗(yàn)室不常規(guī)開展;MP血清學(xué)檢測(cè)陽性率低,且需要至少7~10 d的時(shí)間,臨床應(yīng)用可行性差;分子聚合酶鏈反應(yīng)(Polymerase chain reaction, PCR)技術(shù)快速靈敏,但在大部分基層醫(yī)院不能常規(guī)開展。因此MP相關(guān)生物學(xué)信息的研究和與哮喘關(guān)系的研究,在我國相對(duì)滯后,國內(nèi)只有少數(shù)團(tuán)隊(duì)開展。但MP作為我國社區(qū)獲得性肺炎的首位致病菌,且對(duì)大環(huán)內(nèi)酯類耐藥性居全球第一,在我國及時(shí)開展MP與哮喘的相關(guān)性研究還是具有很好的臨床指導(dǎo)意義。在我國這種特定的背景下,了解MP是否是導(dǎo)致感染性哮喘最常見的直接病因,或者近些年來我國哮喘發(fā)病率升高是否與之有關(guān),都是值得臨床探究的問題。研究MP與哮喘的關(guān)系,特別是研究MP感染如何誘發(fā)哮喘發(fā)作,有可能找到早期預(yù)測(cè)MP引起哮喘發(fā)作的Marker,以及早期干預(yù)減少M(fèi)P感染誘發(fā)哮喘發(fā)作新方法,并為加深哮喘發(fā)病機(jī)制的理解及加強(qiáng)哮喘防范提供新的思路和防治措施。
參 考 文 獻(xiàn)
1 王長征. 改善支氣管哮喘控制現(xiàn)狀,需要重視患者的長期管理[J/CD]. 中華肺部疾病雜志(電子版), 2013, 6(4): 296-298.
2 Darveaux JI, Lemanske RF Jr. Infection-related asthma[J]. J Allergy Clin Immunol Pract, 2014, 2(6): 658-663.
3 Carr TF, Kraft M. Chronic infection and severe asthma[J]. Immunol Allergy Clin North Am, 2016, 36(3): 483-502.
4 Yeh JJ, Wang YC, Hsu WH, et al. Incident asthma and Mycoplasma pneumoniae: A nationwide cohort study[J]. J Allergy Clin Immunol, 2016, 137(4): 1017-1023.
5 Watanabe H, Uruma T, Nakamura H, et al. The role of Mycoplasma pneumoniae infection in the initial onset and exacerbations of asthma[J]. Allergy Asthma Proc, 2014, 35(3): 204-210.
6 Giavina-Bianchi P, Kalil J. Mycoplasma pneumonia infection induces asthma onset[J]. J Allergy Clin Immunol, 2016, 137(4): 1024-1025.
7 Dakhama A, Kraft M, Martin RJ, et al. Induction of regulated upon activation, normal T cells expressed and secreted (RANTES) and transforming growth factor-beta 1 in airway epithelial cells by Mycoplasma pneumoniae[J]. Am J Respir Cell Mol Biol, 2003, 29(3 Pt 1): 344-351.
8 Lai JF, Zindl CL, Duffy LB, et al. Critical role of macrophages and their activation via MyD88-NFκB signaling in lung innate immunity to Mycoplasma pneumonia[J]. PLoS One, 2010, 23, 5(12): e14417.
9 Shimizu T, Kimura Y, Kida Y, et al. Cytadherence of Mycoplasma pneumonia induces inflammatory responses through autophagy and toll-like receptor 4[J]. Infect Immun, 2014, 82(7): 3076-3086.
10 Michels NM, Chu HW, LaFasto SC, et al. Mast cells protect against airway Mycoplasma pneumoniae under allergic conditions[J]. Clin Exp Allergy, 2010, 40(9): 1406-1413.
11 Medina JL, Coalson JJ, Brooks EG, et al. Mycoplasma pneumoniae CARDS toxin induces pulmonary eosinophilic and lyMPhocytic inflammation[J]. Am J Respir Cell Mol Biol, 2012, 46(6): 815-822.
12 Shao L, Cong Z, Li X, et al. Changes in levels of IL-9, IL-17, IFN-γ, dendritic cell numbers and TLR expression in peripheral blood in asthmatic children with Mycoplasma pneumoniae infection[J]. Int J Clin Exp Pathol, 2015, 8(5): 5263-5272.
13 Kim JH, Cho TS, Moon JH, et al. Serial Changes in Serum Eosinophil- associated Mediators between Atopic and Non-atopic Children after Mycoplasma pneumoniae pneumonia[J]. Allergy Asthma Immunol Res, 2014, 6(5): 428-433.
14 Koh YY, Park Y, Lee HJ, et al. Levels of interleukin-2, interferon-gamma, and interleukin-4 in bronchoalveolar lavage fluid from patients with Mycoplasma pneumonia: iMPlication of tendency toward increased immunoglobulin E production[J]. Pediatrics, 2001, 107(3): E39.
15 Wang L, Chen Q, Shi C, et al. Changes of serum TNF-α, IL-5 and IgE levels in the patients of mycoplasma pneumonia infection with or without bronchial asthma[J]. Int J Clin Exp Med, 2015, 8(3): 3901-3906.
16 Jeong YC, Yeo MS, Kim JH, et al. Mycoplasma pneumonia infection affects the serum levels of vascular endothelial growth factor and interleukin-5 in atopic children[J]. Allergy Asthma Immunol Res, 2012, 4(2): 92-97.
17 Peters J, Singh H, Brooks EG, et al. Persistence of community acquired respiratory distress syndrome toxin-producing Mycoplasma pneumonia in refractory asthma[J]. Chest, 2011, 140: 401-407.
18 Kannan TR, Musatovova O, Balasubramanian S, et al. Mycoplasma pneumoniae Community Acquired Respiratory Distress Syndrome toxin expression reveals growth phase and infection-dependent regulation[J]. Mol Microbiol, 2010, 76(5): 1127-1141.
19 Chu HW, Jeyaseelan S, Rino JG, et al. TLR2 signaling is critical for Mycoplasma pneumoniae-induced airway mucin expression[J]. J Immunol, 2005, 174(9): 5713-5719.
20 Hao Y, Kuang Z, Jing J, et al. Mycoplasma pneumoniae modulates STAT3-STAT6/EGFR-FOXA2 signaling to induce overexpression of airway mucins[J]. Infect Immun, 2014, 82(12): 5246-5255.
21 Watanabe H, Uruma T, Tsunoda T. Influence on the respiratory tract of the Mycoplasma pneumoniae pneumonia as a manifestation factor of bronchial asthma[J]. Jpn J Mycoplasmol, 2012, 38: 33.
22 Wang Y, Zhu Z, Church TD, et al. SHP-1 as a critical regulator of Mycoplasma pneumoniae-induced inflammation in human asthmatic airway epithelial cells[J]. J Immunol, 2012, 188(7): 3371-3381.
23 Chu HW, Thaikoottathil J, Rino JG, et al. Function and regulation of SPLUNC1 protein in Mycoplasma infection and allergic inflammation[J]. J Immunol, 2007, 179(6): 3995-4002.
24 Martin RJ, Chu HW, Honour JM, Harbeck RJ. Airway inflammation and bronchial hyperresponsiveness after Mycoplasma pneumoniae infection in a murine model[J]. Am J Respir Cell Mol Biol, 2001, 24(5): 577-582.
25 Chu HW, Rino JG, Wexler RB, et al. Mycoplasma pneumoniae infection increases airway collagen deposition in a murine model of allergic airway inflammation[J]. Am J Physiol Lung Cell Mol Physiol, 2005, 289(1): L125-133.
26 Ledford JG, Voelker DR, Addison KJ, et al. Genetic variation in SP-A2 leads to differential binding to Mycoplasma pneumoniae membranes and regulation of host responses[J]. J Immunol, 2015, 194(12): 6123-6132.
27 Ungvári I, T?lgyesi G, Semsei AF, et al. CCR5 Delta 32 mutation, Mycoplasma pneumoniae infection, and asthma[J]. J Allergy Clin Immunol, 2007, 119(6): 1545-1547.