王光勇 ,陳安敏 徐景茂
摘 要:利用實(shí)驗(yàn)室抗爆模型試驗(yàn)裝置,研究了端部加密和普通長密錨桿錨固洞室在重復(fù)頂爆作用下的應(yīng)力波傳播及衰減規(guī)律。端部加密錨固洞室和普通長密錨固洞室每一炮的拱頂壓力峰值隨著比例距離的增加呈冪函數(shù)逐漸衰減,并擬合出相應(yīng)的冪函數(shù)曲線,前兩炮擬合的應(yīng)力波衰減指數(shù)均小于未受擾動巖石的衰減指數(shù)。兩個(gè)洞室在爆炸應(yīng)力波作用下,錨固區(qū)附近的巖石先被密實(shí),然后不斷損傷破壞。在相同的爆炸條件作用下,隨著比例距離增加,兩個(gè)洞室在相同比例距離時(shí)的壓力差值逐漸減小;相同比例距離端部加密錨固洞室峰值壓力比普通長密錨桿加固洞室峰值壓力先大后小;端部加密錨桿加固洞室與普通長密錨桿加固洞室離加固范圍最近測點(diǎn)的壓應(yīng)力峰值衰減規(guī)律比較相近,并且壓應(yīng)力峰值大小也比較相近。
關(guān)鍵詞: 地下工程;頂爆;應(yīng)力波;傳播規(guī)律;衰減規(guī)律
中圖分類號:TU452
?文獻(xiàn)標(biāo)志碼:A? 文章編號:1674-4764(2018)06-0015-07
tress wave propagation and attenuation laws of underground
openings reinforced by dense bolts at anchor top
under repeated top explosions
Wang Guangyong1,2 , Chen Anmin2, Xu Jingmao2
(1.School of Civil Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan, P. R. China;
2.The Third Research Institute of the Corps of Engineers, General Staff of CPLA, Luoyang 471023, Henan, P. R. China)
Abstract:Stress wave propagation and attenuation laws of underground openings reinforced by dense bolts at anchor top and long-dense bolts are studied by anti-explosion model tests under repeated top explosions. After each explosion, with the increase of scaled stance, peak pressure stresses on vault gradually decrease in the form of a power function, and the corresponding power functions to fit the curves are obtained, of which the indexes of fitting stress wave attenuation are smaller than those of undisturbed rock. Under the action of explosion stress waves, the rock near the anchorage zone is compacted firstly, and then damaged continuously. Under the same conditions of explosions, with the increase of scaled stance, the difference of pressure stresses with two underground openings is reduced gradually at the same scaled stance and peak pressure stress on vault of the underground opening reinforced by dense bolts at anchor top is greater than that of the underground opening reinforced by long-dense bolts firstly at the same scaled stance, and then smaller. Under the same conditions of explosions, the stress wave attenuation law and peak pressure stress of the nearest measuring points from two underground openings are similar.
Keywords:underground engineering; top explosions; stress waves; propagation laws; attenuation laws
炸藥在介質(zhì)里發(fā)生爆炸時(shí),會在介質(zhì)中產(chǎn)生應(yīng)力波,從破壞和防護(hù)兩方面考慮,都需要知道應(yīng)力波在介質(zhì)中的傳播及衰減規(guī)律。應(yīng)力波在巖石中的傳播及衰減規(guī)律主要受到爆炸條件和巖石的地質(zhì)條件兩方面影響。由于涉及許多復(fù)雜多變的因素,到目前為止,爆炸應(yīng)力波的傳播及衰減規(guī)律一直是國防工程及工程爆破界研究的熱點(diǎn)問題。因此,研究應(yīng)力波在巖體中的傳播與衰減規(guī)律,對國防建設(shè)和國民經(jīng)濟(jì)均具有重大意義[1] 。
由于爆炸應(yīng)力波的傳播及衰減規(guī)律涉及工程的各個(gè)環(huán)節(jié),只有充分認(rèn)識應(yīng)力波擾動規(guī)律,才能確保工程結(jié)構(gòu)的安全性與穩(wěn)定性。許多學(xué)者開展了這方面的研究,并取得了豐富的成果。胡剛等[2] 采用一維撞桿法,得到了爆炸作用下巖石的應(yīng)變歷程曲線,并導(dǎo)出應(yīng)力波衰減規(guī)律。王占江等[3] 根據(jù)在花崗巖中進(jìn)行的1~150 kg TN系列化爆試驗(yàn)的應(yīng)力波測試數(shù)據(jù),給出了相應(yīng)的自由場應(yīng)力波衰減規(guī)律。何翔等[4] 基于現(xiàn)場試驗(yàn)得到了石灰?guī)r中的沖擊傳播規(guī)律。左魁等[5] 研究發(fā)現(xiàn),應(yīng)力波峰值壓力隨比例距離衰減遵循一定規(guī)律,并給出的衰減公式。《常規(guī)武器防護(hù)設(shè)計(jì)原理》[6] 中給出了爆炸應(yīng)力波峰值計(jì)算公式。文獻(xiàn)[7]利用數(shù)值分析方法,得到了應(yīng)力波在巖體傳播過程中的衰減規(guī)律,并證明PFC可以較好地模擬爆破過程。Yankelevsky等[8] 、Feldgun等[9] 利用試驗(yàn)和數(shù)值方法分別研究了應(yīng)力波在土中的衰減規(guī)律。Pandya等[10] 分析了在平面彈道沖擊下縱向應(yīng)力波在編織織物復(fù)合材料中的衰減規(guī)律。李新平等[11-12] 、FAN等[13] 、俞縉等[14] 、范新等[15] 考慮巖體結(jié)構(gòu)面(節(jié)理、裂隙等)和初始應(yīng)力對應(yīng)力波傳播規(guī)律的影響。
學(xué)者們雖然對自由場的爆炸應(yīng)力波傳播及衰減規(guī)律進(jìn)行了大量研究,并考慮了一些因素的影響,但地下工程經(jīng)過加固,會使圍巖強(qiáng)度得到提高,從而改變圍巖的波阻抗,影響地下工程上方巖石中的應(yīng)力波強(qiáng)度,從而影響應(yīng)力波的傳播及衰減規(guī)律。目前,地下工程中錨桿支護(hù)應(yīng)用比較廣泛,對錨固洞室上方爆炸應(yīng)力波傳播及衰減規(guī)律的研究一般與錨固洞室的抗爆性能一起研究[16-21] ,大多數(shù)成果只對一次爆炸應(yīng)力波傳播及衰減規(guī)律進(jìn)行分析。然而,隨著軍事上常規(guī)鉆地武器的精度越來越高,重復(fù)打擊已經(jīng)成為可能。另外,地下工程開挖也會導(dǎo)致巖石受到重復(fù)動載作用,導(dǎo)致巖體中的損傷不斷積累,從而影響爆炸應(yīng)力波在巖石中的傳播及衰減規(guī)律。為了提高普通長密錨桿支護(hù)洞室的抗爆能力,文獻(xiàn)[21]通過在錨桿端部增加短錨桿而設(shè)計(jì)端部加密錨桿支護(hù)形式。由于錨固洞室有可能受到重復(fù)動載的作用,為了進(jìn)一步提高端部加密錨固洞室受重復(fù)動載作用的抗爆能力,有必要研究端部加密錨固洞室在重復(fù)頂爆作用下應(yīng)力波傳播及衰減規(guī)律。
1 試驗(yàn)概況
1.1 試驗(yàn)?zāi)P图跋嗨埔?/p>
試驗(yàn)采用的裝置尺寸、測點(diǎn)和洞室布置的位置見圖1。試驗(yàn)中的相似條件按藥量的立方根比尺和弗魯?shù)拢‵roude)比尺進(jìn)行綜合考慮后確定,其中,巖體模擬材料、幾何比例系數(shù)和爆炸力相似系數(shù)的選取與文獻(xiàn)[21]一樣。
1.2 試驗(yàn)步驟
試驗(yàn)一共準(zhǔn)備5炮,但第4炮洞室已經(jīng)破壞,實(shí)際只進(jìn)行了4炮。當(dāng)巖體中炸藥埋置較淺時(shí),爆轟產(chǎn)物作用于藥包上覆巖體形成噴射物拋擲現(xiàn)象,部分爆炸能可能溢出地表,為了確保每次爆炸條件對巖體的影響可以忽略[22] ,每次比例埋深( h/W 1/3 )均為17.1 cm/g1/3 ,每次裝藥量見表1。
2 試驗(yàn)結(jié)果分析
2.1 應(yīng)力波傳播規(guī)律
圖2是M3和M4兩個(gè)洞室第1炮拱頂垂直壓應(yīng)力時(shí)程曲線圖。從圖中可以看出:爆心距越短,越先起跳,各條時(shí)程曲線形態(tài)相似,每根曲線由上升段和下降段兩部分組成。隨著爆心距的增加,上升時(shí)間越來越長,M3的P1~P3的上升時(shí)間分別從195、 325到545 us,M4的P4~P6的上升時(shí)間從240、360到515 us。以上規(guī)律符合應(yīng)力波時(shí)程曲線特征,說明所測曲線合理。
2.2 應(yīng)力波衰減規(guī)律
由表2中的第1炮和第2炮的拱頂垂直壓力峰值和比例距離關(guān)系繪制圖3和圖4。從圖中可以看出:兩個(gè)洞室每一炮的拱頂壓力峰值都隨比例距離的增加逐漸減小,符合一定的衰減規(guī)律,根據(jù)《常規(guī)武器防護(hù)設(shè)計(jì)原理》[6] 中給出的應(yīng)力波的衰減公式,可以擬合出相應(yīng) 的冪函數(shù)關(guān)系曲線,其中,公式中 R 是指爆心距即爆心到相應(yīng)測點(diǎn)的直線距離。根據(jù)文獻(xiàn)[14-15]可知,試驗(yàn)中采用的衰減指數(shù)為1.871 8, 擬合出來的兩炮所有應(yīng)力波衰減指數(shù)都小于未受擾動巖石的衰減指數(shù),這是因?yàn)閮蓚€(gè)洞室都通過錨桿支護(hù)加固洞室圍巖,圍巖的強(qiáng)度超過了原巖的強(qiáng)度,從而使經(jīng)過拱頂圍巖的應(yīng)力波能量衰減減慢。
從擬合曲線可以發(fā)現(xiàn),隨著比例距離增加,兩個(gè)洞室在相同的比例距離壓力差值逐漸減小,兩個(gè)錨固洞室最終在某比較大的比例距離處壓應(yīng)力峰值沒有差值。如果錨固區(qū)及其附近的比例距離小于壓應(yīng)力峰值相等處的比例距離,即使端部加密錨桿相對于普通長密錨桿對洞室錨固區(qū)的抗動強(qiáng)度有所提高,也有可能出現(xiàn)端部加密洞室的抗爆能力得不到提高。第1炮M4的3個(gè)監(jiān)測點(diǎn)都比M3相同比例距離的3個(gè)監(jiān)測點(diǎn)垂直壓應(yīng)力峰值分別大32.4%、26.8%、28.9%,而第2炮M4洞室的3個(gè)監(jiān)測點(diǎn)分別比M3洞室相同比例距離的3個(gè)監(jiān)測點(diǎn)垂直壓應(yīng)力峰值小43.1%、28.6%、32.1%。這可能主要是由于第1炮的主要作用是壓實(shí),在壓實(shí)的過程中使得錨桿起到加固圍巖的作用,也使加固范圍之外的圍巖強(qiáng)度得到提高,尤其離加固范圍較近的巖石;由于端部加密錨桿支護(hù)比普通長密錨桿支護(hù)加固效果更好,即端部加密錨桿影響的巖石波阻抗較普通長密錨桿大,導(dǎo)致其應(yīng)力波強(qiáng)度增量更大,故第1炮的端部加密洞室較普通長密錨桿在相同比例距離應(yīng)力波強(qiáng)度要大。造成第2炮相同位置M4洞室的垂直壓應(yīng)力峰值比M3洞室小,有可能是由于第1炮的強(qiáng)度較小,在監(jiān)測范圍內(nèi)第1炮時(shí)M4密實(shí)效果比M3洞室好,M3洞室密實(shí)滯后M4洞室,第2炮作用時(shí)兩個(gè)洞室已開始由密實(shí)向損傷破壞轉(zhuǎn)變,而M3可能進(jìn)一步進(jìn)行密實(shí),并且M3洞室損傷滯后M4洞室。從第3炮開始,普通長密錨桿加固洞室的大部分壓力數(shù)據(jù)沒有測到,這主要是由于壓力過大而導(dǎo)致的(第3炮P3除外),這說明,在第3炮作用下,相同比例距離普通長密錨桿加固洞室受到的應(yīng)力波強(qiáng)度比端部加密錨桿加固洞室要大。從第1炮和第2炮的應(yīng)力波上升時(shí)間分析可以發(fā)現(xiàn),第2炮的應(yīng)力波上升時(shí)間均比第1炮應(yīng)力波上升時(shí)間短,進(jìn)一步證明拱頂在應(yīng)力波的作用下是先進(jìn)行壓密。
圖5和圖6分別是M3和M4所測到幾炮應(yīng)力衰減曲線圖。從圖中可以發(fā)現(xiàn):兩個(gè)洞室第2炮的衰減指數(shù)都比第1炮的衰減指數(shù)小,M3第2炮的衰減指數(shù)與第1炮衰減指數(shù)差不多,只小1.2%,M4第2炮的衰減指數(shù)比第1炮衰減指數(shù)減小了19.1%,這進(jìn)一步表明第1炮起到密實(shí)的作用,并且M4明顯比M3的加固效果好。圖6中M4洞室3炮的衰減指數(shù)分別為1.430、1.157、1.542,衰減指數(shù)隨著放炮的順序先減小后增加,這也說明了第1炮密實(shí)作用,從第2炮開始端部加密洞室頂部的巖石開始損傷。
圖7是端部加密錨固洞室根據(jù)4炮的比例距離繪制的拱頂垂直壓應(yīng)力峰值與比例距離的關(guān)系曲線,并利用冪函數(shù)擬合出P5和P6相應(yīng)的曲線,它們的衰減指數(shù)分別為1.572和1.483,這說明越離爆心近的點(diǎn)在相同的爆炸條件下?lián)p傷越嚴(yán)重,這也與實(shí)際一致。
在研究爆炸荷載對地下工程的影響時(shí),大家最關(guān)心是離地下結(jié)構(gòu)最近點(diǎn)的動載強(qiáng)度,其大小直接影響到地下工程的穩(wěn)定性和安全。圖8是離兩個(gè)加固洞室最近位置P3和P6測點(diǎn)與比例距離的關(guān)系曲線,從曲線中可以看出:在相同爆炸條件作用下,離加固范圍最近的測點(diǎn)所得壓應(yīng)力峰值衰減規(guī)律比較相近,P3和P6衰減指數(shù)分別為1.462、1.483,相差僅1.4%,并且壓應(yīng)力峰值大小也比較相近。
3 結(jié)論
通過抗爆模型試驗(yàn)研究端部加密錨桿加固洞室在重復(fù)頂爆作用下應(yīng)力波的傳播及衰減規(guī)律,得出以下結(jié)論:
1)隨著應(yīng)力波傳播,離爆心越近的測點(diǎn)越早起跳;所有的曲線規(guī)律性比較相似,每根曲線主要由上升和下降兩個(gè)階段組成,并且上升時(shí)間比下降時(shí)間短;隨著爆心距的增加,上升時(shí)間越來越長。
2)兩個(gè)洞室每一炮的拱頂壓力峰值隨著比例距離的增加成冪函數(shù)逐漸衰減,并擬合出相應(yīng)的冪函數(shù)曲線。兩炮所擬合的應(yīng)力波衰減指數(shù)都小于未受擾動巖石的衰減指數(shù)。
3)在相同的爆炸條件作用下,隨著比例距離增加,兩個(gè)洞室在相同的比例距離時(shí)壓力差值逐漸減小。兩個(gè)洞室受到爆炸應(yīng)力波作用時(shí),由于應(yīng)力波主要先對錨固區(qū)附近的巖石進(jìn)行密實(shí),然后不斷損傷破壞,造成端部加密錨桿加固洞室相同比例距離峰值壓力比普通長密錨桿加固洞室峰值壓力先大后小。
4)在相同的爆炸條件作用下,端部加密錨桿加固洞室與普通長密錨桿加固洞室離加固范圍最近測點(diǎn)的壓應(yīng)力峰值衰減規(guī)律比較相近,壓應(yīng)力峰值大小也比較相近。
參考文獻(xiàn):
[1] ???黃理興.巖石動力學(xué)研究成就與趨勢[J].巖土力學(xué),2011,32(10):2889-2900.
HUANG L X. Development and new achievements of rock dynamics in China [J]. Rock and Soil Mechanics, 2011, 32(10): 2889-2900. (in Chinese)
[2] ??胡剛,郝傳波,景海河. 爆炸作用下巖石介質(zhì)應(yīng)力波傳播規(guī)律研究[J]. 煤炭學(xué)報(bào),2001,26(3):270-273.
HU G, HAO C B, JING H H. Study on the laws of stress wave propagation in rock barunder blasting loading [J]. Journal of China Coal Society, 2001, 26(3): 270-273. (in Chinese)
[3] ??王占江, 李孝蘭, 戈琳, 等. 花崗巖中化爆的自由場應(yīng)力波傳播規(guī)律分析[J]. 巖石力學(xué)與工程學(xué)報(bào), 2003,22(11): 1827-1831.
WANG Z J, LI X L, GE L, et al. Free-field stress wave propagation induced by underground chemical explosion in granite [J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(11): 1827-1831. (in Chinese)
[4] ??何翔,吳祥云,任輝啟,等. 石灰?guī)r中爆炸成坑和地沖擊傳播規(guī)律的試驗(yàn)研究[J]. 巖石力學(xué)與工程學(xué)報(bào),2004,23(5):725-729.
HE X, WU X Y, REN H Q, et al. Testing study on crater formed by explosion and propagation laws of ground shock in limestone [J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(5): 725-729.(in Chinese)
[5] ??左魁,張繼春,王啟睿,等. 重復(fù)爆炸條件下巖石介質(zhì)破壞效應(yīng)試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2008, 27(Sup1): 2675-2680.
ZUO K, ZHANG J C, WANG Q R, et al. Experimental research on rock breakage effect under repeated explosions [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(Sup1): 2675-2680. (in Chinese)
[6] ??美國陸軍水道試驗(yàn)站. 常規(guī)武器防護(hù)設(shè)計(jì)原理[M]. 方秦,吳平安,張育林,等,譯. 南京:中國人民解放軍工程兵工程學(xué)院,1997:57-59.
American army waterway experimental station. Fundamentals of protective design for conventional weapons [M]. Translated by FANG Q, WU P A, ZHANG Y L, et al. Nanjing: Engineering Institute of Engineer Corps of PLA, 1997: 57-59. (in Chinese)
[7] ??陳文昭,劉夕奇,李斌. 巖體爆炸應(yīng)力波衰減規(guī)律的顆粒流數(shù)值模擬[J]. 南華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 30(1): 118-123.
CHEN W Z, LIU X Q, LI B. Numerical simulation of stress wave attenuation of rock [J]. Journal of University of South China (Science and Technology), 2016, 30(1): 118-123. (in Chinese)
[8] ?YANKELEVSKY ?D Z, KARINSKI Y S, FELDGUN V R. Re-examination of the shock wave's peak pressure attenuation in soils [J]. International Journal of Impact Engineering, 2011, 38(11): 864-881.
[9] ?FELDGUN ?V R, KARINSKI Y S, YANKELEVSKY D Z. The effect of an explosion in a tunnel on a neighboring buried structure [J]. Tunnelling and Underground Space Technology, 2014, 44(3): 42-55.
[10] ?PANDYA ?K S, KULKARNI M D, WARMAN A, et al. Simulation of stress wave attenuation in plain weave fabric composites during in-plane ballistic impact [J]. Composite Structures, 2017, 160: 748-757.
[11] ??李新平,董千,劉婷婷,等. 不同地應(yīng)力下爆炸應(yīng)力波在節(jié)理巖體中傳播規(guī)律模型試驗(yàn)研究[J]. 巖石力學(xué)與工程學(xué)報(bào),2016,35(11): 2188-2196.
LI X P, DONG Q, LIU T T, et al. Model test on propagation of blasting stress wave in jointed rock mass under different in-situ stresses [J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(11): 2188-2196. (in Chinese)
[12] ??李新平,趙航,羅憶,等. 深部裂隙巖體中彈性波傳播與衰減規(guī)律試驗(yàn)研究[J]. 巖石力學(xué)與工程學(xué)報(bào),2015,34(11):2319-2326.
LI X P, ZHAO H, LUO Y, et al. Experimental study of propagation and attenuation of elastic wave in deep rock mass with joints [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(11): 2319-2326. (in Chinese)
[13] ?FAN ?L F, SUN H Y. Seismic wave propagation through an in-situ stressed rock mass [J]. Journal of Applied Geophysics, 2015, 121(1): 13-20.
[14] ??俞縉, 錢七虎, 趙曉豹.巖體結(jié)構(gòu)面對應(yīng)力波傳播規(guī)律影響的研究進(jìn)展[J].兵工學(xué)報(bào), 2009, 30(Sup2): 308-316.
YU J, QIAN Q H, ZHAO X B. Research progress on effects of structural planes of rock mass on stress wave propagation law [J]. Acta Armamentarii, 2009, 30(Sup2): 308-316. (in Chinese)
[15] ??范新,王明洋,施存程. 初始應(yīng)力對應(yīng)力波傳播及塊體運(yùn)動規(guī)律影響研究[J]. 巖石力學(xué)與工程學(xué)報(bào),2009, 28(Sup2): 3442-3446.
FAN X, WANG M Y, SHI C C. Study on effects of initial stress on stress wave propagation and block movement law [J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(Sup2): 3442-3446. (in Chinese)
[16] ??王光勇,顧金才,陳安敏,等.錨固洞室在頂爆作用下破壞形式及破壞過程研究[J].巖土工程學(xué)報(bào),2015, 37(8): 1381-1389.
WANG G Y, GU J C, CHEN A M, et al. Failure modes and process of tunnels reinforced by rockbolts under top explosion [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1381-1389. (in Chinese)
[17] ??沈俊,張向陽,陳安敏,等.爆炸應(yīng)力波在洞室圍巖中的分布及洞庫穩(wěn)定性研究[J].現(xiàn)代隧道技術(shù),2014, 51(5): 55-60.
SHEN J, ZHANG X Y, CHEN A M, et al. Distribution of an explosive stress wave in surrounding rock and the relevant stability of an underground cavern [J]. Modern Tunnelling Technology, 2014, 51(5): 55-60. (in Chinese)
[18] ??徐干成,袁偉澤,顧金才,等. 地下洞庫圍巖外加固抗炸彈爆炸性能研究[J]. 巖石力學(xué)與工程學(xué)報(bào),2015, 34(9): 1767-1776.
XU G C, YUAN W Z, GU J C, et al. Explosive resistivity of anchored cavern surface rock [J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1767-1776. (in Chinese)
[19] ?CHANG ?X, WANG G Y, TANG C N, et al. Dynamic behavior of cement-mortar cavern reinforced by bars [J]. Engineering Failure Analysis, 2015, 55: 343-354.
[20] ??王亞軍,陳太林,郭常穎,等. 外交叉錨固洞室抗爆性能數(shù)值模擬[J]. 地下空間與工程學(xué)報(bào),2015, 11(3): 680-686.
WANG Y J, CHEN T L, GUO C Y, et al. Numerical simulation of the anti-explosion performance of underground caverns reinforced by external cross-anchoring [J]. Chinese Journal of Underground Space and Engineering, 2015, 11(3): 680-686. (in Chinese)
[21] ??王光勇,顧金才,陳安敏,等.端部消波和加密錨桿支護(hù)洞室抗爆能力模型試驗(yàn)研究[J].巖石力學(xué)與工程學(xué)報(bào),2010, 29(1): 51-58.
WANG G Y, GU J C, CHEN A M, et al. Model test research on anti-explosion capacity of underground openings with end weakened by holes and anchor top reinforced by dense rock bolts [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 51-58. (in Chinese)
[22] ??王維國,陳育民,張意江,等.飽和砂土中淺埋單藥包爆炸液化特性分析[J].巖土工程學(xué)報(bào), 2016, 38(2): 355-361.
WANG W G, CHEN Y M, ZHANG Y J, et al. Characteristics of liquefaction induced by single shallow-buried detonation in saturated sand [J]. Chinese Journal of Geotechnical Engineering, 2016, 38(2): 355-361. (in Chinese)