国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

分?jǐn)?shù)導(dǎo)數(shù)Kelvin粘彈性土中管樁的扭轉(zhuǎn)振動(dòng)

2018-01-08 09:19劉林超閆啟方牛潔楠
土木建筑與環(huán)境工程 2018年6期

劉林超 閆啟方 牛潔楠

摘 要:將管樁樁周土和樁芯土均看作粘彈性介質(zhì),同時(shí)運(yùn)用分?jǐn)?shù)導(dǎo)數(shù)Kelvin粘彈性本構(gòu)模型描述樁周土和樁芯土的應(yīng)力 應(yīng)變關(guān)系。僅考慮樁周土和樁芯土的環(huán)向位移,通過(guò)Fourier變換和分離變量法求解了樁周和樁芯分?jǐn)?shù)導(dǎo)數(shù)Kelvin粘彈性土的扭轉(zhuǎn)振動(dòng)。考慮樁周土和樁芯土對(duì)管樁的作用力,建立了分?jǐn)?shù)導(dǎo)數(shù)Kelvin粘彈性土中管樁的扭轉(zhuǎn)振動(dòng)方程,通過(guò)求解管樁的扭轉(zhuǎn)振動(dòng)得到了頻率域內(nèi)管樁樁頂?shù)呐まD(zhuǎn)復(fù)剛度。結(jié)果表明:樁周土本構(gòu)模型參數(shù) α ?1和 T b1 對(duì)管樁的扭轉(zhuǎn)振動(dòng)有一定的影響,而樁芯土的本構(gòu)模型參數(shù) α ?2和 T b2 對(duì)管樁扭轉(zhuǎn)振動(dòng)的影響與頻率有關(guān);樁芯土與樁周土剪切模量比 μ 小于1且 μ 較大時(shí),扭轉(zhuǎn)復(fù)剛度實(shí)部和虛部隨頻率變化曲線波動(dòng)較大,而 μ 大于1時(shí)其對(duì)管樁扭轉(zhuǎn)振動(dòng)的影響很小;管樁壁厚、長(zhǎng)徑比和管樁與土體的剪切模量比 G ?p對(duì)管樁的扭轉(zhuǎn)影響較大。

關(guān)鍵詞: 粘彈性;分?jǐn)?shù)導(dǎo)數(shù);Fourier變換;扭轉(zhuǎn)振動(dòng);復(fù)剛度

中圖分類號(hào):TU473.16

?文獻(xiàn)標(biāo)志碼:A? 文章編號(hào):1674-4764(2018)06-0046-07

Torsional vibration of a pipe pile in soil described by fractional

derivative Kelvin viscoelastic model

Liu Linchao,Yan Qifang,Niu Jienan

(School of Architecture and Civil Engineering, Xinyang Normal University, Xinyang 464000, Henan, P.R.China)

Abstract:The soil around the pipe pile and pile core soil are regarded as viscoelastic medium, and the stress-strain relationship for them are described by fractional derivative Kelvin viscoelastic constitutive model. The torsional vibrations are solved by Fourier transformation and separation variable method by considering the circumferential displacement of the soil only. Considering the forces acting on the pipe piles, the torsional vibration in the fractional derivative Kelvin viscoelastic soil is established. The torsional complex stiffness at pipe pile head is obtained by solving the torsional vibration of the pipe pile. The results show that the model soil parameters ?α ?1 and ?T ?b1 ?have certain influence on the torsional vibration while the influence of the pile core soil model parameters ?α ?2 and ?T ?b2 ?is related to frequency. The curves of real and imaginary parts of torsional complex stiffness with frequency fluctuate more greatly when the shear modulus ratio ??μ ?is larger and ??μ <1, and the influence of shear modulus ratio ??μ ?on the torsional vibration of pipe pile is very small when ??μ >1. Wall thickness, length diameter ratio of pipe pile, as well as the shear modulus of pipe pile and soil have great influence on the torsional vibration of pipe pile.

Keywords:viscoelastic; fractional derivative; Fourier transform; torsional vibration; complex stiffness

樁土動(dòng)力相互作用問(wèn)題作為一個(gè)研究熱點(diǎn)得到了眾多學(xué)者的關(guān)注和重視,但無(wú)論是研究實(shí)芯樁還是管樁的振動(dòng)特性,對(duì)土體本構(gòu)模型的選取十分關(guān)鍵,這關(guān)系到土體力學(xué)行為的描述與實(shí)際工況的符合程度,通常情況是將土體視為彈性或粘彈性介質(zhì),將土體視為彈性介質(zhì),Novak等[1] 和Nogami等[2] 較早地對(duì)實(shí)芯樁的振動(dòng)進(jìn)行了研究,王國(guó)才等[3] 借助于積分方程研究了均質(zhì)彈性地基中單樁的扭轉(zhuǎn)振動(dòng)問(wèn)題,Lü等[4] 利用Rayleigh-Love桿理論和樁土摩擦模型對(duì)層狀土中樁的縱向振動(dòng)進(jìn)行了研究,劉林超等[5] 將樁周土、樁芯土和管樁視為軸對(duì)稱模型研究了彈性土中管樁的縱向振動(dòng),欒魯寶等[6] 在考慮樁體剪切變形的情況下得到了PCC樁水平振動(dòng)響應(yīng)的解析解,吳文兵等[7] 采用Rayleigh-Love動(dòng)力桿件模型和附加質(zhì)量模型建立了樁側(cè)土 管樁 土塞系統(tǒng)的縱向振動(dòng)控制方程,同時(shí),運(yùn)用積分變換和阻抗函數(shù)傳遞技術(shù)給出了頻域內(nèi)任意荷載形式下管樁樁頂速度響應(yīng)的解析解;將土體視為粘彈性介質(zhì),Novak[8] 給出了樁基的動(dòng)力剛度和阻尼,Yao等[9] 研究了粘彈性Winkler地基中單樁在水平循環(huán)荷載作用下的振動(dòng)問(wèn)題,周緒紅等[10] 在考慮軸力作用的情況下研究了粘彈性介質(zhì)中樁基的動(dòng)力問(wèn)題,楊驍?shù)萚11] 采用三維軸對(duì)稱模型得到了粘彈性端承樁的軸對(duì)稱解析解,鄭長(zhǎng)杰等[12-13] 對(duì)單相和飽和粘彈性土中大直徑管樁的水平振動(dòng)進(jìn)行了研究,吳文斌等[14] 利用虛土樁模型研究了均質(zhì)粘彈性地基中樁土縱向耦合振動(dòng)問(wèn)題。需要指出,將樁周土或樁芯土視為彈性介質(zhì)則不能考慮土體的粘性性質(zhì),將土視為粘彈性介質(zhì)較為符合工程實(shí)際,但需選擇合理正確的土體粘彈性本構(gòu)模型。

當(dāng)將樁周土或樁芯土視為粘彈性介質(zhì)時(shí),合理的本構(gòu)關(guān)系對(duì)于土體力學(xué)行為的準(zhǔn)確描述至關(guān)重要。目前,對(duì)于粘彈性材料應(yīng)力 應(yīng)變關(guān)系的刻畫(huà)主要是采用經(jīng)典的粘彈性模型。然而,對(duì)于經(jīng)典的粘彈性本構(gòu)模型,整數(shù)階微分算子的性質(zhì)決定其蠕變?nèi)崃亢退沙谀A恳话阒荒芡ㄟ^(guò)指數(shù)函數(shù)的組合得到,且通過(guò)取消高階的微分項(xiàng)或者降低本構(gòu)模型的應(yīng)用范圍來(lái)精確擬合實(shí)驗(yàn)數(shù)據(jù)[15] 。隨著分?jǐn)?shù)階微分和分?jǐn)?shù)階積分的發(fā)展,借助于分?jǐn)?shù)導(dǎo)數(shù)理論建立起來(lái)的分?jǐn)?shù)導(dǎo)數(shù)粘彈性本構(gòu)模型由于具有確定模型需要較少的實(shí)驗(yàn)參數(shù)和能在較寬的頻率范圍內(nèi)擬 合材料的力學(xué)行為而得到了廣泛的應(yīng)用。將樁周土體視為粘彈性介質(zhì)并采用分?jǐn)?shù)導(dǎo)數(shù)粘彈性模型來(lái)描述其應(yīng)力 應(yīng)變關(guān)系,劉林超等[16-17] 、聞敏杰等[18] 研究了實(shí)芯樁的水平、豎向和扭轉(zhuǎn)振動(dòng)問(wèn)題。本文將樁周土和樁芯土都利用分?jǐn)?shù)導(dǎo)數(shù)Kelvin粘彈性本構(gòu)模型來(lái)描述,研究分?jǐn)?shù)導(dǎo)數(shù)Klevin粘彈性土中管樁的扭轉(zhuǎn)振動(dòng)特性。

1 數(shù)學(xué)模型與土體運(yùn)動(dòng)方程

圖1為粘彈性土與端承管樁的動(dòng)力相互作用模型,管樁樁頂作用一集中扭轉(zhuǎn)荷載 T ( t ),粘彈性土層厚度和管樁長(zhǎng)度均為 H ,管樁外半徑和內(nèi)半徑分別為 r ?1和 r ?2。為了建立管樁與粘彈性土體的動(dòng)力相互作用模型,假設(shè)管樁樁芯土體和樁周土體均為粘彈性土體,且樁芯土和樁周土均與管樁完全接觸;管樁底部為基巖,管樁底端為固定端;管樁、樁周土和樁芯土均為小變形。

4 數(shù)值算例分析與討論

為了研究分?jǐn)?shù)導(dǎo)數(shù)Kelvin粘彈性土中管樁的扭轉(zhuǎn)振動(dòng)響應(yīng)特性,根據(jù)式(35)得到的管樁樁頂扭轉(zhuǎn)復(fù)剛度編寫(xiě)計(jì)算程序并進(jìn)行數(shù)值分析,圖2—圖11為 ;

根據(jù)式(35)得到的管樁樁頂扭轉(zhuǎn)復(fù)剛度,圖3~圖10為通過(guò)數(shù)值算例得到的管樁樁頂扭轉(zhuǎn)復(fù)剛度實(shí)部和虛部隨頻率變化的曲線,圖中相關(guān)參量未作說(shuō)明時(shí)取值為 :管樁與樁周土剪切模量比 G ?p=2 000,分?jǐn)?shù)導(dǎo)數(shù)階數(shù) α ?1= α ?2=0.5,管樁長(zhǎng)徑比 δ =20,管樁與樁周土密度比 ρ ?p/ ρ ?1=2.0,土體分?jǐn)?shù)導(dǎo)數(shù)本構(gòu)模型參數(shù) T a1 = T a2 =2.0, T b1 = T b2 =4.0,樁芯土與樁周土剪切模量比 μ =1.0,以上參量的取值是在樁身混凝土和土體實(shí)際常用參量值的基礎(chǔ)上確定的,土體分?jǐn)?shù)導(dǎo)數(shù)模型參數(shù)可以通過(guò)實(shí)驗(yàn)數(shù)據(jù)擬合的方法得到[22] 。圖2給出了管樁扭轉(zhuǎn)振動(dòng)的分?jǐn)?shù)導(dǎo)數(shù)粘彈性解、經(jīng)典粘彈性解和彈性解的對(duì)比,可以看出,分?jǐn)?shù)導(dǎo)數(shù)粘彈性解可退化到經(jīng)典粘彈性和彈性解的情 況,間接說(shuō)明采用分?jǐn)?shù)導(dǎo)數(shù)粘彈性模型分析管樁扭轉(zhuǎn)振動(dòng)的可行性和正確性,且彈性解的扭轉(zhuǎn)復(fù)剛度要較粘彈性解大。圖3和圖4分別給出了樁周土和樁芯土本構(gòu)關(guān)系中分?jǐn)?shù)導(dǎo)數(shù)的階數(shù) α ?1、 α ?2不同時(shí)對(duì)管樁扭轉(zhuǎn)復(fù)剛度的影響,可以看出,樁周土分?jǐn)?shù)導(dǎo)數(shù)的階數(shù) α ?1對(duì)扭轉(zhuǎn)復(fù)剛度的實(shí)部和虛部的影響相對(duì)較大,且分?jǐn)?shù)導(dǎo)數(shù)的階數(shù)越大,扭轉(zhuǎn)復(fù)剛度實(shí)部和虛部隨頻率變化曲線的峰值越小;而樁芯土分?jǐn)?shù)導(dǎo)數(shù)的階數(shù) α ?2對(duì)扭轉(zhuǎn)復(fù)剛度的影響與頻率有關(guān),頻率較低時(shí) α ?2幾乎沒(méi)有影響,而高頻時(shí)有一定的影響。圖5和圖6給出了參數(shù) T b1 和 T b2 不同時(shí)復(fù)剛度隨頻率的變化曲線, T b1 和 T b2 對(duì)扭轉(zhuǎn)復(fù)剛度的影響與分?jǐn)?shù)導(dǎo)數(shù)的階數(shù) α ?1和 α ?2的影響規(guī)律類似,即 T b1 的影響較大且 T b1 越大扭轉(zhuǎn)復(fù)剛度的實(shí)部和虛部隨頻率變化曲線的峰值越小,而 T b2 的影 響與頻率有關(guān)。由圖7和圖8可知,當(dāng)樁芯土與樁周土剪切模量比 μ 大于1時(shí),其對(duì)管樁樁頂扭轉(zhuǎn)復(fù)剛度幾乎沒(méi)有影響,這可能是因?yàn)闃缎就僚c管樁接觸面相對(duì)較小,導(dǎo)致增大樁芯土剪切模量時(shí)其對(duì)管樁的剪切作用力增大不明顯;當(dāng) μ 小于1且較小時(shí)剪切模量比對(duì)管樁復(fù)剛度有一定的影響但不是太大,但當(dāng) μ 較大時(shí)扭轉(zhuǎn)復(fù)剛度實(shí)部和虛部隨頻率變化曲線波動(dòng)則較大。管樁壁厚對(duì)扭轉(zhuǎn)復(fù)剛度的影響較大(如圖9),隨著樁周內(nèi)半徑的增大,即管樁壁厚的減小,扭轉(zhuǎn)復(fù)剛度實(shí)部和虛部隨頻率變化曲線峰值對(duì)應(yīng)的頻率越小,曲線波動(dòng)越大。與實(shí)芯樁一樣,管樁長(zhǎng)徑比(圖10)和管樁與土體的剪切模量比(圖11)對(duì)管樁的影響也較大,管樁長(zhǎng)徑比越大復(fù)剛度的實(shí)部和虛部越小,樁長(zhǎng)較長(zhǎng)時(shí)長(zhǎng)徑比的影響程度將減小;隨著管樁與土體剪切模量比的增大,管樁樁頂復(fù)剛度實(shí)部和虛部越大,這可能是因?yàn)楣軜赌A枯^大時(shí)管樁抗扭剛度大,管樁扭轉(zhuǎn)角小而導(dǎo)致復(fù)剛度增大。

?? 5 結(jié)論

考慮樁周土和樁芯土的粘彈性特性,并借助分?jǐn)?shù)導(dǎo)數(shù)Kelvin粘彈性模型描述土體的應(yīng)力 應(yīng)變關(guān)系,研究了分?jǐn)?shù)導(dǎo)數(shù)粘彈性土中管樁的扭轉(zhuǎn)振動(dòng)。得到以下主要結(jié)論:

1)樁周土本構(gòu)模型參數(shù) α ?1和 T b1 對(duì)管樁的振動(dòng)的影較大,而樁芯土本構(gòu)模型參數(shù) T b2 和和 α ?2對(duì)管樁的扭轉(zhuǎn)振動(dòng)的影響與頻率有關(guān),即高頻時(shí)有影響低頻時(shí)幾乎沒(méi)有影響。

2)樁芯土與樁周土剪切模量比 μ 大于1和小于1時(shí)對(duì)管樁樁頂扭轉(zhuǎn)復(fù)剛度的影響規(guī)律不同,當(dāng)樁芯土剪切模量較小時(shí)需要考慮樁周土和樁芯土力學(xué)性質(zhì)的差異的影響。

3)管樁內(nèi)外半徑比和長(zhǎng)徑比等幾何特性和樁土模量比等力學(xué)特性對(duì)管樁扭轉(zhuǎn)振動(dòng)影響較大,需要重點(diǎn)考慮。

參考文獻(xiàn):

[1] ??NOVAK ?M, ABOULELLA F. Impedance functions of piles in layered media [J]. Journal of Engineering Mechanical Division, 1978, 104(3): 643-661.

[2] ?NOGAMI ?T,KONAGAI K. Time domain flexural response of dynamically loaded single pile? [J]. Journal of Engineering Mechanics, 1988, 114(9): 1512-1525.

[3] ??王國(guó)才,王哲,陳龍珠,等.均勻彈性地基中單樁的扭轉(zhuǎn)振動(dòng)特性研究[J].巖土力學(xué),2008,29(11):3027-3036.

WANG G C,WANG Z,CHEN L Z,et al. Research on torsional oscillation characteristics of single pile embedded ?in isotropic elastic foundation[J]. Rock and Solil Mechanics,2008,29(11):3027-3036. (in Chinese)

[4] ?L ?S H,WANG K H,WU W B.Longitudinal vibration of pile in layered soil based on Rayleigh-Love rod theory and fictitious soil-pile model[J]. Journal of Central South University,2015,22(5):1909-1918.

[5] ??劉林超,閆啟方,王頌,等. 基于軸對(duì)稱模型的管樁豎向振動(dòng)研究[J].巖土力學(xué),2016,37(1):119-125.

LIU L C,YAN Q F,WANG S,et al. Vertical vibration of pipe pile based on axisymmetric model [J].Rock and Soil Mechanics, 2016,37(1):119-125.(in Chinese)

[6] ??欒魯寶,丁選明, 劉漢龍,等. 考慮剪切變形的PCC樁水平振動(dòng)響應(yīng)解析解[J]. 巖石力學(xué)與工程學(xué)報(bào),2016, 35(11):2345-2358.

LUAN L B,DING X M,LIU H L,et al.Analytical solutions to lateral dynamic response of PCC piles consid- ering shear deformation [J]. Chinese Journal of Rock Mechanics and Engineering,2016,35(11): 2345-2358.(in Chinese)

[7] ??吳文兵,鄧國(guó)棟,張家生,等.考慮橫向慣性效應(yīng)時(shí)樁側(cè)土-管樁-土塞縱向耦合振動(dòng)特性研究[J].巖土力學(xué), 2017,38(4):993-1001.

WU W B,DENG G D,ZHANG J S,et al. Vertical dynamic response of soil surrounding pipe-pile- soil plug by considering lateral inertial effect[J].Rock and Soil Mechanics, 2017,38(4): 993-1001.(in Chinese)

[8] ?NOVAK ?M. Dynamic stiffness and damping of piles [J]. Canadian Geotechnical Journal, 1974, 11(4): 574-598.

[9] ?YAO ?S, NOGAMI T. Lateral cyclic response of a pile in viscoelastic Winkler subgrade[J]. Journal of Engineering Mechanics, 1994, 120(4): 758-775.

[10] ??周緒紅,蔣建國(guó),皺銀生.粘彈性介質(zhì)中考慮軸力作用時(shí)樁的動(dòng)力分析[J].土木工程學(xué)報(bào),2005,38(2):87-91.

ZHOU X H, JIANG G, ZHOU Y S. Dynamic analysis of piles under axial loading and lateral dynamic force in viscoelastic medium [J]. China Civil Engineering Journal, 2005,38(2):87-91.(in Chinese)

[11] ??楊驍,劉慧,蔡雪瓊.端承粘彈性樁縱向振動(dòng)的軸對(duì)稱解析解[J].固體力學(xué)學(xué)報(bào),2012,33(4):423-430.

YANG X, LIU H,CAI X Q.Axisymmetrical analytical solution for vertical vibration of end-bearing viscoelastic pile [J].Chinese Journal of Solid Mechanics, 2012,33(4): 423-430.(in Chinese)

[12] ??鄭長(zhǎng)杰,劉漢龍,丁選明,等.飽和黏性土地基中現(xiàn)澆大直徑管樁水平振動(dòng)響應(yīng)解析解[J].巖土工程學(xué)報(bào),2014,36(8): 1447-1454.

ZHENG C J,LIU H L,DING X M, et al. Analytical solution of horizontal vibration of cast-in-place large- diameter pipe piles in saturated soils [J]. Chinese Journal of Geotechnical Engineering, 2014,36(8):144-1454.(in Chinese)

[13] ??鄭長(zhǎng)杰,丁選明,欒魯寶.黏彈性地基中管樁水平動(dòng)力特性分析[J].巖土力學(xué),2017,38(1):1-8.

ZHANG Z Q,DING X M,LUAN L B. Study on the lateral dynamic response of a pipe pile in viscoelastic soil layer [J].Rock and Soil Mechanics, 2017, 38(1):1-8.(in Chinese)

[14] ??吳文兵,蔣國(guó)盛,鄧國(guó)棟,等.黏彈性地基中基于虛土樁模型的樁頂縱向振動(dòng)阻抗研究[J].振動(dòng)與沖擊,2015, 34(7):192-203.

WU W B,JIANG G S,DENG G D,et al.Vertical dynamic impedance of pile embedded in viscoelastic soil based on fictitious soil pile model[J]. Journal of Vibration and Shock,2015,34(7):192-203.(in Chinese)

[15] ??劉林超,張衛(wèi).具有分?jǐn)?shù)Kelvin模型的粘彈性巖體中水平圓形硐室的變形特性[J].巖土力學(xué),2005,26(2):287- 289.

LIU L C,ZHANG W.The deformation proprieties of horizontal round adits in viscoelastic rocks by fractional Kelvin model [J].Rock and soil Mechanicals, 2005,26(2): 287-289.(in Chinese)

[16] ???劉林超,閆啟方.分?jǐn)?shù)導(dǎo)數(shù)模型描述的粘彈性土層中樁基水平振動(dòng)研究[J].工程力學(xué),2011,28(12): 139-145.

LIU L C,YAN Q F. Lateral vibration of single pile in viscoelastic soil described by fractional derivative model [J]. Engineering Mechanicals, 2011,28(12):139-145.(in Chinese)

[17] ??劉林超,楊驍.分?jǐn)?shù)導(dǎo)數(shù)模型描述的飽和土樁縱向振動(dòng)分析[J].巖土力學(xué),2011,32(2):526-532.

LIU L C,YANG X. Analysis of vertical vibrations of a pile in saturated soil described by fractional derivative model[J].Rock and Soil Mechanics,2011,32(2):526-532.(in Chinese)

[18] ??聞敏杰,徐金明,李強(qiáng).飽和黏彈性土中端承樁扭轉(zhuǎn)振動(dòng)的對(duì)比分析[J].浙江大學(xué)學(xué)報(bào)(工學(xué)版),2013,47(12): 2146-2152.

WEN M J,XU J M,LI Q. Comparative analysis for torsional vibration of an end-bearing pile in saturated viscoelastic soil [J].Journal of Zhejiang University, 2013, 47(12): 2146- 2152.(in Chinese)

[19] ?TIMOSHENKO ?S? P. Theory of elasticity [M].New York: McGraw- Hill Book, 1934.

[20] ?BAGLEY ?R L, TORVIK P J. A theoretical basis for the application of fractional calculus to viscoelasticity[J]. Journal of Rheology,1983,27(3):201-210.

[21] ?MILLER ?K S, ROSS B. An introduction to the fractional calculus and fractional differential equations [M].New York: Wiley,1993.

[22] ??孫海忠,張衛(wèi).一種分析軟土黏彈性的分?jǐn)?shù)導(dǎo)數(shù)開(kāi)爾文模型[J].巖土力學(xué),2007,28(9):1983-1986.

SUN H Z, ZHANG W.Analysis of soft soil with viscoelastic fractional derivative Kelvin model [J]. Rock and Soil Mechanics, 2007,28(9):1983-1986.(in Chinese)

玛多县| 横峰县| 正阳县| 泰宁县| 阳高县| 曲靖市| 宝应县| 育儿| 双峰县| 晴隆县| 阿拉善盟| 永州市| 景洪市| 兰坪| 金秀| 沙湾县| 浪卡子县| 香港| 辽阳市| 扶余县| 姜堰市| 望都县| 陆良县| 郎溪县| 堆龙德庆县| 益阳市| 屏边| 兴国县| 通辽市| 古田县| 赤水市| 内丘县| 洛宁县| 宜州市| 绥中县| 镇平县| 湖北省| 姚安县| 武冈市| 淮滨县| 嵊州市|