王梓驍,羅風(fēng)光,李 斌,胡杭聽,楊帥龍
(華中科技大學(xué) 光學(xué)與電子信息學(xué)院, 武漢 430074)
基于脈沖位置調(diào)制系統(tǒng)的偏振模色散監(jiān)測方案
王梓驍,羅風(fēng)光*,李 斌,胡杭聽,楊帥龍
(華中科技大學(xué) 光學(xué)與電子信息學(xué)院, 武漢 430074)
為了實(shí)現(xiàn)對(duì)脈沖位置調(diào)制傳輸系統(tǒng)光纖信道中偏振模色散的動(dòng)態(tài)監(jiān)測,提出了一種新型偏振膜色散監(jiān)測方案,并基于監(jiān)測原理構(gòu)建了數(shù)學(xué)模型。該方案基于單邊帶內(nèi)不同偏振信號(hào)相位差實(shí)現(xiàn),具有結(jié)構(gòu)簡單、易于實(shí)現(xiàn)、成本低等優(yōu)點(diǎn)。結(jié)果表明,本方案可以實(shí)現(xiàn)對(duì)光信號(hào)的差分群延時(shí)與偏振態(tài)的動(dòng)態(tài)監(jiān)測,即當(dāng)差分群延時(shí)在0ps~100ps范圍內(nèi)時(shí),可準(zhǔn)確監(jiān)測;同時(shí)證實(shí)了其與信號(hào)速率關(guān)系較小,能夠適應(yīng)不同速率的系統(tǒng),且可對(duì)脈沖位置調(diào)制傳輸系統(tǒng)的偏振模色散進(jìn)行實(shí)時(shí)動(dòng)態(tài)監(jiān)測。該方案是一個(gè)高效可行的偏振模色散監(jiān)測方案。
光通信;偏振膜色散監(jiān)測;光纖信道;單邊帶;相位差
信息時(shí)代的到來,使得人們對(duì)于高速通信系統(tǒng)的要求越來越迫切。光通信系統(tǒng)憑借其高速率、大容量、低損耗、抗干擾、保密性強(qiáng)和材料來源充足等優(yōu)勢,在通信領(lǐng)域得到廣泛應(yīng)用。然而在超高速光傳輸鏈路中,偏振模色散(polarization mode dispersion,PMD)效應(yīng)極大地限制了系統(tǒng)性能[1]。傳統(tǒng)的PMD監(jiān)測方案無法滿足高速傳輸鏈路的要求[2],因此光性能監(jiān)測成為一個(gè)熱點(diǎn)問題[3-6]。 PMD監(jiān)測解決方案可以分為主動(dòng)式和被動(dòng)式[7]。被動(dòng)式主要是采用特殊的傳輸方式和高級(jí)調(diào)制格式等方式,提高系統(tǒng)的PMD容限,以盡量降低PMD效應(yīng)對(duì)系統(tǒng)性能的影響;但被動(dòng)式方案難以起到良好的監(jiān)測效果,故而研究者多采用主動(dòng)式補(bǔ)償方案。
由于PMD是隨機(jī)變化的,并且對(duì)于環(huán)境變化十分敏感,因此必須進(jìn)行動(dòng)態(tài)補(bǔ)償才能達(dá)到理想的效果。對(duì)實(shí)時(shí)的PMD動(dòng)態(tài)監(jiān)測的研究具有重要的意義。大多PMD補(bǔ)償方案都是基于反饋調(diào)節(jié)以實(shí)現(xiàn)動(dòng)態(tài)的補(bǔ)償,這使得PMD補(bǔ)償變得異常復(fù)雜?;诜答佌{(diào)節(jié)補(bǔ)償?shù)腜MD補(bǔ)償方案主要有:頻譜分析法、眼圖法、相位差法、副載波導(dǎo)頻法等[8-13]。頻譜分析法分為單頻法和頻帶法,前者不適用于傳輸速率較高的傳輸系統(tǒng);后者通用性差,升級(jí)困難。眼圖法缺點(diǎn)是當(dāng)信號(hào)的誤比特率較低時(shí),對(duì)差分群延時(shí)探測的靈敏度不足,難以適應(yīng)高速鏈路下PMD監(jiān)測的要求。相位差法監(jiān)測范圍較小,對(duì)較大的PMD或者較小的PMD難以進(jìn)行有效監(jiān)測。副載波導(dǎo)頻法是基于性能最差的信道進(jìn)行補(bǔ)償,因此對(duì)于其它信道補(bǔ)償效果難以保證。
本文中研究的主要目的是進(jìn)行鏈路PMD實(shí)時(shí)監(jiān)測,以此給動(dòng)態(tài)補(bǔ)償提供補(bǔ)償[14-15]依據(jù)。因此作者提出了一種基于單邊帶頻譜內(nèi)不同偏振信號(hào)相位差的PMD監(jiān)測方案,針對(duì)脈沖位置調(diào)制(pulse position modulation,PPM)系統(tǒng)的1階PMD進(jìn)行實(shí)時(shí)監(jiān)測。仿真結(jié)果表明,該方案對(duì)于PMD的實(shí)時(shí)監(jiān)測,受鏈路速率的影響較小,適應(yīng)性較好,且該方案結(jié)構(gòu)簡單、對(duì)器件性能要求低、監(jiān)測范圍相對(duì)較廣、能有效降低PMD實(shí)時(shí)監(jiān)測的成本。
圖1為PMD對(duì)可調(diào)諧激光器[16]產(chǎn)生的光信號(hào)的脈沖影響示意圖。PMD會(huì)造成不同偏振信號(hào)間的時(shí)延,進(jìn)而使脈沖展寬,最終降低系統(tǒng)傳輸性能。在高速通信系統(tǒng)中,1階PMD效應(yīng)是造成的傳輸性能劣化的主要原因,因此本文中針對(duì)1階PMD效應(yīng)的監(jiān)測提出了一種有效的方案。PMD效應(yīng)對(duì)信號(hào)的影響主要是改變信號(hào)的相位值,通常情況下,會(huì)用光纖中不同偏振信號(hào)的群時(shí)延差來表示光纖中PMD的大小,即差分群延時(shí)(differential group delay, DGD)?;趩芜厧ьl譜內(nèi)不同偏振信號(hào)相位差的PMD監(jiān)測方案,其原理為通過計(jì)算不同偏振光信號(hào)的相位差值,以實(shí)現(xiàn)PMD監(jiān)測的目的。
Fig.1 The impact of PMD on optical signal
本文中所提出的監(jiān)測系統(tǒng)原理如圖2所示。首先通過馬赫-曾德爾調(diào)制器將產(chǎn)生的PPM調(diào)制信號(hào)調(diào)制到光載波上,然后使用PMD模擬器對(duì)信號(hào)加載DGD,以模擬PMD對(duì)信號(hào)的影響。再通過偏振分離器(polarizing beam splitter,PBS)分離出快軸(F軸)、慢軸(S軸)的光信號(hào),使信號(hào)被探測器接收。探測器輸出的電信號(hào)最終被分成兩路,分別與I路和Q路的本振射頻信號(hào)混頻,并通過低通濾波器 (low-pass filter,LPF)
Fig.2 PMD monitoring system for PPM signal
濾出下混頻信號(hào),最后經(jīng)模數(shù)轉(zhuǎn)換(analog to digital converter,ADC)后,將采樣數(shù)據(jù)輸入數(shù)字信號(hào)處理(digital signal processing,DSP)。通過DSP對(duì)信號(hào)進(jìn)行處理,最終計(jì)算出F軸偏振信號(hào)與S軸偏振信號(hào)的相位差Δφ。由于系統(tǒng)的DGD與Δφ線性相關(guān),因此,最終可以實(shí)現(xiàn)對(duì)PMD的監(jiān)測。
由PMD效應(yīng)所造成的不同偏振方向信號(hào)的相位差Δφ為[1]:
式中,ΔφS是慢軸信號(hào)與載波間的相位差,ΔφF是快軸信號(hào)與載波間的相位差,IIS是S軸電信號(hào)與I路本振射頻信號(hào)混頻后信號(hào)的幅值,IQS是S軸電信號(hào)與Q路本振射頻信號(hào)混頻后信號(hào)的幅值,IIF是F軸電信號(hào)與I路本振射頻信號(hào)混頻后信號(hào)的幅值,IQF是F軸電信號(hào)與Q路本振射頻信號(hào)混頻后信號(hào)的幅值。
基于OPTISYSTEM 14和MATLAB 2014a對(duì)本方案進(jìn)行仿真。仿真系統(tǒng)首先通過脈沖位置調(diào)制信號(hào)產(chǎn)生器生成PPM信號(hào),然后通過馬赫-曾德爾調(diào)制器(Mach-Zehnder modulator,MZM)將信號(hào)調(diào)制到光域上,產(chǎn)生調(diào)制光信號(hào)。調(diào)制光信號(hào)先通過摻鉺光纖放大器(erbium doped fiber amplifier,EDFA)實(shí)現(xiàn)增益,以應(yīng)對(duì)之后鏈路中的功率衰減,并摻入噪聲。然后通過PMD模擬器加載不同的差分群延時(shí)值,模擬PMD對(duì)光信號(hào)的影響。之后光信號(hào)通過可調(diào)光濾波器,選取對(duì)應(yīng)信道的單邊帶光譜。最后,可調(diào)光濾波器所濾出的光信號(hào),通過PBS來實(shí)現(xiàn)不同偏振信號(hào)的分離。分離后不同偏振的信號(hào)分別與本振射頻信號(hào)混頻,通過LPF濾出下混頻信號(hào),最后將采樣數(shù)據(jù)輸入MATLAB,計(jì)算出F軸偏振信號(hào)與S軸偏振信號(hào)的相位差Δφ。
10Gbit/s速率下仿真實(shí)驗(yàn)系統(tǒng)關(guān)鍵參量如下:連續(xù)光源的中心頻率設(shè)定為193.1THz,線寬為10MHz,發(fā)射功率為3dBm; EDFA增益設(shè)置為20dB;可調(diào)諧濾波器的半波帶寬為10GHz;本振射頻信號(hào)頻率為3GHz;低通濾波器3dB截止頻率為10MHz;PMD模擬器加載的色度色散為85ps/nm,并分別加載不同的DGD??梢酝ㄟ^觀測不同差分群延時(shí)下的PPM系統(tǒng)性能,以及所測得的F軸與S軸信號(hào)的相位差來驗(yàn)證本方案的正確性。
圖3為接收端在不同DGD值下的眼圖。圖4為不同DGD值對(duì)應(yīng)的系統(tǒng)最大Q值曲線圖。根據(jù)眼圖可知,系統(tǒng)傳輸性能隨著DGD值的增大不斷變差。當(dāng)DGD值為0ps時(shí),眼圖的眼開度很高,表示此時(shí)系統(tǒng)傳輸性能良好。當(dāng)DGD值不斷增大后,眼開度不斷變小,說明PMD效應(yīng)對(duì)PPM信號(hào)性能的影響越來越強(qiáng)。根據(jù)Q值曲線圖,總體上看,系統(tǒng)最大Q值隨著DGD值的增大而減小,且在DGD處于15ps至30ps間迅速下降;隨后Q值減小的速度放緩,當(dāng)DGD值為60ps時(shí),系統(tǒng)最大Q值降為0,此時(shí)的系統(tǒng)傳輸性能已經(jīng)很差了。
Fig.3 Eye diagram of different DGD at the rate of 10Gbit/s
Fig.4 Q vs. DGD at the rate of 10Gbit/s
圖5為不同DGD下F軸與S軸相位差Δφ絕對(duì)值的曲線。雖然相位差Δφ的符號(hào)反映的是F軸與S軸中哪個(gè)軸的信號(hào)滯后的情況,但在實(shí)際應(yīng)用中,F(xiàn)軸和S軸是難以分辨的。因此選取PBS的一個(gè)輸出軸作為參考,將其視作F軸,并以此計(jì)算相位差,取相位差Δφ的絕對(duì)值進(jìn)行分析即可。前面對(duì)于PMD監(jiān)測的原理分析提到了,Δφ與DGD線性相關(guān)。由圖可知,Δφ的絕對(duì)值隨著DGD的增大近似線性遞增,與理論相符。這表明,本方案可以實(shí)現(xiàn)對(duì)0ps~100ps范圍內(nèi)PMD的監(jiān)測。
Fig.5 Δφ vs.DGD at the rate of 10Gbit/s
40Gbit/s速率下仿真實(shí)驗(yàn)系統(tǒng)的關(guān)鍵參量如下:連續(xù)光源的中心頻率設(shè)定為193.1THz,線寬為10MHz,發(fā)射功率為3dBm; EDFA增益設(shè)置為20dB;可調(diào)諧濾波器的半波帶寬為10GHz;本振射頻信號(hào)頻率為3GHz;低通濾波器3dB截止頻率為10MHz; PMD模擬器加載的色度色散為10ps/nm,并分別加載不同的DGD。
圖6為接收端在不同DGD值下的眼圖。圖7為不同DGD值對(duì)應(yīng)的系統(tǒng)最大Q值曲線圖。很明顯,在相同DGD值下,40Gbit/s系統(tǒng)眼圖的品質(zhì)均不如10Gbit/s系統(tǒng),這表明在速率更高的條件下,PPM信號(hào)傳輸性能更容易受色散的影響。由Q值曲線可知,40Gbit/s鏈路的系統(tǒng)最大Q值始終隨DGD的增大快速下降。當(dāng)DGD為16ps時(shí),系統(tǒng)最大Q值已降為0。以上現(xiàn)象說明,40Gbit/s傳輸鏈路的性能劣化速度要遠(yuǎn)遠(yuǎn)大于10Gbit/s傳輸鏈路。這是因?yàn)殡S著傳輸速率的增大,系統(tǒng)的色散容限會(huì)相應(yīng)減小。
Fig.6 Eye diagram of different DGD at the rate of 40Gbit/s
Fig.7 Q vs. DGD at the rate of 40Gbit/s
圖8為不同DGD下F軸與S軸相位差Δφ絕對(duì)值的曲線。由圖可知,Δφ的絕對(duì)值隨著DGD的增大幾乎線性增加,其線性程度依然保持得較好。這說明本方案受PPM傳輸速率影響較小,適用性廣,可以實(shí)現(xiàn)不同傳輸速率系統(tǒng)的PMD在線監(jiān)測。
Fig.8 Δφ vs. DGD at the rate of 40Gbit/s
提出了針對(duì)PPM調(diào)制信號(hào)的偏振模色散監(jiān)測方案,對(duì)其基本原理進(jìn)行了分析,并進(jìn)行了仿真驗(yàn)證與實(shí)驗(yàn)分析。該方案采用單邊帶頻譜內(nèi)兩個(gè)偏置信號(hào)的位相差來測量光纖鏈路中的PMD,可以實(shí)現(xiàn)范圍在0ps~100ps內(nèi)的PMD監(jiān)測。因?yàn)閷?shí)際情況下,鏈路中的PMD不會(huì)無限累加,故本方案可以監(jiān)測大部分情形下的PMD,而且其實(shí)現(xiàn)過程相對(duì)簡單,無需加載額外信號(hào),對(duì)器件性能要求較低,測量結(jié)果受信號(hào)速率影響較小,適應(yīng)性好。本方案能實(shí)現(xiàn)針對(duì)PPM系統(tǒng)的實(shí)時(shí)動(dòng)態(tài)監(jiān)測。
[1] LI B. Investigation of dispersion monitoring technology for ultra-high speed optical transmission link [D].Wuhan: Huazhong University of Science and Technology, 2012: 75-102 (in Chinese).
[2] ZHANG L, CHRISTEN L C, ZHANG B,etal. Polarization-mode dispersion monitoring for phase-modulated signals using DGD-genera-ted interferometric filter [J]. IEEE Photonics Technology Letters,
[3] DENG N, CHAN C K, CHEN L K. A hybrid OTDM scheme with enhanced demultiplexing performance[J]. IEEE Photonics Technology Letters, 2007, 19(19):1454-1456.
[4] ZHAO J, CHEN L K, CHAN C K. A novel re-modulation scheme to achieve colorless high-speed WDM-PON with enhanced tolerance to chromatic dispersion and re-modulation misalignment[C]// Optical Fiber Communication and the National Fiber Optic Engineers Conference, 2007. New York, USA: IEEE, 2007:1-3.
[5] LEE J H, YOSHIKANE N, TSURITANI T,etal. In-band OSNR monitoring technique based on link-by-link estimation for dynamic transparent optical networks[J]. Journal of Lightwave Technology, 2008, 26(10):1217-1225.
[6] LEE J H, GUO H, TSURITANI T,etal. Field trial of all-optical networking controlled by intelligent control plane with assistance of optical performance monitors[J]. Journal of Lightwave Technology, 2009, 27(2):94-100.
[7] GRUPP W. Monitoring requirements for optical transparent networks[C]// Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference. New York, USA: IEEE, 2006:OWN5.
[8] FLORIDIA C, SIMES G C, FERES M M,etal. Simultaneous optical signal-to-noise ratio and differential group delay monitoring based on degree of polarization measurements in optical communications systems[J]. Applied Optics, 2012, 51(17):3957-3965.
[9] YANG J, YU C, CHENG L,etal. CD-insensitive PMD monitoring based on RF power measurement.[J]. Optics Express, 2011, 19(2):1354-1359.
[10] BUCHALI F, BAUMERT W, BULOW H,etal. A 40Gb/s eye monitor and its application to adaptive PMD compensation[C]// Optical Fiber Communication Conference and Exhibit. New York, USA: IEEE,2002:202-203.
[11] LI Z, LI G. In-line performance monitoring for RZ-DPSK signals using asynchronous amplitude histogram evaluation[J]. IEEE Photonics Technology Letters, 2006, 18(3):472-474.
[12] KOZICKI B, TAKUYA O, HIDEHIKO T. Optical performance monitoring of phase-modulated signals using asynchronous amplitude histogram analysis[J].Journal of Lightwave Technology, 2008, 26(10):1353-1361.
[13] JARGON J A, WU X, WILLNER A E. Optical performance monitoring by use of artificial neural networks trained with parameters derived from delay-tap asynchronous sampling[C]// Optical Fiber Communication—Incudes Post Deadline Papers, 2009. New York, USA: IEEE,2009:1-3.
[14] HE Ch, LUO F G, LI B. Dispersion measuring technique based on second order lowest power of radio frequency signal[J]. Laser Technology, 2017,41(2):169-173 (in Chinese).
[15] CAO X. Optimization of dispersion compensation in optical fiber communication systems[J]. Laser Technology, 2014,38(1):101-104 (in Chinese).
[16] HU J B, LI M P. Design of novel tunable semiconductor lasers in optical fiber communication systems[J]. Laser Technology, 2016,40(2):280-283 (in Chinese).
Monitoringschemeofpolarizationmodedispersionbasedonpulsepositionmodulationsystem
WANGZixiao,LUOFengguang,LIBin,HUHangting,YANGShuailong
(School of Optoelectronic and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China)
In order to monitor polarization mode dispersion (PMD) of the fiber communication channel in a pulse position modulation (PPM) transmission system dynamically, a novel PMD monitoring method was proposed based on single sideband polarization phase difference detection technology, and the mathematical model of the method was built in accordance with monitoring principle. The structure of the method was simple, so it can be realized easily at very low cost. The simulation results indicate that the method can realize dynamic PMD monitoring including differential group delay (DGD) and polarization state of output light, and the technique can monitor DGD accurately in the range of 0ps to 100ps. It is proved that the operation of proposed PMD monitor method is independent of data rates, which shows the proposed method can satisfy the need of real time PMD monitoring for PPM transmission systems. It indicates that the proposed method is feasible and effective for PMD monitoring.
optical communication;polarization mode dispersion monitoring;fiber communication channel;single sideband;phase difference
1001-3806(2018)01-0001-04
國家自然科學(xué)基金資助項(xiàng)目(61471179;61301226);國家八六三高技術(shù)研究發(fā)展計(jì)劃資助項(xiàng)目(2015AA016904)
王梓驍(1991-),男,碩士研究生,主要從事光通信網(wǎng)相關(guān)技術(shù)的研究。
*通訊聯(lián)系人。E-mail:fgluo@mail.hust.edu.cn
2017-03-24;
2017-04-01
TN929.11
A
10.7510/jgjs.issn.1001-3806.2018.01.001