姜巨全,孫開福,楊立娜,陳 金,張正來(lái)
松嫩鹽單胞菌中Group 2 mrp操縱子敲除及突變株耐鹽堿分析
姜巨全,孫開福,楊立娜,陳 金,張正來(lái)
(東北農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,哈爾濱 150030)
為分析編碼多亞基鈉/氫逆向轉(zhuǎn)運(yùn)蛋白Group 2型mrp(mrp2)操縱子耐鹽堿能力,首先構(gòu)建mrp2自殺質(zhì)粒pK18mobsacB-mrp2-NcoI,電轉(zhuǎn)化野生型菌株-松嫩鹽單胞菌(Halomonassongnenensis)NEAU-ST10-39T,基于以上基因敲除原理獲得mrp2敲除菌株。PCR驗(yàn)證及測(cè)序結(jié)果表明,成功獲得mrp2敲除菌株,并將其命名為NEAU-ST10-39T-△mrp2。為進(jìn)一步驗(yàn)證突變株正確性,構(gòu)建重組穿梭載體pBBR1-MCS5-mrp2,轉(zhuǎn)化敲除菌株NEAU-ST10-39T-△mrp2,獲得轉(zhuǎn)化子命名為NEAU-ST10-39T-△mrp2/pBBR1-MCS5-mrp2。耐鹽堿測(cè)試顯示,NEAU-ST10-39T-△mrp2/pBBR1-MCS5-mrp2表現(xiàn)出與野生型菌株類似耐鹽堿能力,進(jìn)一步證實(shí)敲除菌株NEAUST10-39T-△mrp2構(gòu)建正確;隨NaCl濃度和pH升高,敲除菌株NEAU-ST10-39T-△mrp2生長(zhǎng)受到抑制,表明mrp2對(duì)宿主菌NEAU-ST10-39T在高鹽堿條件下生長(zhǎng)具有重要作用。電轉(zhuǎn)化方法可避免pK18mobsacB在三親本接合過(guò)程中受體菌抗性篩選、突變株純化弊端,簡(jiǎn)化質(zhì)粒導(dǎo)入宿主程序;NEAU-ST10-39T-△mrp2成功構(gòu)建為敲除鹽單胞菌中其他耐鹽堿基因和揭示該基因耐鹽堿機(jī)制奠定基礎(chǔ)。
松嫩鹽單胞菌;Group 2型Mrp;基因敲除;耐鹽堿
中度嗜鹽菌(Moderate halophile)是在3%~15%NaCl條件下最適合生長(zhǎng)微生物類群[1]。中度嗜鹽菌因其豐富耐鹽堿基因種類及復(fù)雜耐鹽堿機(jī)制,作為研究耐鹽堿分子機(jī)制重要對(duì)象備受關(guān)注[2-3],在醫(yī)療環(huán)境改造、生物環(huán)保、污水處理等方面應(yīng)用廣泛[4-6]。Mrp系統(tǒng)是廣泛存在于包括中度嗜鹽菌在內(nèi)原核生物中一類單價(jià)陽(yáng)離子/氫離子多亞基逆向轉(zhuǎn)運(yùn)蛋白,其在維持胞內(nèi)Na+,K+和Li+等陽(yáng)離子及pH平衡等方面起關(guān)鍵作用[7-8]。根據(jù)編碼基因數(shù)量差異,Mrp系統(tǒng)主要分兩大類:①Group 1型Mrp由7個(gè)基因(mrpABCDEFG)編碼,其中mrpA僅含1個(gè)mrpB結(jié)構(gòu)域,該類Mrp系統(tǒng)主要分布于金黃色葡萄球菌[9]、芽胞桿菌[10-12]和鹽單胞菌[13-14];②Group 2型Mrp由6個(gè)基因(mrpA′CDEFG)編碼,與Group 1型Mrp主要差異是mrpA′除含mrpA結(jié)構(gòu)域外,還含2個(gè)mrpB結(jié)構(gòu)域,該類型Mrp系統(tǒng)主要分布于苜蓿中華根瘤菌[15]和霍亂弧菌[16]。
松嫩鹽單胞菌(Halomonassongnenensis)NEAUST10-39T是可在16%NaCl及pH 8堿性環(huán)境中生長(zhǎng)的中度嗜鹽菌[17]。從該菌中克隆出的mrp2是Group 2型Mrp系統(tǒng)操縱子,在異源宿主大腸桿菌(Esche?richia coli)中表現(xiàn)高效耐鹽堿能力。為進(jìn)一步探究mrp2在宿主菌中生理功能,本研究構(gòu)建mrp2敲除菌株并分析其耐鹽堿能力,結(jié)果顯示mrp2對(duì)宿主菌NEAU-ST10-39T在高鹽堿條件中生長(zhǎng)具有重要作用。本研究首次應(yīng)用電轉(zhuǎn)化方法,可避免pK18mob?sacB在三親本接合過(guò)程中受體菌抗性篩選、突變株純化弊端,簡(jiǎn)化質(zhì)粒導(dǎo)入宿主程序;同時(shí)為敲除鹽單胞菌中其他耐鹽堿基因和深入揭示其耐鹽堿機(jī)制奠定基礎(chǔ)。
1.1.1 菌種、質(zhì)粒和引物
主要菌株、質(zhì)粒及引物如表1所示。
1.1.2 主要儀器及試劑
高速離心機(jī)購(gòu)自Thermo Scientific公司,超低溫冰箱購(gòu)自Thermo Scientific公司,培養(yǎng)箱購(gòu)自上海志成生物公司,水浴鍋購(gòu)自北京市永光明醫(yī)療儀器廠,電泳儀購(gòu)自北京六一生物科技有限公司,凝膠成像儀購(gòu)自美國(guó)SIM公司,pH計(jì)購(gòu)自METTLER TOLEDO公司,高壓滅菌鍋購(gòu)自上海申安醫(yī)療器械廠,電轉(zhuǎn)儀購(gòu)自Eppendorf公司,PCR儀購(gòu)自Eppendorf公司,紫外-可見(jiàn)光分光光度計(jì)購(gòu)自天津市普瑞斯儀器有限公司。
1.1.3 主要試劑
氨芐青霉素、卡那霉素、慶大霉素購(gòu)自美國(guó)AMRESCO公司;核酸和蛋白Marker、Taq DNA聚合酶、dNTPs均購(gòu)自天根生物技術(shù)有限公司;瓊脂糖凝膠DNA膠回收試劑盒購(gòu)自O(shè)mega公司;Eco RI(15 U·μL-1)、SalⅠ(15 U·μL-1)、NcoⅠ(15 U·μL-1)等限制性內(nèi)切酶均購(gòu)自Takara生物公司。
1.1.4 培養(yǎng)基與培養(yǎng)條件
HLB培養(yǎng)基(1 L):胰蛋白胨10 g,酵母浸出物5 g,制備固體平板時(shí)加入1.5%瓊脂;NaCl濃度按試驗(yàn)要求加入;pH調(diào)制:pH 5~6,醋酸和醋酸鈉緩沖液(100 mmol·L-1);pH 7~9,BTP-H2SO4緩沖液(100 mmol·L-1);pH 10,碳酸鈉和碳酸氫鈉緩沖液(100 mmol·L-1);松嫩鹽單胞菌(H.songnen?ensis)NEAU-ST10-39T及突變株及其轉(zhuǎn)化子在液體培養(yǎng)基中145 r·min-1、35 ℃培養(yǎng)24 h。
LB培養(yǎng)基(1 L):胰蛋白胨10 g,酵母粉5 g,NaCl 10 g,pH 7。大腸桿菌(E.coli)DH5α轉(zhuǎn)化子在含50μg·mL-1氨芐青霉素LBK平板上37℃培養(yǎng),在LBK液體培養(yǎng)基中160 r·min-1、37℃培養(yǎng)24 h。
LBK培養(yǎng)基(1 L):胰蛋白胨10 g,酵母粉5 g,KCl 6.48 g,pH 7,部分試驗(yàn)中添加NaCl至所需濃度或用BTP-H2SO4緩沖液(pH 7~8.5,100 mmol·L-1)調(diào)至所需pH;大腸桿菌(E.coli)KNabc轉(zhuǎn)化子在含50μg·mL-1氨芐青霉素的LBK平板上37℃培養(yǎng),在LBK液體培養(yǎng)基中160 r·min-1、37℃培養(yǎng)24 h。
1.2.1 電轉(zhuǎn)化感受態(tài)細(xì)胞制備
挑取NEAU-ST10-39T單菌落于5 mL含3%NaCl HLB液體培養(yǎng)基中,35℃,145 r·min-1振蕩培養(yǎng)16 h;按2%接種量轉(zhuǎn)接于200 mL含3%NaCl HLB液體培養(yǎng)基中,160 r·min-1振蕩培養(yǎng)2~3 h,期間注意監(jiān)測(cè)菌體OD600吸光度值;待OD600吸光度值達(dá)0.6~0.8后停止培養(yǎng),冰浴菌液20~30 min;離心收集菌體;去除培養(yǎng)基后用20 mL去離子水重懸菌體,離心,洗滌菌體1次,去除殘留培養(yǎng)基;用20 mL冰預(yù)冷10%甘油緩慢將菌體懸浮,離心后,去盡殘液;重復(fù)上一步驟;用1.5 mL冰預(yù)冷10%甘油將菌體懸浮,并分裝(離心參數(shù)4℃,5 000 r·min-1和10 min)。
1.2.2 敲除載體構(gòu)建
提取pUC-mrp2質(zhì)粒,NcoI單酶切,將酶切后4.4 kb片段,用瓊脂糖凝膠DNA回收試劑盒回收后,25℃連接2 h。取適量連接體系,轉(zhuǎn)化大腸桿菌(E.coli)DH5α感受態(tài)細(xì)胞。培養(yǎng)后挑取陽(yáng)性重組子,酶切驗(yàn)證。
為獲得含有mrp2兩側(cè)同源臂片段(截短的mr?pA′和截短的mrpG,即△mrp2)敲除載體,對(duì)pUC-mrp2-NcoⅠ和pK18mobsacB質(zhì)粒分別作SalⅠ和Eco RⅠ雙酶切,經(jīng)膠回收、連接、轉(zhuǎn)化大腸桿菌(E.coli)DH5α感受態(tài)細(xì)胞和培養(yǎng)后挑取陽(yáng)性重組子,雙酶切驗(yàn)證,用于后續(xù)研究。
1.2.3 穿梭載體pBBR1-MCS5-mrp2構(gòu)建
對(duì)穿梭載體pBBR1-MCS5和pUC-mrp2質(zhì)粒分別SalⅠ和Eco RⅠ雙酶切,化轉(zhuǎn)至大腸桿菌(E.coli)DH5α感受態(tài)細(xì)胞后,雙酶切驗(yàn)證,得到重組質(zhì)粒pBBR1-MCS5-mrp2。
1.2.4 mrp2敲除菌株構(gòu)建及驗(yàn)證
為獲得mrp2敲除菌株,通過(guò)電轉(zhuǎn)化將pK18 mobsacB-mrp2-NcoI導(dǎo)入NEAU-ST10-39T感受態(tài)細(xì)胞,電擊參數(shù)為2 500 V、5 ms;在含卡那霉素(50 μg·mL-1)和3%NaCl的HLB固體平板上篩選單交換菌株,35℃過(guò)夜培養(yǎng);逐個(gè)挑取菌落分別接入不含有和含有卡那霉素(50μg·mL-1)、10%蔗糖和3%NaCl的HLB培養(yǎng)基對(duì)應(yīng)位置,35℃過(guò)夜培養(yǎng),挑取發(fā)生雙交換菌落菌種保存用于后續(xù)研究。
選擇mrp2操縱子兩端(截短的mrp A′上游和mrpG下游)設(shè)計(jì)引物,對(duì)敲除載體pK18mobsacB-mrp2-NcoI(△mrp2正對(duì)照)、雙交換菌株NEAUST10-39T-△mrp2-3、NEAU-ST10-39T-△mrp2-4、重組質(zhì)粒pUC-mrp2(mrp2操縱子的正對(duì)照)和野生型菌株NEAU-ST10-39T作PCR驗(yàn)證,體系見(jiàn)表2;經(jīng)初步驗(yàn)證正確后,送北京華大基因股份有限公司測(cè)序,驗(yàn)證敲除正確性。
表2 驗(yàn)證NEAU-ST10-39T-mrp2的PCR反應(yīng)體系Table 2 PCR reaction mixture of NEAU-ST10-39T-mrp2
1.2.5 mrp2敲除菌株轉(zhuǎn)化子獲得及驗(yàn)證
按上述方法,將pBBR1-MCS5-mrp2電轉(zhuǎn)化敲除菌株NEAU-ST10-39T-△mrp2感受態(tài)細(xì)胞系列篩選,獲得NEAU-ST10-39T-△mrp2/pBBR1-MCS5-mrp2。提取質(zhì)粒,通過(guò)酶切驗(yàn)證其正確性。
1.2.6 耐鹽堿分析
野生型菌株耐鹽分析:將野生型菌株NEAUST10-39T接種于分別含有0、0.5%、1.0%、2.0%、3.0%、6.0%、9.0%、12.0%、15.0%、16.0%和20%NaCl HLB培養(yǎng)基(pH 7),確定野生型菌株在HLB液體培養(yǎng)基中耐鹽范圍。
敲除菌株耐鹽分析:野生型菌株、NEAUST10-39T-△mrp2/pBBR1-MCS5-mrp2和基因敲除菌株NEAU-ST10-39T-△mrp2分別接種于含有2.0%、6.0%和16.0%NaCl的HLB培養(yǎng)基中(pH 7),檢測(cè)其對(duì)NaCl耐受差異性。
敲除菌株耐堿分析:將野生型菌株、NEAUST10-39T-△mrp2/pBBR1-MCS5-mrp2和基因敲除菌株NEAU-ST10-39T-△mrp2分別接種于含2%NaCl不同pH(5~10)HLB培養(yǎng)基,檢測(cè)其對(duì)堿性pH耐受差異性。
為構(gòu)建mrp2操縱子敲除載體,應(yīng)用DNAman 6.0分析pUC-mrp2和自殺質(zhì)粒pK18mobsacB酶切位點(diǎn),發(fā)現(xiàn)mrp2含多個(gè)Nco I酶切位點(diǎn),而pUC18載體上無(wú)NcoⅠ酶切位點(diǎn)(圖1 A);且通過(guò)SalⅠ和Eco RⅠ雙酶切可將含有mrp2兩側(cè)同源臂(截短的mrpA′和mrpG,即△mrp2)構(gòu)建到pK18mobsacB相同酶切位點(diǎn)。因此,通過(guò)使用NcoⅠ內(nèi)切酶完全酶切pUC-mrp2,膠回收5 kb最大片段(含△mrp2 pUC18載體)并用T4 DNA連接酶自連(見(jiàn)圖2 A),最終獲含mrp2兩側(cè)同源臂(△mrp2)自連質(zhì)粒pUC-mrp2-NcoⅠ(見(jiàn)圖1A、圖2A)。在此基礎(chǔ)上,用SalⅠ和Eco RⅠ對(duì)pUC-mrp2-NcoⅠ和pK18mobsacB作雙酶切,將pUC-mrp2-NcoⅠ酶切產(chǎn)物的1.8 kb小片段(△mrp2)與pK18mobsacB雙酶切產(chǎn)物(1個(gè)5.7 kb載體片段)連接,最后獲得mrp2敲除載體pK18mobsacB-mrp2-NcoⅠ(圖1A、圖2A)。經(jīng)SalⅠ和Eco RⅠ雙酶切驗(yàn)證,該載體構(gòu)建正確(見(jiàn)圖2A)。
圖1 松嫩鹽單胞菌NEAU-ST10-39T中mrp2操縱子敲除Fig.1 Schematicsillustrating theknockout of mrp2 operon from Halomonassongnenensis NEAU-ST10-39T
圖2 自殺載體p K18mobsacB-mrp2-NcoⅠ構(gòu)建及其雙酶切驗(yàn)證Fig.2 Construction of thesuicideplasmid p K18mobsacB-mrp2-NcoⅠand itsverification by doubleenzymatic digestion
分析DNAman 6.0對(duì)pUC-mrp2和穿梭質(zhì)粒pB?BR1MCS-5酶切位點(diǎn),發(fā)現(xiàn)可通過(guò)SalⅠ和Eco RⅠ雙酶切將pUC-mrp2中帶有啟動(dòng)子和終止子mrp2操縱子構(gòu)建到穿梭質(zhì)粒pBBR1-MCS5。因此,用SalⅠ和Eco RⅠ分別對(duì)pUC-mrp2和pBBR1-MCS5雙酶切(見(jiàn)圖3A),回收pUC-mrp2雙酶切大片段(6.7 kb)和pBBR1-MCS5雙酶切片段(4.8 kb)并用T4 DNA連接酶連接,轉(zhuǎn)化連接產(chǎn)物至大腸桿菌(E.coli)KNabc,最后獲得穿梭載體pBBR1-MCS5-mrp2(見(jiàn)圖3A)。經(jīng)SalⅠ和Eco RⅠ雙酶切驗(yàn)證,證明該載體構(gòu)建正確(見(jiàn)圖2B)。
為構(gòu)建mrp2的敲除菌株,首先誘導(dǎo)mrp2兩側(cè)同源臂片段(△mrp2)與野生型菌株同源序列單交換(原理如圖1B~C)。為此,mrp2敲除載體pK18mobsacB-mrp2-NcoI通過(guò)電轉(zhuǎn)化導(dǎo)入野生型菌株NEAU-ST10-39T感受態(tài)細(xì)胞,將轉(zhuǎn)化子及未經(jīng)電轉(zhuǎn)化感受態(tài)細(xì)胞(負(fù)對(duì)照)均勻涂布在含卡那霉素(50 μg·mL-1)和3%NaCl的HLB固體平板上,經(jīng)過(guò)35℃過(guò)夜培養(yǎng),在涂布轉(zhuǎn)化子平板上出現(xiàn)幾十個(gè)扁平、光滑、不透明黃色菌落,與野生型菌株NEAU-ST10-39T菌落特征一致;對(duì)比發(fā)現(xiàn),在涂布未經(jīng)電轉(zhuǎn)化感受態(tài)細(xì)胞平板上,無(wú)菌落出現(xiàn)。表明mrp2兩側(cè)同源臂片段(△mrp2)與野生型菌株同源序列發(fā)生單交換,即第1次同源重組(原理見(jiàn)圖2C)。
為最終構(gòu)建mrp2敲除菌株,需用10%蔗糖篩選壓力脅迫單交換菌株發(fā)生雙交換,促使突變株清除其基因組中自殺質(zhì)粒pK18mobsacB(原理見(jiàn)圖1D)。為此,挑取生長(zhǎng)菌落一一對(duì)應(yīng)分別接種在含有卡那霉素(50μg·mL-1)、10%蔗糖和3%NaCl的HLB固體平板上(見(jiàn)圖4A)和含有10%蔗糖和3%NaCl的HLB固體平板上(見(jiàn)圖4B),35℃培養(yǎng)24 h,發(fā)現(xiàn)兩個(gè)菌落在圖4A所示平板上不生長(zhǎng),在圖4B所示相應(yīng)位置上生長(zhǎng)良好,表明這2個(gè)菌落為雙交換菌株,按其接種順序命名為NEAUST10-39T-△mrp2-3和NEAU-ST10-39T-△mrp2-4,挑取菌落并接種于含有3%NaCl的HLB液體培養(yǎng)基,培養(yǎng)后收集菌體保存于-80℃用于后續(xù)試驗(yàn)。
圖3 穿梭載體p BBR1-MCS5-mrp2的構(gòu)建及其雙酶切驗(yàn)證Fig.3 Construction of the recombinant plasmid p BBR1-MCS5-mrp2 and itsverification by doubleenzymatic digestion
圖4 NEAU-ST10-39T的mrp2操縱子敲除菌株篩選Fig.4 Screening of the mrp2-knockout mutantsof NEAU-ST10-39T
為驗(yàn)證所獲雙交換菌株是否為mrp2敲除菌株,設(shè)計(jì)引物(見(jiàn)表1)對(duì)敲除載體pK18mobsacB-mrp2-NcoI(△mrp2正對(duì)照)、雙交換菌株NEAUST10-39T-△mrp2-3、NEAU-ST10-39T-△mrp2-4、重組質(zhì)粒pUC-mrp2(mrp2操縱子正對(duì)照)和野生菌NEAU-ST10-39T作PCR驗(yàn)證(見(jiàn)圖5)。發(fā)現(xiàn)pK18 mobsacB-mrp2-Nco I(△mrp2正對(duì)照)、NEAU-ST10-39T-△mrp2-3和NEAU-ST10-39T-△mrp2-4的PCR產(chǎn)物均約為700 bp;pUC-mrp2(mrp2操縱子正對(duì)照)和NEAU-ST10-39TPCR產(chǎn)物均約為5 600 bp。為進(jìn)一步驗(yàn)證以上2株雙交換株是否為mrp2敲除菌株,最后將NEAU-ST10-39T-△mrp2-3和NEAUST10-39T-△mrp2-4的PCR產(chǎn)物送至北京華大基因股份有限公司測(cè)序,序列結(jié)果用DNAman 6.0作比對(duì)分析,最終確定均為mrp2敲除菌株。選取NEAU-ST10-39T-△mrp2-3命名為NEAU-ST10-39T-△mrp2,作為mrp2的敲除菌株用于后續(xù)試驗(yàn)。
圖5 NEAU-ST10-39T的mrp2操縱子的敲除菌株的PCR驗(yàn)證Fig.5 Verification of the mrp2-knockout mutant of NEAU-ST10-39T by PCR
為進(jìn)一步驗(yàn)證NEAU-ST10-39T-△mrp2是否為mrp2的敲除菌株,需分析mrp2操縱子是否可互補(bǔ)該突變株。為此,將pBBR1-MCS5-mrp2電轉(zhuǎn)化導(dǎo)入NEAU-ST10-39T-△mrp2感受態(tài)細(xì)胞,在含有慶大霉素(50μg·mL-1)和3%NaCl的HLB固體平板上,挑取單菌落提取質(zhì)粒,并經(jīng)SalⅠ和Eco RⅠ雙酶切驗(yàn)證,發(fā)現(xiàn)轉(zhuǎn)化子構(gòu)建正確,將其命名為NEAU-ST10-39T-△mrp2/pBBR1-MCS5-mrp2。
為分析野生型菌株的耐鹽能力,將野生型菌株NEAU-ST10-39T接種于分別含有不同濃度NaCl的HLB培養(yǎng)基(pH 7),確定野生型菌株在HLB液體培養(yǎng)基耐鹽范圍為0.5%~16%NaCl(見(jiàn)圖6A)。在此基礎(chǔ)上,分別分析野生型菌株、NEAU-ST10-39T-△mrp2/pBBR1-MCS5-mrp2和敲除菌株NEAU-ST10-39T-△mrp2對(duì)NaCl和堿性pH耐受差異性。發(fā)現(xiàn)NEAU-ST10-39T-△mrp2/pBBR1-MCS5-mrp2表現(xiàn)出與野生型菌株類似耐鹽能力(見(jiàn)圖6B、6C),進(jìn)一步證實(shí)敲除菌株NEAU-ST10-39T-△mrp2構(gòu)建正確。在pH 7,2.0%NaCl濃度條件下,敲除菌株NEAU-ST10-39T-△mrp2的生長(zhǎng)情況與野生型菌株、NEAU-ST10-39T-△mrp2/pB?BR1-MCS5-mrp2生長(zhǎng)情況無(wú)差異;6.0%和16.0%NaCl濃度時(shí),敲除菌株NEAU-ST10-39T-△mrp2生長(zhǎng)情況受抑制(見(jiàn)圖6B),表明mrp2對(duì)宿主菌NEAU-ST10-39T在高鹽條件下生長(zhǎng)具有重要作用。在含有2%NaCl的HLB培養(yǎng)基中,pH 6、7條件下,敲除菌株NEAU-ST10-39T-△mrp2與野生型菌株NEAU-ST10-39T生長(zhǎng)表現(xiàn)無(wú)差異;pH 8條件下,敲除菌株NEAU-ST10-39T-△mrp2生長(zhǎng)受抑制(見(jiàn)圖6C),表明mrp2對(duì)宿主菌NEAU-ST10-39T在堿性條件下生長(zhǎng)具有重要作用。
圖6 NEAU-ST10-39T的mrp2操縱子的敲除菌株耐鹽堿測(cè)試Fig.6 Growth test for salt toleranceand alkalinep H resistanceof the mrp2-knockout mutant of NEAU-ST10-39T
中度嗜鹽菌基因敲除十分困難,尤其是革蘭氏陽(yáng)性中度嗜鹽菌。目前,基因敲除成功僅限于革蘭氏陰性鹽單胞菌屬(Halomonas),并利用三親本接合方式導(dǎo)入外源基因[14],使用電轉(zhuǎn)化導(dǎo)入方式敲除未見(jiàn)報(bào)道。三親本接合轉(zhuǎn)化敲除質(zhì)粒方法,可避免導(dǎo)入雙鏈DNA易被受體菌限制性內(nèi)切酶降解風(fēng)險(xiǎn),但所用受體菌必須具有抗生素抗性,難以實(shí)現(xiàn)敲除菌株與大腸桿菌分離純化。電轉(zhuǎn)化方法操作可避免操作過(guò)程中大腸桿菌污染,操作簡(jiǎn)單,工作強(qiáng)度小,試驗(yàn)周期較短。目前,一般使用S-G培養(yǎng)基培養(yǎng)嗜鹽菌,利于嗜鹽菌快速生長(zhǎng)。生長(zhǎng)在S-G培養(yǎng)基嗜鹽菌形成細(xì)胞壁較厚,阻礙質(zhì)粒等外源DNA轉(zhuǎn)化[18]。因此,本研究在參照革蘭氏陰性菌和鹽單胞菌的電轉(zhuǎn)化感受態(tài)細(xì)胞制備方法基礎(chǔ)上[19-20],選擇含3%NaCl的HLB培養(yǎng)基制備NEAU-ST10-39T電轉(zhuǎn)化感受態(tài)細(xì)胞,成功將敲除載體pK18mobsacB-mrp2-NcoⅠ并使穿梭載體pBBR1-MCS5-mrp2導(dǎo)入野生型菌株。本研究將電轉(zhuǎn)化方法首次應(yīng)用于鹽單胞菌基因敲除,對(duì)敲除鹽單胞菌中其他耐鹽堿基因具有重要指導(dǎo)意義。
松嫩鹽單胞菌(Halomonas songnenensis)NEAUST10-39T是一株可在16%NaCl及pH 8堿性環(huán)境下生長(zhǎng)中的度嗜鹽菌[17]。為分析其高效耐鹽堿機(jī)制,篩選耐鹽堿基因,發(fā)現(xiàn)mrp2是一個(gè)編碼Group 2型Mrp系統(tǒng)操縱子,其在異源宿主大腸桿菌(Esche?richia coli)中表現(xiàn)高效耐鹽堿能力,與已報(bào)道的多亞基鈉/氫逆向轉(zhuǎn)運(yùn)蛋白(Mrp系統(tǒng)的同源物)Sa_Mnh[9]、 Bh_Mrp[11]、 Bs_Mrp[10,12]、 Hz_Mrp[13]、Hs_Mrp[14]、Sm_Pha1[15]一致。
為進(jìn)一步探究mrp2在宿主菌中生理功能,本研究構(gòu)建mrp2敲除載體pK18mobsacB-mrp2-NcoI,采用電轉(zhuǎn)化方法導(dǎo)入野生型菌株NEAUST10-39T,通過(guò)PCR驗(yàn)證和穿梭載體pBBR1-MCS5-mrp2互補(bǔ)試驗(yàn),成功構(gòu)建敲除菌株NEAUST10-39T-△mrp2。耐鹽堿分析,發(fā)現(xiàn)mrp2操縱子對(duì)宿主菌NEAU-ST10-39T在高鹽堿條件下生長(zhǎng)具有重要作用。在非嗜鹽菌和耐鹽菌中,Mrp系統(tǒng)敲除顯著影響其生理功能,如Bs_ Mrp[10,12]、Sm_Pha1等敲除導(dǎo)致耐鹽堿能力顯著下降,甚至喪失[15]。然而,革蘭氏陰性中度嗜鹽菌的鹽單胞菌Y2敲除Mrp系統(tǒng),使宿主在高鹽堿條件下生長(zhǎng)受到顯著抑制。與本研究結(jié)果一致,因中度嗜鹽菌長(zhǎng)期處于高鹽堿環(huán)境,被迫進(jìn)化更多數(shù)量和類型鈉/氫逆向轉(zhuǎn)運(yùn)蛋白應(yīng)對(duì)外界極端環(huán)境變化。因此,NEAU-ST10-39T-△mrp2成功構(gòu)建,為敲除鹽單胞菌中其他耐鹽堿基因和揭示基因耐鹽堿機(jī)制奠定基礎(chǔ)。
[1] Ventosa A,Nieto J J,Oren A.Biology of moderately halophilic aerobic bacteria[J].Microbiology and Molecular Biology Reviews,1998,62(2):504-544.
[2] 王爽,楊謙,孫磊,等.鹽堿土中可培養(yǎng)中度嗜鹽菌的研究[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2010,41(8):37-42.
[3] 王爽,王玉峰.嗜鹽嗜堿菌株20-13的生物學(xué)特性及系統(tǒng)發(fā)育學(xué)分析[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2013,44(2):42-46.
[4] Sarvari S,Seyedjafari E,Amoozgar MA,et al.Theeffect of moder?ately halophilic bacteria supernatant on proliferation and apopto?sis of cancer cells and mesenchymal stem cells[J].Cellular and Molecular Biology,2015,61(3):30-34.
[5] Gomaa E Z.Biodegradation of polycyclic aromatic hydrocarbons by exopolymers synthesized by moderately halophilic bacteria:Chemical composition and functional properties[J].Journal of Polymers and the Environment,2013,21(2):495-503.
[6] Bajpai P.Microbial degradation of pollutants in pulp mill effluents[J].Advancesin Appllied Microbiology,2001,48:79-134.
[7] Swartz TH,Ikewada S,Ishikawa O,et al.The Mrp system:A giant among monovalent cation/proton antiporters?[J].Extremophiles,2005,9(5):345-354.
[8] Krulwich TA,Hicks D B,Ito M.Cation/proton antiporter comple?ments of bacteria:Why so large and diverse?[J].Molecular Micro?biology,2009,74(2):257-260.
[9] Swartz TH,Ito M,Ohira T,et al.Catalytic propertiesof Staphylo?coccus aureus and Bacillus members of the secondary cation/pro?ton antiporter-3(Mrp)family are revealed by an optimized assay in an Escherichia coli host[J].Journal of Bacteriology,2007,189(8):3081-3090.
[10] Ito M,Guffanti A A,Oudega B,Krulwich TA.mrp,a multigene,multifunctional locus in Bacillus subtilis with roles in resistance to cholate and to Na+and in pH homeostasis[J].Journal of Bacteriology,1999,181(8):2394-2402.
[11] Hamamoto T,Hashimoto M,Hino M,et al.Characterization of a gene responsible for the Na+/H+antiporter system of alkalophilic Bacillus species strain C-125[J].Molecular Microbiology,1994,14(5):939-946.
[12] Kajiyama Y,Otagiri M,Sekiguchi J,et al.Complex formation by the mrpABCDEFG gene products,which constitute a principal Na+/H+antiporter in Bacillus subtilis[J].Journal of Bacteriology,2007,189(20):7511-7514.
[13] Meng L,Hong S,Liu H,et al.Cloning and identification of Group 1 mrp operon encoding a novel monovalent cation/proton antiport?er system from the moderate halophile Halomonas zhaodongensis[J].Extremophiles,2014,18(6):963-972.
[14] Cheng B,Meng Y,Cui Y,et al.Alkaline response of a halotoler?ant alkaliphilic Halomonas strain and functional diversity of its Na+(K+)/H+antiporters[J].Journal of Biological Chemistry,2016,291(50):26056-26065.
[15] Putnoky P,Kereszt A,Nakamura T,et al.The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis en?codes a novel type of K+efflux system[J].Molecular Microbiology,1998,28(6):1091-1101.
[16] Jiang J,Pan Y,Hu S,et al.Halomonas songnenensis sp.nov.,a moderately halophilic bacterium isolated from saline and alkaline soils[J].International Journal of Systematic and Evolutionary Mi?crobiology,2014,64:1662-1669.
[17] Jiang J,Pan Y,Meng L,et al.Halomonas zhaodongensis sp.nov.,a slightly halophilic bacterium isolated from saline-alkaline soils in Zhaodong,China[J].Antonie Van Leeuwenhoek,2013,104(5):685-694.
[18] Dzioba-Winogrodzki J,Winogrodzki O,Krulwich T A,et al.The Vibrio cholerae Mrp system:Cation/proton antiport properties and enhancement of bile salt resistance in a heterologous host[J].Jour?nal of Molecular Microbiology and Biotechnology,2008,16(3-4):176-186.
[19]Harris J R,Lundgren B R,Grzeskowiak B R,et al.A rapid and efficient electroporation method for transformation of Halomonas sp.0-1[J].Journal of Microbiological Methods,2016,129:127-132.
[20] 徐蕊,張苓花.四氫嘧啶吸收缺陷突變株高效制備四氫嘧啶[J].微生物學(xué)報(bào),2012,55(5):661-667.
Construction of Group 2-mrp-knockout mutant of Halomonas songne?nensis and analysis on its halo-alkaline-tolerant capacity
/JIANG uquan,SUN Kaifu,YANG Lina,CHEN Jin,ZHANG Zhenglai
(School of Life Science,Northeast Agricultural University,Harbin 150030,China)
In order to analyze of the halo-alkaline-tolerant capacity of mrp2 operon encoding a Group 2 multi-subunit Na+/H+antiporter in the host Halomonas songnenensis NEAU-ST10-39T,the suicide plasmid of mrp2,p K18mobsac B-mrp2-NcoI,was constructed and then electroporated into the wild type NEAU-ST10-39T.Finally,the mrp2-knockout mutant designated NEAU-ST10-39T-△mrp2 wasobtained by using the homologous recombination and counter-selection on the plate containing 10%sucrose.PCR verification and sequencing analysis showed that mrp2 succeeded in being knockout in the mutant NEAU-ST10-39T-△mrp2.For the confirmation of this result,mrp2 was constructed into a broad-host-range shuttle vector,p BBR1-MCS5,and the resultant construct designated p BBR1-MCS5-mrp2 was electroporated into the mutant NEAU-ST10-39T-△mrp2.The resultant transformant was designated NEAU-ST10-39T-△mrp2/p BBR1-MCS5-mrp2.Growth test for the halo-alkaline tolerance showed that the transformant NEAU-ST10-39T-△mrp2/p BBR1-MCS5-mrp2 exhibited the similar growth to the wild type strain NEAU-ST10-39T.In contrast,the growth of the mutant NEAU-ST10-39T-△mrp2 was inhibited under the highly-saline or highly alkaline conditions,revealing that mrp2 played a critical role in the halo-alkaline tolerance of the host NEAU-ST10-39T.Successful application of gene knockout through the electroporation and construction of the mutant NEAU-ST10-39T-△mrp2 will be very helpful for carrying out the knockout of other halo-alkaline tolerant genes from Halomonas genus and further analysis of the halo-alkaline tolerance of mrp2 in the host NEAU-ST10-39T.
Halomonas songnenensis;Group 2 mrp;knockout;halo-alkaline-tolerance
Q933;Q751
A
1005-9369(2017)12-0011-10
時(shí)間2017-12-18 13:40:08 [URL]http://kns.cnki.net/kcms/detail/23.1391.S.20171218.1339.006.html
姜巨全,孫開福,楊立娜,等.松嫩鹽單胞菌中Group 2 mrp操縱子敲除及突變株耐鹽堿分析[J].東北農(nóng)業(yè)大學(xué)學(xué)報(bào),2017,48(12):11-20.
Jiang Juquan,Sun Kaifu,Yang Lina,et al.Construction of Group 2-mrp-knockout mutant of Halomonas songnenensis and analysis on its halo-alkaline-tolerant capacity[J].Journal of Northeast Agricultural University,2017,48(12):11-20.(in Chinese with English abstract)
2017-05-05
國(guó)家自然科學(xué)基金項(xiàng)目(31570045);黑龍江省自然科學(xué)基金項(xiàng)目(C201417);博士后科研啟動(dòng)資金(LBH-Q14022)
姜巨全(1977-),男,教授,博士,博士生導(dǎo)師,研究方向主要為分子微生物學(xué)與生物制藥。E-mail:jjqdainty@163.com.