許廣舉, 趙 洋, 李銘迪, 陳慶樟, 李廣華
常熟理工學(xué)院汽車工程學(xué)院, 江蘇 常熟 215500
廢氣再循環(huán)系統(tǒng)參數(shù)對柴油機(jī)燃燒特征的影響
許廣舉, 趙 洋*, 李銘迪, 陳慶樟, 李廣華
常熟理工學(xué)院汽車工程學(xué)院, 江蘇 常熟 215500
為進(jìn)一步優(yōu)化柴油機(jī)燃燒過程,減少燃燒污染物排放. 圍繞EGR(exhaust gas recirculation,廢氣再循環(huán)技術(shù))廢氣組分和廢氣溫度等系統(tǒng)參數(shù)對柴油機(jī)燃燒特征的影響機(jī)制,采用試驗與模擬相結(jié)合方法,分別研究了通入廢氣、N2、CO2時以及不同EGR廢氣溫度時對柴油機(jī)燃燒過程的影響,闡明了燃燒關(guān)鍵中間產(chǎn)物的生成規(guī)律. 結(jié)果表明,①通入CO2時,柴油機(jī)的缸內(nèi)最大爆發(fā)壓力和放熱率峰值最低,滯燃期最長,燃燒持續(xù)期最短,·OH、H2O2、CH2O·和CO等關(guān)鍵中間組分的生成規(guī)律與通入N2時相反. ②通入N2時,柴油機(jī)的缸內(nèi)最大爆發(fā)壓力和放熱率峰值最高,滯燃期最短,燃燒持續(xù)期最長并;并且通入N2時,·OH的峰值最高,形成時刻最早,H2O2、CH2O·以及CO的峰值均有所降低且形成時刻提前. ③隨著廢氣溫度增加,缸內(nèi)最大爆發(fā)壓力降低,放熱率曲線由單峰向雙峰分布發(fā)展,放熱率峰值有較大幅度的降低,滯燃期縮短,燃燒持續(xù)延長,缸內(nèi)·OH、H2O2、CH2O·以及CO的峰值均有所降低,并且生成的區(qū)域范圍變窄. ④廢氣成分中,CO2對燃燒過程和關(guān)鍵中間產(chǎn)物的影響最大,是阻滯燃燒反應(yīng)的主要?dú)怏w成分,通過控制EGR廢氣成分和溫度可以有效改善柴油機(jī)燃燒過程,拓寬EGR技術(shù)的工況使用范圍. 研究顯示,EGR廢氣成分對燃燒中間產(chǎn)物的自由基衍化歷程影響較大,有必要進(jìn)一步開展EGR廢氣成分預(yù)處理研究,精確控制EGR廢氣溫度,有助于改善燃燒過程,控制排放污染物中間產(chǎn)物的生成歷程和排放量.
廢氣再循環(huán); 柴油機(jī); 燃燒; 溫度; 氣體成分
廢氣再循環(huán)技術(shù)(exhaust gas recirculation,EGR)是柴油機(jī)空氣預(yù)處理的重要手段,也是滿足未來柴油機(jī)排放法規(guī)要求的關(guān)鍵技術(shù). EGR具有稀釋可燃混合氣,降低燃燒溫度的作用,無論是傳統(tǒng)燃燒模式,還是新型高效清潔燃燒模式下,EGR技術(shù)都是改善柴油機(jī)性能,降低NOx排放的關(guān)鍵技術(shù)[1-2]. 采用EGR技術(shù)后,將燃燒廢氣引入氣缸,改變了進(jìn)氣成分,稀釋了缸內(nèi)混合氣的氧氣濃度,提高了進(jìn)氣溫度,達(dá)到了改善燃燒過程的作用.
圖1 試驗裝置Fig.1 Schematic diagram of test apparatus
國內(nèi)外學(xué)者針對EGR技術(shù)在柴油機(jī)上的應(yīng)用,開展了大量理論和試驗研究,主要集中在EGR與缸內(nèi)壓力、放熱率等燃燒特性參數(shù)[3-4],以及EGR與NOx、PM等排放污染物的影響機(jī)制[5-6]. Jain等[7]研究表明進(jìn)氣中氧氣的稀釋對發(fā)動機(jī)功率和熱效率影響較小,但對缸內(nèi)溫度峰值、壓力和放熱率的影響較大. Ladommatos等[8]研究了EGR廢氣中CO2和水蒸氣的稀釋、化學(xué)和熱效應(yīng),認(rèn)為稀釋效應(yīng)是EGR影響燃燒過程的主要原因. Hountalasa等[9]研究結(jié)果表明,降低EGR溫度能夠提高柴油機(jī)燃油經(jīng)濟(jì)性,減少碳煙和NOx排放,低EGR溫度對改善柴油機(jī)性能和排放指標(biāo)具有明顯效果. Maiboom等[10]研究了由于應(yīng)用EGR技術(shù)引起的進(jìn)氣溫度升高、燃燒放熱率(ROHR)延遲和燃空當(dāng)量比(AFR)降低等現(xiàn)象對柴油機(jī)燃燒和排放的影響,發(fā)現(xiàn)在較低平均指示壓力條件下,定壓增壓系統(tǒng)中使用高的EGR率可以大幅度的降低NOx和PM排放量.
為進(jìn)一步優(yōu)化柴油機(jī)燃燒過程,減少燃燒污染物排放. 該文研究了EGR廢氣組分和廢氣溫度等系統(tǒng)參數(shù)對柴油機(jī)燃燒特征的影響,采用試驗與模擬相結(jié)合方法,分別研究了廢氣成分和廢氣溫度對柴油機(jī)燃燒過程的影響,分析了缸內(nèi)壓力、放熱率、滯燃期等燃燒特征參數(shù)的變化規(guī)律,探討了·OH、H2O2、CH2O· 等燃燒關(guān)鍵中間產(chǎn)物的生成規(guī)律. 以期為揭示EGR對柴油機(jī)燃燒過程的影響機(jī)理,拓寬EGR工況使用范圍提供相關(guān)基礎(chǔ)數(shù)據(jù)和理論依據(jù).
由于原機(jī)沒有采用EGR技術(shù),試驗采用外部EGR方法對原機(jī)進(jìn)行改裝. 外部EGR系統(tǒng)主要包括單向閥、冷卻器、EGR閥等. 再循環(huán)廢氣通過EGR閥進(jìn)入EGR冷卻器,之后通過單向閥進(jìn)入進(jìn)氣管并和新鮮空氣一起進(jìn)入氣缸,試驗系統(tǒng)如圖1所示.
試驗中采用的EGR閥為耐高溫球閥,通過調(diào)節(jié)EGR閥開度,采用氣體分析儀分別測量進(jìn)氣和排氣中的CO2濃度,以計算EGR率. 采用管殼式EGR冷卻器對EGR廢氣溫度進(jìn)行控制. EGR廢氣中主要包含N2、CO2和少量水蒸氣以及不完全燃燒產(chǎn)物等,該文重點(diǎn)研究EGR廢氣中N2和CO2兩種氣體的比例對燃燒過程的影響,試驗過程中,通過調(diào)節(jié)惰性氣罐閥門開度,控制進(jìn)入氣缸中N2和CO2的流量,利用穩(wěn)壓箱減緩惰性氣罐中的高速、高壓氣體對進(jìn)氣管路內(nèi)壓力的影響. 試驗工況為柴油機(jī)最大扭矩工況點(diǎn),即轉(zhuǎn)速 2 000 rmin,平均指示壓力0.73 MPa,EGR率為30%,分別考察了EGR廢氣成分和EGR廢氣溫度對缸內(nèi)壓力、放熱率等燃燒特征參數(shù)的影響.
根據(jù)燃燒室的幾何形狀以及相應(yīng)的幾何位置等特征,建立柴油機(jī)燃燒室的三維幾何模型,采用Hypermesh軟件進(jìn)行燃燒室三維網(wǎng)格劃分,使用AVL FIRE軟件的動網(wǎng)格生成工具,建立燃燒室和氣缸工作容積的總體動網(wǎng)格,如圖2所示. 為了減少計算量,計算網(wǎng)格采用了整個燃燒室的14,網(wǎng)格單元 22 225 個,網(wǎng)格節(jié)點(diǎn) 25 012 個. 氣體湍流模型選用了標(biāo)準(zhǔn)k-ε氣體湍流模型及Enable湍流擴(kuò)散模型;燃油噴霧模型中選用了Schmidt-O′Rouke粒子相互作用模型、Walljet1液滴碰壁模型、KH-RT液滴破碎模型及Multi-Component液滴蒸發(fā)模型;湍流燃燒模型選用ECFM-3Z燃燒模型[11-13],該模型自帶點(diǎn)火模塊,選用Table著火模型;采用SimplePiso算法進(jìn)行計算. 進(jìn)氣門關(guān)閉時刻的計算初始條件參照實際柴油機(jī)臺架試驗數(shù)據(jù).
圖2 燃燒室計算網(wǎng)格Fig.2 Combustion chamber calculation grid
計算始點(diǎn)為進(jìn)氣門關(guān)閉時刻,即136°CA BTDC,終點(diǎn)為排氣門開啟時刻,即126°CA ATDC,計算步長為0.5°CA步,通過設(shè)定氣缸蓋、氣缸壁和燃燒室頂面平均溫度作為溫度邊界條件,氣缸蓋、氣缸壁和燃燒室頂面平均溫度分別設(shè)定為543、453、563 K. 初始渦流比為1.8,噴射正時為10°CA,噴油壓力為80 MPa,噴霧錐角為148°CA,噴孔數(shù)和噴孔孔徑為4×0.22 mm.
通過比較示功圖仿真結(jié)果與實際測量結(jié)果的壓力數(shù)據(jù),驗證計算模型的準(zhǔn)確性,參照現(xiàn)有臺架試驗結(jié)果,采用建立的14燃燒室模型,計算了柴油機(jī)轉(zhuǎn)速 2 000 rmin,EGR率為30%,平均指示壓力0.73 MPa時的缸內(nèi)壓力變化情況,并與臺架試驗的實際測量結(jié)果進(jìn)行比較,如圖3所示. 由圖3可以看出,在其他工況參數(shù)相同的條件下,計算得到的柴油機(jī)缸內(nèi)壓力數(shù)據(jù)均略低于臺架試驗數(shù)據(jù),但壓力變化趨勢與臺架試驗數(shù)值吻合度良好,說明所建立的計算模型能夠較為準(zhǔn)確的反映柴油機(jī)燃燒情況.
圖3 缸內(nèi)壓力計算值與試驗值對比Fig.3 Comparison of calculated and experimental values of cylinder pressure
圖4 氣體成分對缸內(nèi)壓力和放熱率影響Fig.4 Comparison of cylinder pressure and heat releaserate in different indicated mean effective pressure
柴油機(jī)EGR率為30%,平均指示壓力0.73 MPa時,分別通入廢氣、N2和CO23種氣體,測量了柴油機(jī)缸內(nèi)壓力和放熱率的變化情況,圖4(a)為分別通入3種氣體時柴油機(jī)的缸內(nèi)壓力變化情況. 可以看出,通入N2氣體時,柴油機(jī)的最高爆發(fā)壓力最高,可達(dá)12.3 MPa. 通入CO2氣體時,柴油機(jī)的最高爆發(fā)壓力最低,僅為11.4 MPa. 通入廢氣時的缸內(nèi)壓力介于N2和CO2之間. 這是由于,CO2的比熱容值較高,能夠較多的吸收缸內(nèi)熱量,降低缸內(nèi)燃燒溫度,其缸內(nèi)最大爆發(fā)壓力最低,在實際廢氣中,絕大部分氣體成分是N2,因此通入廢氣和N2時柴油機(jī)的最高燃燒壓力較為接近. 圖4(b)為分別通入3種氣體時柴油機(jī)的放熱率變化情況,可以看出,通入N2時柴油機(jī)的放熱率峰值最高,約為95.8 Jdeg,通入CO2時柴油機(jī)的放熱率峰值最低,僅為84.4 Jdeg. 原因在于,由于CO2的比熱容值較高,導(dǎo)致噴油時刻缸內(nèi)混合氣溫度較低,在進(jìn)氣壓力不變條件下,CO2對進(jìn)氣氧濃度起到一定的稀釋作用,在高熱容、低氧濃度的缸內(nèi)氛圍條件下,滯燃期延長,著火時刻推后,并且遠(yuǎn)離上止點(diǎn),造成缸內(nèi)最高爆發(fā)壓力急劇降低,放熱率峰值降低,峰值對應(yīng)的曲軸轉(zhuǎn)角推遲.
柴油機(jī)EGR率為30%,平均指示壓力0.73 MPa時,分別通入廢氣、N2和CO23種氣體,測量了柴油機(jī)滯燃期的變化情況. 圖5為氣體成分對燃燒持續(xù)期和滯燃期的影響規(guī)律,由圖5可以看出,通入CO2氣體時,柴油機(jī)的滯燃期最長,約為17.2°CA,燃燒持續(xù)期最短,約為28.2°CA,通入廢氣時,柴油機(jī)滯燃期最短,僅為15.1°CA,通入N2時柴油機(jī)滯燃期約為15.6°CA,并且通入廢氣和N2時,柴油機(jī)的燃燒持續(xù)期比較接近,約為32°CA. 原因在于,CO2對進(jìn)氣氧濃度產(chǎn)生的稀釋效應(yīng),氧濃度降低,缸內(nèi)燃油和新鮮空氣的混合速率降低,達(dá)到著火要求需要更長的混合時間,導(dǎo)致滯燃期增加,著火時刻推后,混合氣變濃,燃料不能完全燃燒,燃燒結(jié)束較早,導(dǎo)致燃燒持續(xù)期縮短. 而N2的比熱容值較小,僅起到對進(jìn)氣氧濃度的稀釋作用,著火前的缸內(nèi)溫度較高,對燃燒持續(xù)期的影響較小.
圖5 氣體成分對滯燃期和燃燒持續(xù)期的影響Fig.5 The influence of gas composition on the duration of combustion delay and combustion duration
EGR廢氣溫度不僅會對進(jìn)氣溫度產(chǎn)生影響,也會間接影響柴油機(jī)的循環(huán)進(jìn)氣量,進(jìn)而對柴油機(jī)缸內(nèi)的霧化、混合、著火等整個燃燒過程產(chǎn)生影響[14-15]. 同時,噴油時刻缸內(nèi)溫度對于混合氣著火難易程度和滯燃期具有很大影響[16-21],為進(jìn)一步分析廢氣溫度對燃燒持續(xù)期、滯燃期等特征參數(shù)的影響,按照式(1)~(3)計算了EGR溫度分別為298、323、373和423 K時的噴油時刻缸內(nèi)溫度,計算過程中假設(shè)柴油機(jī)的壓縮過程為絕熱過程.
P1V1=nRT1
(1)
P2V2=nRT2
(2)
T2=(V1V2)k-1·T1
(3)
式中:P1為進(jìn)氣門關(guān)閉時刻的氣缸壓力,MPa;T1為進(jìn)氣門關(guān)閉時刻缸內(nèi)溫度,K;V1為進(jìn)氣門關(guān)閉時刻氣缸容積,L;n為氣體物質(zhì)的量,mol;P2為噴油時刻氣缸的氣缸壓力,MPa;T2為噴油時刻缸內(nèi)溫度,K;V2為噴油時刻氣缸容積,L;R為通用氣體常數(shù),8.314 J(mol·K);k為絕熱常數(shù)(>1),主要與氣體溫度和氣體種類有關(guān),取值1.373.V1V2為氣缸容積比,12.3. 通過計算表明,進(jìn)氣溫度的增加會放大噴油時刻約2.5倍,導(dǎo)致缸內(nèi)溫度升高.
圖6 廢氣溫度對滯燃期和燃燒持續(xù)期的影響Fig.6 Influence of EGR temperature on the ignition delay period and combustion duration
通過調(diào)節(jié)EGR中冷器溫度,控制引入氣缸的EGR廢氣溫度分別為423、373、323和298 K. 在柴油機(jī)循環(huán)噴油量、噴油時刻固定的情況下,考察了柴油機(jī)轉(zhuǎn)速為 2 000 rmin、平均指示壓力為0.73 MPa、EGR率為30%時,EGR廢氣溫度對燃燒持續(xù)期和滯燃期的影響. 測量結(jié)果見圖6所示. 可以看出,柴油機(jī)燃燒持續(xù)期呈隨廢氣溫度的升高而增加的趨勢,當(dāng)廢氣溫度為298 K時,燃燒持續(xù)期為29.5°CA,當(dāng)廢氣溫度為423 K時,燃燒持續(xù)期為31.8°CA,柴油機(jī)滯燃期呈隨廢氣溫度的升高而降低的趨勢,當(dāng)廢氣溫度為298 K時,滯燃期為16.2°CA,當(dāng)廢氣溫度為423 K時,滯燃期為15.2°CA. 原因在于,隨著廢氣溫度增加,廢氣對進(jìn)氣的熱節(jié)流作用增加,氣缸內(nèi)的氧濃度降低,燃燒速率降低,并且噴油時刻缸內(nèi)溫度較高,混合氣達(dá)到自燃溫度時的相位提前,由于廢氣溫度升高導(dǎo)致著火時刻提前,預(yù)混燃燒比例減少,擴(kuò)散燃燒比例增大,預(yù)混期內(nèi)油氣混合質(zhì)量變差,噴油時刻缸內(nèi)溫度升高削弱了進(jìn)氣熱節(jié)流作用,導(dǎo)致滯燃期縮短,混合氣變稀,燃燒結(jié)束時刻推后,燃燒持續(xù)期延長.
在柴油機(jī)EGR率為30%,平均指示壓力0.73 MPa的條件下,分別通入廢氣、N2和CO23種氣體,考察了氣體成分對燃燒中間產(chǎn)物的影響,重點(diǎn)分析了通入3種氣體時柴油機(jī)缸內(nèi)·OH、H2O2、CH2O·、CO的生成規(guī)律. 測量結(jié)果見圖7所示,從圖7(a) 可以看出,與通入廢氣時相比,通入N2時,·OH的峰值最高,形成時刻最早;通入CO2時,·OH的峰值明顯降低,形成時刻最晚. 從圖7(b)和圖7(c)中可以看出,與通入廢氣時相比,通入N2時,H2O2以及CH2O·的峰值均有所降低且形成時刻有所提前;通入CO2時,峰值均有明顯升高且形成時刻推遲. 與N2相比,通入CO2后,在CO2高熱容值以及對進(jìn)氣氧濃度稀釋作用下,使缸內(nèi)燃燒溫度有較大幅度降低,對產(chǎn)生·OH的反應(yīng)H2O2+M→OH+OH+M阻滯作用較強(qiáng),同時導(dǎo)致CO的生成時刻也有所推遲[22-25]〔見圖7(d)〕. 但由于引入CO2后,一方面燃燒溫度降低,不利于CO氧化轉(zhuǎn)化成CO2;另一方面,燃燒過程中在高溫作用下,CO2會與C產(chǎn)生反應(yīng),生成大量CO;在兩者共同作用下,導(dǎo)致與通入廢氣相比,只通入CO2時CO峰值有較大幅度增加. 綜上所述,EGR廢氣成分中,CO2對燃燒關(guān)鍵中間產(chǎn)物的影響最大,是阻滯燃燒的主要?dú)怏w成分.
圖7 氣體成分對燃燒關(guān)鍵中間產(chǎn)物的影響Fig.7 Effect of EGR gas composition on the key intermediate products of combustion
廢氣溫度K: 1—298; 2—323; 3—373; 4—423.圖8 廢氣溫度對燃燒關(guān)鍵中間產(chǎn)物的影響Fig.8 Effect of EGR temperature on the key intermediate products of combustion
燃燒過程中一些關(guān)鍵中間產(chǎn)物的形成過程對溫度的敏感性較高,柴油機(jī)采用EGR技術(shù)后,除了將柴油機(jī)燃燒產(chǎn)生的CO2、N2等氣體成分再次引入氣缸,還會對進(jìn)氣產(chǎn)生加熱效果,改變?nèi)紵^程中關(guān)鍵中間產(chǎn)物的生成條件[26-29]. 圖8為EGR廢氣溫度對燃燒中間產(chǎn)物的影響. 可以看出,由于廢氣溫度增加,達(dá)到柴油、H2O2等分解所需溫度的時間較短,低溫反應(yīng)時間提前,反應(yīng)速率加快,使·OH、H2O2、CH2O·以及CO生成時刻均有所提前,但隨著EGR廢氣溫度增加,對進(jìn)氣的熱節(jié)流作用增大,導(dǎo)致缸內(nèi)氧氣含量下降,并起到主導(dǎo)作用,導(dǎo)致柴油脫氫、加氧反應(yīng)以及H2O2的分解反應(yīng)受阻,使·OH、H2O2、CH2O·以及CO的峰值均有所降低,生成的區(qū)域范圍縮小.
a) 通入N2氣體時,柴油機(jī)的最高爆發(fā)壓力最高,可達(dá)12.3 MPa. 通入CO2氣體時,柴油機(jī)的最高爆發(fā)壓力最低,僅為11.4 MPa,CO2的比熱容值較高,能夠較多的吸收缸內(nèi)熱量,降低缸內(nèi)燃燒溫度和最大爆發(fā)壓力,通入N2時柴油機(jī)的放熱率峰值最高,約為95.8 Jdeg.
b) 通入CO2氣體時,柴油機(jī)的滯燃期最長,約為17.2°CA,燃燒持續(xù)期最短,約為28.2°CA,CO2對進(jìn)氣氧濃度產(chǎn)生的稀釋效應(yīng),氧濃度降低,缸內(nèi)燃油和新鮮空氣的混合速率降低,達(dá)到著火要求需要更長的混合時間. 隨著廢氣溫度增加,廢氣對進(jìn)氣的熱節(jié)流作用增加,缸內(nèi)燃燒速率降低,混合氣達(dá)到自燃溫度時的相位提前,導(dǎo)致滯燃期縮短,混合氣變稀,燃燒結(jié)束時刻推后,燃燒持續(xù)期延長.
c) 通入N2時,·OH的峰值最高,形成時刻最早;通入CO2時,·OH的峰值明顯降低,形成時刻最晚,在CO2高熱容值以及對進(jìn)氣氧濃度稀釋作用下,缸內(nèi)燃燒溫度有較大幅度降低,CO2對燃燒關(guān)鍵中間產(chǎn)物的影響最大,是阻滯燃燒的主要?dú)怏w成分. 隨著EGR廢氣溫度增加,導(dǎo)致柴油脫氫、加氧反應(yīng)以及H2O2的分解反應(yīng)受阻,使·OH、H2O2、CH2O·以及CO的峰值均有所降低,生成的區(qū)域范圍縮小.
[1] MAIBOOM A,TAUZIA X,HETET J F.Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine[J].Energy,2008,33(1):22-34.
[2] 李鐵,鈴木勝,小川英之.壓縮比及燃料十六烷值對超高EGR低溫燃燒的影響[J].汽車安全與節(jié)能學(xué)報,2010,1(1):74-82.
LI Tie,SUZUKI M,OGAWA H.Effects of compression ratio and fuel cetane number on ultra-high EGR low temperature diesel combustion[J].Journal of Automotive Safety & Energy,2010,1(1):74-82.
[3] ZERAATI-REZAEI S,Al-QAHTANI Y,XU H.Investigation of hot-EGR and low pressure injection strategy for a dieseline fuelled PCI engine[J].Fuel,2017,207:165-178.
[4] 鄭朝蕾.柴油機(jī)高效清潔燃燒方式基礎(chǔ)理論研究[D].天津:天津大學(xué),2008:132-138.
[5] ASAD U,ZHENG Ming.Efficacy of EGR and boost in single-injection enabled low temperature combustion[J].SAE International Journal of Engines,2009,2(1):1085-1097.
[6] ASAD U,ZHENG Ming,HAN Xiaoye,etal.Fuel injection strategies to improve emissions and efficiency of high compression ratio diesel engines[J].SAE International Journal of Engines,2009,1(1):1220-1233.
[7] JAIN A,SINGH A P,AGARWAL A K.Effect of split fuel injection and EGR on NOxand PM emission reduction in a low temperature combustion (LTC) mode diesel engine[J].Energy,2017,122:249-264.
[8] LADOMMATOS N,ABDELHALIM S M,ZHAO Hua,etal.The dilution,chemical,and thermal effects of exhaust gas recirculation on diesel engine emissions-part 2:effect of reducing inlet charge oxygen[J].Sae Technical Papers,1996:961167-961182.
[9] HOUNTALAS D T,MAVROPOULOS G C,BINDER K B.Effect of exhaust gas recirculation (EGR) temperature for various EGR rates on heavy duty DI diesel engine performance and emissions[J].Energy,2008,33(2):272-283.
[10] MAIBOOM A,TAUZIA X,HETET J F.Experimental study of various effects of exhaust gas recirculation (EGR) on combustion and emissions of an automotive direct injection diesel engine[J].Energy,2008,33(1):22-34.
[11] CHEN Hanyu,ZUO Chengji,DING Haichun,etal.Numerical simulation on combustion processes of a diesel engine under O2CO2atmosphere[J].HKIE Transactions,2013,20(3):157-163.
[12] 陳歡,魏勝利,湯東,等.帶雙ω燃燒室柴油機(jī)燃燒和排放特性的數(shù)值模擬[J].汽車工程,2014,36(4):426-431.
CHEN Huan,WEI Shengli,TANG Dong,etal.Numerical simulation on the combustion and emission characteristics of a diesel engine with doubleωcombustion chamber[J].Automotive Engineering,2014,36(4):426-431.
[13] LUO Fuqiang,LIANG Yu,LIU Yufeng,etal.Three-dimension simulation on combustion process in a biogas diesel dual-fuel engine[J].Transactions of the Chinese Society for Agricultural Machinery,2008,39(1):20-24.
[14] 吳偉光,仇煥廣,徐志剛.生物柴油發(fā)展現(xiàn)狀、影響與展望[J].農(nóng)業(yè)工程學(xué)報,2009,25(3):298-302.
WU Weiguang,QIU Huanguang,XU Zhigang.Biodiesel development:current status,potential impacts and perspectives[J].Transactions of the Chinese Society of Agricultural Engineering,2009,25(3):298-302.
[16] 王忠,吳婧,毛功平,等.抗氧化劑對生物柴油排放的影響[J].農(nóng)業(yè)工程學(xué)報,2014,30(24):266-271.
WANG Zhong,WU Jing,MAO Gongping,etal.Effect of antioxidants on emission of biodiesel[J].Transactions of the Chinese Society of Agricultural Engineering,2014,30(24):266-271.
[17] 李銘迪,王忠,許廣舉,等.乙醇柴油混合燃料燃燒過程與排放試驗研究[J].農(nóng)業(yè)工程學(xué)報,2012,28(2):29-34.
LI Mingdi,WANG Zhong,XU Guangju,etal.Experimental investigation on combustion and emission characteristics of diesel engine fueled with ethanoldiesel blends[J].Transactions of the Chinese Society of Agricultural Engineering,2012,28(2):29-34.
[18] 胡志遠(yuǎn),譚丕強(qiáng),樓狄明,等.不同原料制備生物柴油生命周期能耗和排放評價[J].農(nóng)業(yè)工程學(xué)報,2006,22(11):141-146.
HU Zhiyuan,TAN Piqiang,LOU Diming,etal.Assessment of life cycle energy consumption and emissions for several kinds of feedstock based bio diesel[J].Transactions of the Chinese Society of Agricultural Engineering,2006,22(11):141-146.
[19] 張煒,宋崇林,李方成,等.乙醇柴油混合燃料醛、酮類污染物排放特性的研究[J].內(nèi)燃機(jī)學(xué)報,2008,26(3):238-242.
ZHANG Wei,SONG Chonglin,LI Fangcheng,etal.Study on carbonyl emissions from an engine fueled with ethanoldiesel blends[J].Transactions of CSICE,2008,26(3):238-242.
[20] 姚春德,彭紅梅,劉義亭,等.柴油甲醇組合燃燒尾氣中甲醛排放特性研究[J].內(nèi)燃機(jī)學(xué)報,2008,26(3):233-237.
YAO Chunde,PENG Hongmei,LIU Yiting,etal.Form aldehyde emission characteristic from dieselmethanol compound combustion engine[J].Transactions of CSICE,2008,26(3):233-237.
[21] 許廣舉,王忠,李立琳,等.預(yù)混火焰條件下生物柴油羰基物的生成與影響因素分析[J].工程熱物理學(xué)報,2011,32(12):2137-2141.
XU Guangju,WANG Zhong,LI Liling,etal.The production and affect factors of biodiesel carbonyl pollutants in the premixed flame conditions[J].Journal of engineering thermophysics,2011,32(12):2137-2141.
[22] CHEN Zheng,LIU Jingping,WU Zhenkuo,etal.Effects of port fuel injection (PFI) of N-butanol and EGR on combustion and emissions of a direct injection diesel engine[J].Energy Conversion & Management,2013,76(30):725-731.
[23] PENG Haiyong,CUI Yi,SHI Lei,etal.Effects of exhaust gas recirculation (EGR) on combustion and emissions during cold start of direct injection (DI) diesel engine[J].Energy,2008,33(3):471-479.
[24] CHO Y S,SONG S H,CHUN K M.H2effects on diesel combustion and emissions with an LPL-EGR system[J].International Journal of Hydrogen Energy,2013,38(23):9897-9906.
[25] FATHI M,SARAY R K,CHECKEL M D.The influence of exhaust gas recirculation (EGR) on combustion and emissions of n-heptanenatural gas fueled homogeneous charge compression ignition (HCCI) engines[J].Applied Energy,2011,88(12):4719-4724.
[26] ELDOSOKY M A A.Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine[J].Applied Energy,2014,134:1-10.
[27] ROHANI B,BAE C.Effect of exhaust gas recirculation (EGR) and multiple injections on diesel soot nano-structure and reactivity[J].Applied Thermal Engineering,2017,116:160-169.
[28] PIROUZPANAH V,SARAY R K,SOHRABI A,etal.Comparison of thermal and radical effects of EGR gases on combustion process in dual fuel engines at part loads[J].Energy Conversion & Management,2007,48(7):1909-1918.
[29] KIM S K,WAKISAKA T,AOYAGI Y.A numerical study of the effects of boost pressure and exhaust gas recirculation ratio on the combustion process and exhaust emissions in a diesel engine[J].International Journal of Engine Research,2007,8(2):147-162.
EffectsofExhaustGasRecirculationSystemParametersonCombustionCharacteristicsofDieselEngines
XU Guangju, ZHAO Yang*, LI Mingdi, CHEN Qingzhang, LI Guanghua
Department of Automobile Engineering, Changshu Institute of Technology, Changshu 215500, China
In order to optimize the combustion process of diesel engines and to reduce the emissions of pollutants,the effects of exhaust gas composition and temperature during exhaust gas recirculation (EGR) on combustion characteristic of diesel engines were systematically studied by combing experiments and simulations. In particular,we examined the influence of N2,CO2and different EGR exhaust gas temperature on the combustion process of diesel engines. The results showed that,compared with exhaust gas and N2,the engine obtained maximum cylinder explosion pressure,lowest heat release rate peak,longest combustion delay period and shortest combustion duration by adding CO2. The engine obtained maximum cylinder explosion pressure,maximum heat release rate,minimum combustion delay period and longest combustion duration by adding N2. Compared with EGR,the ·OH free radical,which is formed first,reached the highest peak with the single inlet of N2,whereas the peaks of H2O2,CH2O· and CO free radicals were reduced slightly and formations were moved forward. When CO2was introduced into the engine,the formation of key intermediate components such as ·OH,H2O2,CH2O· and CO was contrary to the N2. When exhaust gas was introduced into the engine,the combustion characteristic parameters,the critical intermediate component generation and generation time of the diesel engine were between N2and CO2. With the increase of EGR exhaust temperature,the maximum cylinder explosion pressure decreased,the heat release rate curve developed from a single peak to double peak,the peak value of heat release rate decreased greatly,the ignition delay period was shortened,the combustion duration was prolonged,the peak values of ·OH,H2O2,CH2O·,free radical and CO were decreased and the range of the generated region was shortened. The influence of CO2on the combustion process and the key intermediate products was greater than N2. Because CO2is the main component of the gas combustion reaction,the combustion process of diesel engines can be improved effectively and the working range of EGR can be widened by controlling the composition and temperature of EGR exhaust gas.
exhaust gas recirculation; diesel engine; combustion; temperature; gas compositio
2016-11-09
2017-09-19
江蘇省自然科學(xué)青年基金項目(BK20160406);江蘇省高校自然科學(xué)研究面上項目(15KJB470001);蘇州市應(yīng)用基礎(chǔ)研究項目(SYG201515)
許廣舉(1984-),男,山東煙臺人,副教授,博士,主要從事汽車代用燃料與排放控制研究,xuguangju@cslg.edu.cn.
*責(zé)任作者,趙洋(1987-),男,江蘇連云港人,講師,博士,主要從事汽車排放控制研究,171553404@qq.com
許廣舉,趙洋,李銘迪,等.廢氣再循環(huán)系統(tǒng)參數(shù)對柴油機(jī)燃燒特征的影響[J].環(huán)境科學(xué)研究,2017,30(12):1954-1960.
XU Guangju,ZHAO Yang,LI Mingdi,etal.Effects of exhaust gas recirculation system parameters on combustion characteristics of diesel engines[J].Research of Environmental Sciences,2017,30(12):1954-1960.
X51
1001-6929(2017)12-1954-07
A
10.13198j.issn.1001-6929.2017.03.44