劉亞勇, 張文杰, 白志鵬, 楊 文, 趙雪艷, 韓 斌, 王歆華
中國(guó)環(huán)境科學(xué)研究院, 環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評(píng)估國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 100012
我國(guó)典型燃煤源和工業(yè)過(guò)程源排放PM2.5成分譜特征
劉亞勇, 張文杰*, 白志鵬, 楊 文, 趙雪艷, 韓 斌, 王歆華
中國(guó)環(huán)境科學(xué)研究院, 環(huán)境基準(zhǔn)與風(fēng)險(xiǎn)評(píng)估國(guó)家重點(diǎn)實(shí)驗(yàn)室, 北京 100012
鑒于我國(guó)本地化源譜(源成分譜)數(shù)量不足的現(xiàn)狀,采用稀釋通道系統(tǒng)對(duì)燃煤源和工業(yè)過(guò)程源進(jìn)行采樣,建立了4類(lèi)燃煤鍋爐(鏈條爐、流化床、往復(fù)爐和煤粉爐)和6類(lèi)工業(yè)過(guò)程源(煉鐵、鋁焙燒、鋁煅燒、磚瓦爐、水泥窯頭和窯尾)的PM2.5成分譜,并對(duì)源譜特征進(jìn)行研究. 結(jié)果表明:①不同源譜組分特征差異明顯. 水泥窯爐排放的PM2.5中,w(Ca)、w(Si)、w(OC)、w(SO42-)較高,分別為8.51%~14.18%、5.69%~11.80%、3.47%~15.56%、8.67%~16.85%;燃煤鍋爐中Al(4.50%~8.67%,質(zhì)量分?jǐn)?shù),余同)、OC(6.44%~15.33%)、SO42-(9.85%~22.87%)組分貢獻(xiàn)較大;煉鐵和鋁冶煉工藝源譜中主導(dǎo)化學(xué)組分分別為Fe(8.57%~9.88%)和Al(11.81%~16.58%);磚瓦爐顆粒物源譜中主要組分為SO42-、NH4+、Si等. ②不同污染源PM2.5成分譜的分歧系數(shù)結(jié)果顯示,流化床和煤粉爐、水泥窯頭和窯尾源譜較為相似,其分歧系數(shù)分別為0.26和0.28,其余源譜間均存在一定差異. 進(jìn)一步計(jì)算組分差異權(quán)重(RU)發(fā)現(xiàn),往復(fù)爐源譜中組分Zn、Sn與其他3類(lèi)鍋爐有明顯不同. 流化床煤粉爐源譜中的Si、Ni,窯頭窯尾源譜中的K、Mn、OC組分差異顯著,可以作為區(qū)分相似源譜的標(biāo)識(shí)組分. 與其他研究建立的源譜相比,燃煤源譜中w(EC)和w(SO42-)偏高. 鋼鐵源譜中w(EC)和w(NH4+)較其他地區(qū)偏高,w(Pb)偏低;工業(yè)過(guò)程源譜中,w(Cl-)較SPECIATE相關(guān)源譜偏低,而w(Ⅴ)和w(Cr)偏高. 鑒于顆粒物源譜受到不同燃料種類(lèi)、燃燒方式和煙氣控制設(shè)施等影響而存在差異,源譜的準(zhǔn)確性和代表性還需進(jìn)一步測(cè)試和驗(yàn)證.
PM2.5成分譜; 燃煤源; 工業(yè)過(guò)程源
近年來(lái),我國(guó)大范圍的霾污染時(shí)有發(fā)生,PM2.5濃度居高不下,已經(jīng)嚴(yán)重影響到大氣環(huán)境質(zhì)量[1-3]、氣候變化[4]和人體健康[5]. ZHANG等[6]討論了我國(guó)大氣污染治理所面臨的挑戰(zhàn),并指出我國(guó)應(yīng)改變粗放型的經(jīng)濟(jì)發(fā)展方式,限制化石燃料的使用.2013年9月,國(guó)務(wù)院發(fā)布《大氣污染防治行動(dòng)計(jì)劃》,力促環(huán)境空氣質(zhì)量改善,向PM2.5宣戰(zhàn)[7]. 為了準(zhǔn)確識(shí)別污染源,制訂合理的控制措施,環(huán)境保護(hù)部于2013年8月發(fā)布《大氣顆粒物來(lái)源解析技術(shù)指南(試行)》,北京[8]、天津[9]、廈門(mén)[10]、泰安[11]、濟(jì)南等[12]城市先后開(kāi)展了源解析工作. 其中,受體模型法如化學(xué)質(zhì)量平衡(CMB)和正定矩陣因子分解法(PMF)已被廣泛應(yīng)用于源解析工作中[13-15].
我國(guó)以煤炭為主要燃料,燃煤源是我國(guó)大氣顆粒物污染的主要來(lái)源[16-17]. BI等[12]用CMB受體模型對(duì)我國(guó)北方6個(gè)城市進(jìn)行了源解析,研究發(fā)現(xiàn),春季燃煤飛灰對(duì)大氣顆粒物的貢獻(xiàn)達(dá)到5%~21%,而冬季達(dá)到20%~59%. 工業(yè)過(guò)程源是指工業(yè)生產(chǎn)和加工過(guò)程中,以對(duì)工業(yè)原料進(jìn)行物理和化學(xué)轉(zhuǎn)化為目的的工業(yè)設(shè)備,第一級(jí)分類(lèi)包括鋼鐵、有色冶金、建材和化工4個(gè)行業(yè)[18]. 工業(yè)源排放的顆粒物是大氣灰霾形成的重要來(lái)源之一,不同工藝過(guò)程排放的顆粒物中重金屬如w(V)、w(Ni)和w(Sb)較高[19-21],對(duì)人體健康有一定影響. 目前,京津冀和長(zhǎng)三角地區(qū)各主要城市的源解析結(jié)果[22-26]已經(jīng)公布,燃煤源和工業(yè)源對(duì)PM2.5貢獻(xiàn)率分別占13.5%~28.5%和17%~28.9%. 在煙氣凈化技術(shù)方面,我國(guó)工業(yè)鍋爐已普遍配備高效靜電除塵器及脫硫裝置[27]. 但是,傳統(tǒng)的控制技術(shù)仍然無(wú)法滿(mǎn)足對(duì)煙氣中細(xì)顆粒物的控制,如經(jīng)過(guò)除塵效率相對(duì)較高的靜電除塵及濕法脫硫后,PM2.5仍占顆粒物總排放量的64.1%[28].
源譜(源成分譜)是污染源的“指紋”,可以準(zhǔn)確定義污染源的排放特征. 此外,源譜還可以作為CMB的輸入數(shù)據(jù)、PMF解析因子的依據(jù)和計(jì)算排放清單的基礎(chǔ)[29],可為大氣顆粒物來(lái)源解析提供重要基礎(chǔ)數(shù)據(jù). 自19世紀(jì)80年代起,歐美等國(guó)家就開(kāi)始進(jìn)行源解析和排放清單的研究工作[30]. US EPA的SPECIATE是迄今為止最全面的源譜數(shù)據(jù)庫(kù)[31],目前已更新至v4.5,包含源譜數(shù)量多達(dá)5 728條,涵蓋了燃煤、生物質(zhì)燃燒、機(jī)動(dòng)車(chē)尾氣和工業(yè)鍋爐等諸多污染源類(lèi),相關(guān)的分析測(cè)試方法和數(shù)據(jù)質(zhì)量評(píng)價(jià)也囊括其中[32]. 歐洲的SPECIEUROPE顆粒物源譜數(shù)據(jù)庫(kù)也于2015年對(duì)外開(kāi)放;Pernigotti等[33]對(duì)SPECIEUROPE進(jìn)行了介紹并用聚類(lèi)分析的方法對(duì)數(shù)據(jù)庫(kù)中現(xiàn)有源譜數(shù)據(jù)進(jìn)行了分類(lèi)研究. 此外,中國(guó)環(huán)境科學(xué)研究院的研究者們建立了我國(guó)的源譜數(shù)據(jù)庫(kù)——中國(guó)源譜數(shù)據(jù)共享平臺(tái)(CSPSS,www. speciate. org. cn),目前開(kāi)放的CSPSS1.0版本包括了2003—2012年以來(lái)固定燃燒源、工業(yè)過(guò)程源、機(jī)動(dòng)車(chē)和開(kāi)放源等我國(guó)20多個(gè)城市的500多條成分譜. 但是,我國(guó)關(guān)于源譜的研究仍然相對(duì)缺乏,并且主要集中在揚(yáng)塵源[34-40]、燃煤源[16-17,41-42]、機(jī)動(dòng)車(chē)排放[43]以及生物質(zhì)燃燒源[42,44]. 外來(lái)源譜在相關(guān)的源解析工作中占比達(dá)20%~90%[14].
該研究采用稀釋通道系統(tǒng)對(duì)典型燃煤源和工業(yè)過(guò)程源進(jìn)行采樣,建立鏈條爐、流化床、往復(fù)爐和煤粉爐、煉鐵、鋁焙燒、鋁煅燒、磚瓦爐、水泥窯頭和窯尾排放PM2.5成分譜,并對(duì)源譜不確定性進(jìn)行評(píng)估. 該研究旨在開(kāi)展我國(guó)典型燃煤源和工業(yè)過(guò)程源排放PM2.5成分譜特征研究,以期為國(guó)內(nèi)相關(guān)城市和區(qū)域開(kāi)展大氣顆粒物來(lái)源解析提供基礎(chǔ)數(shù)據(jù),以及為國(guó)家環(huán)境空氣質(zhì)量管理和控制提供技術(shù)支撐.
該研究采集了4類(lèi)燃煤源(鏈條爐、往復(fù)爐、循環(huán)流化床和煤粉爐)以及6類(lèi)工業(yè)過(guò)程源(煉鐵、轉(zhuǎn)鋁焙燒、鋁煅燒、磚瓦爐、水泥窯頭和窯尾)共計(jì)31個(gè)樣品(見(jiàn)表1),樣品均采自2014—2015年. 該研究中所涉及的采樣、分析方法及相應(yīng)的質(zhì)量控制和質(zhì)量保證詳見(jiàn)文獻(xiàn)[45].
樣品經(jīng)化學(xué)分析后,計(jì)算不同源樣品中各組分質(zhì)量分?jǐn)?shù)的平均值(F)和標(biāo)準(zhǔn)偏差(SD),獲得不同源類(lèi)的成分譜. 考慮到測(cè)試過(guò)程中的方法不確定性和平行樣品的不確定性[46-47],該研究中組分不確定性的計(jì)算公式:
表1 燃煤源和工業(yè)過(guò)程源采樣信息
注: —表示未記錄.
(1)
式中:Uc為組分c的不確定性;Fc為源樣品中組分c含量的平均值;MDL為儀器測(cè)量檢出限;Mc為所測(cè)組分c質(zhì)量的平均值;CV為變異系數(shù),以SDFc計(jì)算得到.
燃煤鍋爐、工業(yè)過(guò)程源PM2.5成分譜中主要組分含量及其不確定性如表2和圖1~2所示.10種源譜中所測(cè)得的主要組分含量為40.8%(往復(fù)爐)~79.9%(煉鐵),其中燃煤鍋爐和磚瓦爐源譜組分解釋量偏低(<60%),可能是由于這兩種源排放較復(fù)雜導(dǎo)致源譜中含有未監(jiān)測(cè)到的物種. 鄭玫等[14]建立了上海4種工業(yè)源譜,研究發(fā)現(xiàn)電廠(chǎng)鍋爐源譜對(duì)PM2.5的解釋量(45%~55%)偏低.
水泥窯爐排放的PM2.5中,w(Ca)、w(Si)、w(OC)、w(SO42-)等較高,分別為8.51%~14.18%、5.69%~11.80%、3.47%~15.56%、8.67%~16.85%. 窯尾排放的顆粒物中OC的貢獻(xiàn)約為窯頭的3倍,窯頭和窯尾排放的OCEC值分別為6.85和0.76. 可能是由于氣體經(jīng)窯尾至窯頭冷卻后燃燒較充分,因此w(OC)偏低. Ca2+Ca(<0.3)偏低說(shuō)明水泥窯爐顆粒物中的Ca主要以非水溶性的形態(tài)存在. 燃煤鍋爐中w(Al)、w(OC)、w(SO42-)分別為4.50%~8.67%、6.44%~15.33%、9.85%~22.87%. As在燃煤鍋爐中的貢獻(xiàn)較其他源譜偏高,往復(fù)爐排放顆粒物中w(As)約為0.04%. ZHANG等[16]研究了我國(guó)燃煤排放特征,發(fā)現(xiàn)As可以作為燃煤排放的特征組分. 流化床、煤粉爐、鋼鐵廠(chǎng)的煉鐵工藝采用的脫硫方法為濕法和半干半濕法,兩種脫硫工藝均需以石灰作為原料,因此這3種源譜中w(Ca)偏高,分別為4.63%、5.82%和7.67%. 工業(yè)過(guò)程源排放與生產(chǎn)原料相關(guān),煉鐵和鋁冶煉工藝排放的顆粒物中,主導(dǎo)化學(xué)組分分別為Fe(8.57%~9.88%,質(zhì)量分?jǐn)?shù),余同)和Al (11.81%~16.58%). 此外,煉鐵工藝排放顆粒物中OC的貢獻(xiàn)約為其他源的1.3~9.3倍,可能與鋼鐵工藝過(guò)程中的有機(jī)添加劑有關(guān). 磚瓦爐顆粒物源譜中主要組分為SO42-、NH4+、Si等,相應(yīng)質(zhì)量分?jǐn)?shù)分別為16.88%~25.64%、3.23%~7.87%、10.54~13.13%.10種源譜的Mg2+Mg較穩(wěn)定,范圍為0.57~0.79,說(shuō)明各類(lèi)源排放的顆粒物中Mg水溶性組分的比例受工藝過(guò)程的影響較小. 上述結(jié)果與已有研究結(jié)果相似,如王書(shū)肖等[41]研究發(fā)現(xiàn),工業(yè)鏈條爐排放的PM2.5中SO42-最多,占20%~54%;鄭玫等[14]建立了上海工業(yè)源譜,發(fā)現(xiàn)鋼鐵源排放的顆粒物受到生產(chǎn)原料和工藝添加劑的影響,SO42-、Fe、Zn、Cl-等物種貢獻(xiàn)較大.
分歧系數(shù)可以將不同成分譜中組分含量標(biāo)準(zhǔn)化,從而來(lái)比較成分譜之間的相似性[48]. CD的計(jì)算公式:
(2)
式中,CDjk為j類(lèi)源譜和k類(lèi)源譜之間的分歧系數(shù),xij為j類(lèi)源譜組分i含量的平均值,j和k為要比較的兩種源類(lèi),p為所測(cè)主要組分的數(shù)量. CD值越趨近于0,成分譜越相似. 若CD>0.3,表明成分譜之間存在一定差異[49];若CD<0.3,表明成分譜之間有一定的相似性,輸入CMB模型可能會(huì)引起共線(xiàn)性問(wèn)題. 表3為10種污染源PM2.5成分譜間的分歧系數(shù),結(jié)果顯示,流化床和煤粉爐、水泥窯頭和窯尾源譜較為相似,其CD分別為0.26和0.28,其余源譜間均存在一定差異.
表2 不同源類(lèi)成分譜中主要組分的質(zhì)量分?jǐn)?shù)和不確定性
圖1 源譜中主要組分的質(zhì)量分?jǐn)?shù)Fig.1 Main chemical compositions of source profiles
圖2 源譜中碳組分的質(zhì)量分?jǐn)?shù)Fig.2 Carbonaceous compositions of source profiles
為了進(jìn)一步研究燃煤鍋爐、水泥窯爐源譜間的差異,引入組分差異權(quán)重分布函數(shù)——Residual(R)Uncertainty(U). RU表示兩種源譜中相同組分間差異性的權(quán)重,計(jì)算時(shí)將源譜中的組分含量和不確定性均考慮在內(nèi). Chow等[50]將地質(zhì)塵按照采樣點(diǎn)位的距離和源類(lèi)別的相似程度進(jìn)行分級(jí),用RU分析不同級(jí)別揚(yáng)塵PM2.5源譜之間的相似性和差異性. RU計(jì)算公式:
(3)
式中,σi1和σi2為兩種源譜中組分i含量平均值的標(biāo)準(zhǔn)偏差.
表3 源譜間的分歧系數(shù)
表4 燃煤鍋爐和水泥窯爐源譜主要組分間的RU
Table 4 RU for main chemical compositions of source profiles of coal-fired boilers and cement kiln
表4 燃煤鍋爐和水泥窯爐源譜主要組分間的RU
組分往復(fù)爐∕鏈條爐往復(fù)爐∕流化床往復(fù)爐∕煤粉爐鏈條爐∕流化床鏈條爐∕煤粉爐流化床∕煤粉爐窯頭∕窯尾Al1.580.330.122.034.780.341.44Sr0.451.620.381.430.721.552.06Mg1.391.100.160.444.682.041.35Ti0.170.671.321.303.161.621.72Ca1.870.554.620.053.691.040.57Fe1.000.450.041.361.120.462.22Ba0.050.010.710.041.030.710.83Si0.210.652.181.305.705.202.47Na4.190.581.721.100.700.520.61K1.940.110.170.831.240.195.13V0.480.380.282.323.220.360.37Cr0.820.590.390.950.500.710.88Mn3.011.692.180.850.640.244.40Ni0.180.490.331.250.233.830.54Cu0.790.490.580.820.740.290.45Zn6.473.983.010.470.430.712.36As0.310.270.270.501.120.030.25Sn27.4618.0825.541.221.380.210.45Sb0.190.200.200.860.800.250.24Pb1.862.752.434.152.881.622.41OC1.011.000.900.380.260.114.36EC0.950.360.840.570.090.472.14NH4+0.860.570.710.180.460.412.78NO3-0.241.341.131.281.110.811.11SO42-1.352.950.264.331.172.180.90
比較不同地區(qū)以及SPECIATE v4.5中相關(guān)源類(lèi)的成分譜,發(fā)現(xiàn)不同研究得到的源譜中主要化學(xué)組分有一定差異,該差異主要與燃料種類(lèi)、生產(chǎn)方式和研究者所用的測(cè)試方法等的不同有關(guān)[14].
SPECIATE數(shù)據(jù)庫(kù)中源譜數(shù)量眾多,為了便于研究,筆者將相關(guān)源類(lèi)的PM2.5成分譜進(jìn)行統(tǒng)計(jì)和整理. 由于數(shù)據(jù)庫(kù)中不同研究獲得的源譜差異性較大,分別對(duì)同一源類(lèi)的原始成分譜進(jìn)行求中值處理[31]. 最終獲得燃煤、鋼鐵生產(chǎn)、水泥生產(chǎn)、鋁冶煉和磚瓦窯爐5種源類(lèi)的平均成分譜.
不同地區(qū)的燃煤源譜如表5所示,結(jié)果顯示,該研究中w(EC)較其他地區(qū)而言相對(duì)偏高(除浙江寧波燃煤電廠(chǎng)外);流化床排放的顆粒物中w(SO42-)偏高,與上海電廠(chǎng)相似. 該研究燃煤鍋爐源譜主要組分含量與SPECIATE源譜相似.
表5 不同地區(qū)燃煤源譜中主要組分的質(zhì)量分?jǐn)?shù)
注: — 表示無(wú)數(shù)據(jù).
不同地區(qū)的鋼鐵源譜如表6所示. 對(duì)比發(fā)現(xiàn),該研究鋼鐵源譜中主要組分與其他地區(qū)差異較大. 其中w(EC)和w(NH4+)較其他地區(qū)偏高,w(Pb)偏低. 除上海燒結(jié)廠(chǎng)外,w(SO42-)較國(guó)內(nèi)其他地區(qū)偏高. 其余組分隨工藝、研究地區(qū)的不同也有一定差異. 鄭玫等[14]測(cè)試的上海燒結(jié)廠(chǎng)源譜與其他鋼鐵源譜有較大的差異,其中w(SO42-)、w(Cl-)、w(Ca)和w(Pb)均較高.
表6 不同地區(qū)鋼鐵源譜中主要組分的質(zhì)量分?jǐn)?shù)
注: —表示無(wú)數(shù)據(jù).
由于國(guó)內(nèi)關(guān)于冶金、建材等行業(yè)的工業(yè)源譜報(bào)道較少,表7比較了該研究與SPECIATE數(shù)據(jù)庫(kù)中水泥生產(chǎn)、鋁冶煉和磚瓦爐源譜的差異. 對(duì)比發(fā)現(xiàn),各污染源源譜中w(Cl-)較SPECIATE低,而w(V)、w(Cr)偏高,表明我國(guó)工業(yè)過(guò)程源排放的顆粒物中重金屬含量相對(duì)較高,應(yīng)予以重視.
表7 該研究和SPECIATE中相關(guān)源譜主要組分的質(zhì)量分?jǐn)?shù)
注: —表示無(wú)數(shù)據(jù).
a) 依托中國(guó)源譜數(shù)據(jù)共享平臺(tái),建立了燃煤鍋爐和工業(yè)過(guò)程源的成分譜,并對(duì)其不確定性進(jìn)行了評(píng)估,發(fā)現(xiàn)不同源類(lèi)的組分特征差異明顯.10種源譜中所測(cè)主要組分的質(zhì)量分?jǐn)?shù)為40.8%~79.9%. 水泥窯爐排放的PM2.5中,Ca、Si、OC、SO42-等組分貢獻(xiàn)較大,其質(zhì)量分?jǐn)?shù)分別為8.51%~14.18%、5.69%~11.80%、3.47%~15.56%、8.67%~16.85%. 燃煤鍋爐中Al(4.50%~8.67%)、OC(6.44%~15.33%)、SO42-(9.85%~22.87%)等組分貢獻(xiàn)較大. 流化床、煤粉爐、鋼鐵廠(chǎng)的煉鐵工藝采用的脫硫方法為濕法和半干半濕法,兩種脫硫工藝均需以石灰作為原料,因此這3種源譜中w(Ca)偏高. 煉鐵和鋁冶煉工藝源譜中主導(dǎo)化學(xué)組分分別為Fe(8.57%~9.88%)和Al(11.81%~16.58%). 磚瓦爐顆粒物源譜中主要組分為SO42-、NH4+、Si等.
b) 不同污染源PM2.5成分譜的分歧系數(shù)結(jié)果表明,流化床和煤粉爐、水泥窯頭和窯尾源譜較為相似,其分歧系數(shù)分別為0.26和0.28,其余源譜間均存在一定差異. 進(jìn)一步計(jì)算組分差異權(quán)重RU,發(fā)現(xiàn)往復(fù)爐源譜中,組分Zn、Sn與其他三類(lèi)鍋爐有明顯不同. 流化床、煤粉爐源譜中的Si、Ni,窯頭窯尾源譜中K、Mn、OC組分差異顯著,可以作為區(qū)分相似源譜的標(biāo)識(shí)組分.
c) 與其他研究建立的源譜相比,燃煤源譜中w(EC)和w(SO42-)偏高. 鋼鐵源譜中w(EC)和w(NH4+)較其他地區(qū)偏高,w(Pb)偏低;對(duì)于其余工業(yè)源譜,w(Cl-)較SPECIATE低,而w(V)和w(Cr)偏高. 鑒于顆粒物源譜受到不同燃料種類(lèi)、燃燒方式和煙氣控制設(shè)施等影響而存在差異,源譜的準(zhǔn)確性和代表性還需進(jìn)一步測(cè)試進(jìn)行驗(yàn)證.
[1] HUANG RuJin,ZHANG Yanlin,BOZZETTI C,etal.High secondary aerosol contribution to particulate pollution during haze events in China[J].Nature,2014,514(7521):218-222.
[2] TAO Jun,ZHANG Leiming,HO Kinfai,etal.Impact of PM2.5chemical compositions on aerosol light scattering in Guangzhou-the largest megacity in South China[J].Atmospheric Research,2014,135136(1):48-58.
[3] CHAN C K,YAO Xiaohong.Air pollution in mega cities in China[J].Atmospheric Environment,2008,42(1):1-42.
[4] WANG Yuan,ZHANG Renyi,SARAVANAN R.Asian pollution climatically modulates mid-latitude cyclones following hierarchical modelling and observational analysis[J].Nature Communications,2014.doi:10.1038ncomms4098.
[5] CAO Junji,XU Hongmei,XU Qun,etal.Fine particulate matter constituents and cardiopulmonary mortality in a heavily polluted Chinese City[J].Environmental Health Perspectives,2012,120(3):373-378.
[6] ZHANG Qiang,HE Kebin,HUO Hong.Policy:cleaning China′s air[J].Nature,2012,484(7393):161-162.
[7] 柴發(fā)合,王淑蘭,云雅如,等.貫徹《大氣污染防治行動(dòng)計(jì)劃》力促環(huán)境空氣質(zhì)量改善[J].環(huán)境與可持續(xù)發(fā)展,2013,38(6):5-8.
CHAI Fahe,WANG Shulan,YUN Yaru,etal.Action plan for prevention and control of atmospheric pollution issued by the state council is the guide to improve air quality in chain[J].Environmental and Sustainable Development,2013,38(6):5-8.
[8] YU Song,TANG Xiaoyan,XIE Shaodong,etal.Source apportionment of PM2.5in Beijing in 2004[J].Journal of Hazardous Materials,2007,146(12):124-130.
[9] KONG Shaofei,HAN Bin,BAI Zhipeng,etal.Receptor modeling of PM2.5,PM10and TSP in different seasons and long-range transport analysis at a coastal site of Tianjin,China[J].Science of the Total Environment,2010,408(20):4681-4694.
[10] ZHANG Ningning,ZHUANG Mazhan,TIAN Jie,etal.Development of source profiles and their application in source apportionment of PM2.5in Xiamen,China[J].Frontiers of Environmental Science & Engineering,2016,10(5):17-29.
[11] LIU Baoshuang,SONG Na,DAI Qili,etal.Chemical composition and source apportionment of ambient PM2.5during the non-heating period in Taian,China[J].Atmospheric Research,2015,170:23-33.
[12] BI Xiaohui,FENG Yinchang,WU Jianhui,etal.Source apportionment of PM10in six cities of northern China[J].Atmospheric Environment,2007,41(5):903-912.
[13] 郭旸旸,朱廷鈺,高翔,等.我國(guó)工業(yè)源PM2.5源譜的建立方法及行業(yè)排放特征分析[J].環(huán)境工程,2016,34(8):158-165.
GUO Yangyang,ZHU Tingyu,GAO Xiang,etal.Estabishment method and chracteristics analysis on industrial PM2.5source profiles in China[J].Environmental Engineering,2016,34(8):158-165.
[14] 鄭玫,張延君,閆才青,等.上海PM2.5工業(yè)源譜的建立[J].中國(guó)環(huán)境科學(xué),2013,33(8):1354-1359.
ZHENG Mei,ZHANG Yanjun,YAN Caiqing,etal.Establishing PM2.5industrial source profiles in Shanghai[J].China Environmental Science,2013,33(8):1354-1359.
[15] HUANG Rujin,ELSER M,WANG Qiyuan,etal.Source apportionment of particulate matter in Chinese megacities:the implication for emission control strategies[C]EGU General Assembly Conference.Vienna:EGU General Assembly Conference Abstracts,2015:17.
[16] ZHANG Y,SCHAUER J J,ZHANG Y,etal.Characteristics of particulate carbon emissions from real-world Chinese coal combustion[J].Environmental Science & Technology,2008,42(14):5068-5073.
[17] PEI Bing,WANG Xiaoliang,ZHANG Yihua,etal.Emissions and source profiles of PM2.5for coal-fired boilers in the Shanghai megacity,China[J].Atmospheric Pollution Research,2016,7(4):577-584.
[18] 環(huán)境保護(hù)部.關(guān)于發(fā)布《大氣細(xì)顆粒物一次源排放清單編制技術(shù)指南(試行)》等4項(xiàng)技術(shù)指南的公告[EBOL].北京:環(huán)境保護(hù)部,2014[2016-12-20].http:www.mep.gov.cngkmlhbbbgg201408t20140828_288364.htm.
[19] CHOW J C,WATSON J G,KUHNS H,etal.Source profiles for industrial,mobile,and area sources in the big bend regional aerosol visibility and observational study[J].Chemosphere,2004,54(2):185-208.
[20] SOFILIC′ T,RASTOVCˇAN-MIOCˇ A,TEFICA C,etal.Characterization of steel mill electric-arc furnace dust[J].Journal of Hazardous Materials,2004,109(1):59-70.
[21] KONG Shaofei,LU Bing,BAI Zhipeng,etal.Potential threat of heavy metals in re-suspended dusts on building surfaces in oilfield city[J].Atmospheric Environment,2011,45(25):4192-4204.
[22] 北京市環(huán)境保護(hù)監(jiān)測(cè)中心.北京發(fā)布最新PM2.5來(lái)源解析結(jié)果[EBOL].北京:北京市環(huán)境保護(hù)監(jiān)測(cè)中心,2014[2016-12-20].http:www.bjmemc.com.cng327s921t1971.aspx.
[23] 天津市環(huán)境保護(hù)保護(hù)局.天津發(fā)布顆粒物源解析結(jié)果[EBOL].天津:天津市環(huán)境保護(hù)保護(hù)局,2014[2016-12-20].http:www.tjhb.gov.cnnewsnews_headtitle201410t20141009_570.html.
[24] 上海市環(huán)境保護(hù)局.上海發(fā)布顆粒物源解析結(jié)果[EBOL].上海:上海市環(huán)境保護(hù)局,2015[2016-12-20].http:www.sepb.gov.cnfacmsshhjshhj2272shhj215920150188463.htm.
[25] 石家莊市環(huán)境保護(hù)局.石家莊發(fā)布顆粒物源解析結(jié)果[EBOL].石家莊:石家莊市環(huán)境保護(hù)局,2015[2016-12-20].http:www.sjzhb.gov.cncyportal2.3templatesite00_index@sjzhbj.jsp?a1b2dd=7xaac.
[26] 南京市環(huán)境保護(hù)局.南京市發(fā)布顆粒物源解析結(jié)果[EBOL].南京:南京市環(huán)境保護(hù)局,2015[2016-12-20].http:www.njhb.gov.cn43123201504t20150430_3289890.html.
[27] 代旭東,徐曉亮,繆明烽.電廠(chǎng)PM2.5排放現(xiàn)狀與控制技術(shù)[J].能源環(huán)境保護(hù),2011,25(6):1-4.
DAI Xudong,XU Xiaoliang,LIAO Mingfeng.Emission status and control technology of ultra-fine particles in coal-fired power plants[J].Energy Environmental Protection,2011,25(6):1-4.
[28] 賀晉瑜,燕麗,雷宇,等.我國(guó)燃煤電廠(chǎng)顆粒物排放特征[J].環(huán)境科學(xué)研究,2015,28(6):862-868.
HE Jinyu,YAN Li,LEI Yu,etal.Emission characteristics of particulate matter from coal-fired power plants in China[J].Research of Environmental Sciences,2015,28(6):862-868.
[29] SIMON H,BECK L,BHAVE P V,etal.The development and uses of EPA′s SPECIATE database[J].Atmospheric Pollution Research,2010,1(4):196-206.
[30] BO Y,CAI H,XIE S D.Spatial and temporal variation of historical anthropogenic NMVOCs emission inventories in China[J].Atmospheric Chemistry & Physics,2008,8(23):11519-11566.
[31] REFF A,BHAVE P V,SIMON H,etal.Emissions inventory of PM2.5trace elements across the United States[J].Environmental Science & Technology,2009,43(15):5790-5796.
[32] 曹軍驥.PM2.5與環(huán)境[M].北京:科學(xué)出版社,2014:212.
[33] PERNIGOTTI D,BELIS C A,SPANL.Specieurope:the European data base for PM source profiles[J].Atmospheric Pollution Research,2016,7(2):307-314.
[34] SHEN Zhenxing,JIAN Sun,CAO Junji,etal.Chemical profiles of urban fugitive dust PM2.5samples in northern Chinese cities[J].Science of the Total Environment,2016,s569570:619-626.
[35] KONG Shaofei.Similarities and differences in PM2.5,PM10and TSP chemical profiles of fugitive dust sources in a coastal oilfield city in China[J].Aerosol & Air Quality Research,2014,14(7):2017-2028.
[36] HAN Jinbao.Chemical characterizations of PM10profiles for major emission sources in Xining,Northwestern China[J].Aerosol & Air Quality Research,2014,14(14):1017-1027.
[37] RONG Zhang,CAO Junji,TANG Yanrong,etal.Elemental profiles and signatures of fugitive dusts from Chinese deserts[J].Science of the Total Environment,2014,472(472C):1121-1129.
[38] ZHANG Qian,SHEN Zhenxing,CAO Junji,etal.Chemical profiles of urban fugitive dust over Xi′an in the south margin of the Loess Plateau,China[J].Atmospheric Pollution Research,2014,5(5):421-430.
[39] CAO Junjin,CHOW J C,WATSON J G,etal.Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau[J].Atmospheric Environment,2008,42(10):2261-2275.
[40] ZHAO Pusheng,FENG Yinchang,ZHU Tan,etal.Characterizations of resuspended dust in six cities of North China[J].Atmospheric Environment,2006,40(30):5807-5814.
[41] 王書(shū)肖,趙秀娟,李興華,等.工業(yè)燃煤鏈條爐細(xì)粒子排放特征研究[J].環(huán)境科學(xué),2009,30(4):963-968.
WANG Shuxiao,ZHAO Xiujuan,LI Xinghua,etal.Emission characteristics of fine particles from grate firing boilers[J].Environmental Science,2009,30(4):963-968.
[42] ZHANG Hengfang,WANG Shuxiao,HAO Jiming,etal.Chemical and size characterization of particles emitted from the burning of coal and wood in rural households in Guizhou,China[J].Atmospheric Environment,2012,51(5):94-99.
[43] WU Bobo,SHEN Xianbao,CAO Xinyue,etal.Characterization of the chemical composition of PM2.5emitted from on-road China Ⅲ and China Ⅳ diesel trucks in Beijing,China[J].Science of the Total Environment,2016,551552:579-589.
[44] ZHANG Yuanxun,SHAO Min,ZHANG Yuanhang,etal.Source profiles of particulate organic matters emitted from cereal straw burnings[J].Journal of Environmental Sciences,2007,19(2):167-175.
[45] 任麗紅,周志恩,趙雪艷,等.重慶主城區(qū)大氣PM10及PM2.5來(lái)源解析[J].環(huán)境科學(xué)研究,2014,27(12):1387-1394.
REN Lihong,ZHOU Zhi′en,ZHAO Xueyan,etal.Source apportionment of PM10and PM2.5in urban areas of Chongqing[J].Research of Environmental Sciences,2014,27(12):1387-1394.
[46] CHEN Pulong,WANG Tijian,DONG Mei,etal.Characterization of major natural and anthropogenic source profiles for size-fractionated PM in Yangtze River Delta.[J].Science of the Total Environment,2017,598:135-145.
[47] US Environmental Protection Agency.Quality assurance handbook for air pollution measurement systems,VolumeⅡ,ambient air quality monitoring program[R].Washington DC:Office of Air Quality Planning and Standards,2013:4-15.
[48] 韓斌.燃煤塵稀釋采樣器的設(shè)計(jì)及成分譜建立方法研究[D].天津:南開(kāi)大學(xué),2009:23-24.
[49] UPADHYAY N B.Size-differentiated chemical composition of re-suspended soil dust from the desert Southwest United States[J].Aerosol & Air Quality Research,2015,15(2):387-398.
[50] CHOW J C,WATSON J G,ASHBAUGH L L,etal.Similarities and differences in PM10chemical source profiles for geological dust from the San Joaquin Valley,California[J].Atmospheric Environment,2003,37(910):1317-1340.
[51] 齊堃,戴春嶺,馮媛,等.石家莊市PM2.5工業(yè)源成分譜的建立及分析[J].河北工業(yè)科技,2015,32(1):78-84.
QI Kun,DAI Chunling,FENG Yuan,etal.Establishment and analysis of PM2.5industrial source profiles in Shijiazhuang City[J].Hebei Journal of Industrial Science and Technology,2015,32(1):78-84.
[52] 馬召輝,梁云平,張健,等.北京市典型排放源PM2.5成分譜研究[J].環(huán)境科學(xué)學(xué)報(bào),2015,35(12):4043-4052.
MA Zhaohui,LIANG Yunping,ZHANG Jian,etal.PM2.5profiles of typical sources in Beijing[J].Acta Scientiae Circumstantiae,2015,35(12):4043-4052.
[53] 肖致美,畢曉輝,馮銀廠(chǎng),等.寧波市環(huán)境空氣中PM10和PM2.5來(lái)源解析[J].環(huán)境科學(xué)研究,2012,25(5):549-555.
XIAO Zhimei,BI Xiaohui,FENG Yinchang,etal.Source apportionment of ambient PM10and PM2.5in urban area of Ningbo City[J].Research of Environmental Sciences,2012,25(5):549-555.
[54] 滕加泉,王唯,蔣少杰,等.常州市大氣PM2.5主要排放源的成分譜研究[J].環(huán)境科技,2015,28(6):56-59.
TENG Jiaquan,WANG Wei,JIANG Shaojie,etal.Study on the source profiles of PM2.5major emissions in Changzhou[J].Environmental Science & Technology(China),2015,28(6):56-59.
CharacteristicsofPM2.5ChemicalSourceProfilesofCoalCombustionandIndustrialProcessinChina
LIU Yayong, ZHANG Wenjie*, BAI Zhipeng, YANG Wen, ZHAO Xueyan, HAN Bin, WANG Xinhua
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
In view of insufficient local source profiles in China,PM2.5source profiles for coal-fired boilers and industrial processes′ emissions were established.Four coal burning sources from coal-fired boilers of grate firing,fluidized bed,converters and pulverized coal,and 6industrial process emissions from metallurgy,steel production and construction materials production were discussed. Results showed that:(1) The chemical composition shows special characteristics in different source categories. Ca (8.51%-14.18%),Si (5.69%-11.80%),OC (3.47%-15.56%) and SO42-(9.85%-22.87%) were shown to be the major species of PM2.5from cement kiln;Al,SO42-and OC marked coal-fired boiler,accounted for 4.50%-8.67%,6.44%-15.33% and 9.85%-22.87%,respectively;Fe (8.57%-9.88%) and Al (11.81%-16.58%) were the most abundant elements in steel production and aluminum metallurgy. The highest abundances of SO42-,NH4+,Si were observed in brick kiln emissions. (2) The coefficient of divergence (CD) and the distribution of weighted differences (RU ratio) were used to compare the similarities and differences of source profiles. Good similarities were observed between fluidized bed and pulverized coal boiler emissions,and between cement kiln head and inlet emissions. Si and Ni were expected to distinguish profiles between fluidized bed and pulverized coal boiler with the RU>3. K,Mn and OC abundances were significant different between profiles of cement kiln head and inlet. Differences of source profiles from different studies including SPECIATE database were compared. EC and SO42-from coal burning,EC and NH4+from steel production were higher than those of studies in other regions. Compared with source profiles in SPECIATE v4.5,Cl-abundances in metallurgy,cement and brick kiln were lower,while V and Cr were higher in this research. The discrepancies of chemical species from different source profiles are closely linked to different fuels,combustion modes and control facilities. More tests are needed for further study.
PM2.5; source profiles; coal-fired boiler emissions; industrial process sources
2016-11-23
2017-08-25
科技部科技基礎(chǔ)性工作專(zhuān)項(xiàng)(2013FY112700);國(guó)家科技支撐計(jì)劃項(xiàng)目(2014BAC23B02)
劉亞勇(1990-),男,山西晉中人,craes_sp@163.com.
*責(zé)任作者,張文杰(1979-),女,山東青州人,研究員,博士,主要從事大氣氣溶膠與環(huán)境基準(zhǔn)研究,zhangwj@craes.org.cn
劉亞勇,張文杰,白志鵬,等.我國(guó)典型燃煤源和工業(yè)過(guò)程源排放PM2.5成分譜特征[J].環(huán)境科學(xué)研究,2017,30(12):1859-1868.
LIU Yayong,ZHANG Wenjie,BAI Zhipeng,etal.Characteristics of PM2.5chemical source profiles of coal combustion and industrial process in China[J].Research of Environmental Sciences,2017,30(12):1859-1868.
X513
1001-6929(2017)12-1859-10
A
10.13198j.issn.1001-6929.2017.03.34