国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

巨桉EgrZFP6基因在非生物逆境脅迫響應(yīng)中的功能*

2017-12-15 02:29:04王曉榮程龍軍徐鳳華倪曉祥浙江農(nóng)林大學(xué)亞熱帶森林培育國家重點(diǎn)實(shí)驗(yàn)室杭州311300
林業(yè)科學(xué) 2017年11期
關(guān)鍵詞:鋅指株系逆境

王曉榮 程龍軍 徐鳳華 倪曉祥 陸 軍(浙江農(nóng)林大學(xué) 亞熱帶森林培育國家重點(diǎn)實(shí)驗(yàn)室 杭州 311300)

巨桉EgrZFP6基因在非生物逆境脅迫響應(yīng)中的功能*

王曉榮 程龍軍 徐鳳華 倪曉祥 陸 軍
(浙江農(nóng)林大學(xué) 亞熱帶森林培育國家重點(diǎn)實(shí)驗(yàn)室 杭州 311300)

【目的】 通過對(duì)巨桉非生物逆境響應(yīng)相關(guān)基因EgrZFP6(Eucgr.A01232)蛋白結(jié)構(gòu)和基因功能的初步研究,探討該基因在巨桉非生物逆境響應(yīng)中所發(fā)揮的作用,為桉樹抗逆育種提供理論基礎(chǔ)?!痉椒ā?首先利用CDD在線軟件分析EgrZFP6編碼蛋白序列的結(jié)構(gòu)域,并利用NCBI中的Blast軟件搜索與EgrZFP6蛋白序列相似程度較高的其他物種中ZFP蛋白,用Clustalx進(jìn)行多序列比對(duì),聯(lián)合分析、比較它們的結(jié)構(gòu)域。然后,構(gòu)建EgrZFP6∷sGFP融合載體,采用基因槍轟擊洋蔥表皮方法對(duì)EgrZFP6蛋白表達(dá)進(jìn)行亞細(xì)胞定位; 同時(shí),構(gòu)建35S∷EgrZFP6超表達(dá)載體,采用花序侵染法進(jìn)行擬南芥遺傳轉(zhuǎn)化; 對(duì)獲得的超表達(dá)擬南芥轉(zhuǎn)基因純合株系,分析其正常條件、低溫、干旱和高鹽等非生物逆境處理下的表型變化; 利用酵母雙雜交法篩選到與EgrZFP6互作蛋白EgrERF4(Eucgr.F01164),并對(duì)低溫、干旱和高鹽等非生物脅迫下巨桉植株中EgrERF4的表達(dá)情況用實(shí)時(shí)熒光定量RT-PCR方法進(jìn)行分析?!窘Y(jié)果】 巨桉EgrZFP6編碼蛋白為1個(gè)典型C2H2型鋅指結(jié)構(gòu)蛋白,有2個(gè)包含QALGGH序列的植物特有鋅指結(jié)構(gòu)域,1個(gè)乙烯響應(yīng)元件結(jié)合因子相關(guān)雙性抑制子EAR基序和1個(gè)L-box基序; 亞細(xì)胞定位結(jié)果表明EgrZFP6表達(dá)蛋白定位在細(xì)胞核中; 與野生型對(duì)照相比,EgrZFP6超表達(dá)的擬南芥轉(zhuǎn)化植株中,主根伸長(zhǎng)生長(zhǎng)受到一定抑制,對(duì)低溫敏感性增強(qiáng), PEG(1 g·L-1以上)處理能促進(jìn)側(cè)根增加和伸長(zhǎng),植株根伸長(zhǎng)對(duì)高鹽抑制作用的耐受性有一定程度提高。乙烯響應(yīng)相關(guān)轉(zhuǎn)錄因子基因EgrERF4編碼蛋白能夠與EgrZFP6編碼蛋白互作; 正常巨桉植株不同低溫(-8,-4,0,4 ℃)2 h處理下,除-8 ℃外,EgrERF4表達(dá)均呈現(xiàn)被誘導(dǎo)趨勢(shì); 4 ℃低溫不同時(shí)間(0.5,2,6,12,24,48 h)處理下,基因也被誘導(dǎo)表達(dá); 干旱條件下,隨處理時(shí)間延長(zhǎng),基因表達(dá)被嚴(yán)重抑制,而高鹽(200 mmol·L-1)脅迫則能促進(jìn)EgrERF4表達(dá)?!窘Y(jié)論】 EgrZFP6轉(zhuǎn)錄因子可能通過與EgrERF4互作參與巨桉低溫、高鹽和干旱脅迫響應(yīng)。在低溫脅迫下發(fā)揮負(fù)調(diào)控作用; 而在干旱和高鹽逆境條件下能通過改變植株根構(gòu)型,一定程度上提高對(duì)逆境的適應(yīng)能力。

巨桉;EgrZFP6; 非生物逆境; 基因功能

低溫、干旱等非生物脅迫會(huì)制約植物生長(zhǎng)和發(fā)育,對(duì)農(nóng)林業(yè)生產(chǎn)有嚴(yán)重影響。研究植物抗逆生理和分子機(jī)制對(duì)提高植物非生物逆境脅迫抗性具有重要意義(Dos Reisetal., 2012; Roychoudhuryetal., 2015)。為了應(yīng)對(duì)逆境脅迫,植物在長(zhǎng)期進(jìn)化過程中形成了一定的響應(yīng)機(jī)制,植物感受到逆境信號(hào)后,通過相應(yīng)基因調(diào)控,改變一系列代謝過程,產(chǎn)生應(yīng)對(duì)脅迫的響應(yīng),如提高可溶性糖含量,增加抗?jié)B透脅迫物質(zhì)如脯氨酸、甜菜堿等,進(jìn)而提高植物抗逆性(Takabe, 2012)。在植物抗逆分子響應(yīng)機(jī)制中,作為基因開關(guān)的轉(zhuǎn)錄因子(transcription factor, TF)發(fā)揮重要作用。植物中轉(zhuǎn)錄因子數(shù)量龐大,相當(dāng)一部分成員與逆境調(diào)控相關(guān),如bZIP、WRKY、AP2/EREBP、MYB和NAC等,近年來鋅指類轉(zhuǎn)錄因子(Zinc Finger Protein: ZFP)也被證明在植物逆境脅迫響應(yīng)中發(fā)揮重要作用(Gujjaretal., 2014; Reddyetal., 2013)。

根據(jù)ZFP轉(zhuǎn)錄因子具有的半胱氨酸(C)和組氨酸(H)殘基數(shù)量和位置,可將鋅指蛋白轉(zhuǎn)錄因子分為C2H2,C2H,C2C2,C2HCC2C2,C2C2C2等類型。其中C2H2型鋅指蛋白是植物中研究較多、功能較為明確的一類鋅指蛋白。其鋅指結(jié)構(gòu)域由約30個(gè)氨基酸組成,包含2個(gè)半胱氨酸和2個(gè)組氨酸,以及一段植物所特有的高度保守序列(QALGGH)(Kuboetal., 1998; 黃驥等, 2014)。

C2H2型鋅指蛋白在植物中成員眾多,擬南芥(Arabidopsisthaliana)中發(fā)現(xiàn)176個(gè)成員(Englbrechtetal., 2004),水稻(Oryzasativa)基因組數(shù)據(jù)顯示水稻上有182個(gè)(Agarwaletal., 2007)。C2H2型鋅指蛋白廣泛參與植物生長(zhǎng)、發(fā)育和代謝,以及植物對(duì)低溫、高鹽和干旱等非生物逆境響應(yīng)(Kiebowicz-Matuketal., 2012)。水稻OsZFP1作為負(fù)調(diào)控因子,能抑制鹽脅迫相關(guān)基因表達(dá),轉(zhuǎn)基因植株對(duì)鹽脅迫抗性降低; 同時(shí),OsZFP1的逆境響應(yīng)還受脫落酸(ABA)影響,暗示其可能參與ABA依賴的逆境響應(yīng)過程(Kongetal., 2004)。水稻另外1個(gè)C2H2型鋅指蛋白轉(zhuǎn)錄因子基因OsZFP245的超表達(dá)則能夠提高植株對(duì)低溫、干旱和氧化逆境的抗性(Huangetal., 2009)。矮牽牛(Petuniahybrida)基因ZPT2-3也可被低溫、干旱和重金屬等非生物脅迫誘導(dǎo)表達(dá),其轉(zhuǎn)基因植株干旱耐受力有效提高(Suganoetal., 2003)。這些表明C2H2型鋅指蛋白轉(zhuǎn)錄因子能夠在植物非生物逆境脅迫響應(yīng)中發(fā)揮作用。

目前植物C2H2型鋅指蛋白在林木中研究較少。巨桉(Eucalyptusgrandis)作為世界三大用材樹種之一,在我國南方各省栽培廣泛,為我國林業(yè)產(chǎn)業(yè)發(fā)展做出重要貢獻(xiàn)。但其對(duì)低溫敏感,不耐干旱、鹽漬,這嚴(yán)重限制其栽培范圍的擴(kuò)大; 低溫、干旱等不良天氣條件還經(jīng)常對(duì)桉樹生產(chǎn)造成損失。因此,研究巨桉非生物逆境脅迫響應(yīng)分子機(jī)制對(duì)桉樹抗逆分子育種具有重要意義。作者所在實(shí)驗(yàn)室前期研究中發(fā)現(xiàn),EgrZFP6表達(dá)受低溫、鹽脅迫誘導(dǎo),極有可能參與巨桉非生物脅迫響應(yīng)過程(Wangetal., 2014),本研究利用遺傳轉(zhuǎn)化和酵母(Saccharomycescerevisiae)雙雜交等手段,對(duì)該基因在低溫、干旱和高鹽等非生物逆境脅迫下的功能進(jìn)行了初步研究。

1 材料與方法

1.1 材料

巨桉幼苗生長(zhǎng)在浙江農(nóng)林大學(xué)苗圃地。所選試驗(yàn)材料為長(zhǎng)勢(shì)一致的6個(gè)月苗齡組培無性系幼苗。擬南芥野生型為COL。試驗(yàn)處理均在Snijders微氣候控制生長(zhǎng)箱(MC1000,荷蘭)中進(jìn)行。擬南芥培養(yǎng)條件: 白天24 ℃ 15 h,夜間22 ℃ 9 h; 巨桉培養(yǎng)條件: 白天25 ℃ 12 h,夜間22 ℃ 12 h。光照強(qiáng)度150 μmol·m-2s-1,相對(duì)濕度(RH)70%。

1.2 EgrZFP6蛋白序列分析

在巨桉數(shù)據(jù)庫phytozome(http://www.phytozome.net/search.php)下載EgrZFP6全長(zhǎng)序列,設(shè)計(jì)引物,進(jìn)行全長(zhǎng)序列測(cè)序驗(yàn)證后,將其編碼蛋白序列在https://blast.ncbi.nlm.nih.gov/Blast.cgi進(jìn)行Blast比對(duì),選擇5個(gè)與該蛋白序列相似程度比較高的不同物種蛋白序列,利用Clastalx1.83進(jìn)行多重比對(duì)。同時(shí),用CDD在線軟件(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)分析蛋白序列保守域。

1.3 EgrZFP6亞細(xì)胞定位

設(shè)計(jì)引物(表1),PCR擴(kuò)增去掉終止密碼子的EgrZFP6開放閱讀框序列,以pCAMBIA1300為載體骨架,利用多克隆位點(diǎn)處的KpnI和XbaI酶切位點(diǎn),構(gòu)建EgrZFP6-GFP融合蛋白表達(dá)載體。提取質(zhì)粒,金粉包埋后轟擊洋蔥(Alliumcepa)表皮細(xì)胞。激光共聚焦顯微鏡掃描成像。

1.4 EgrZFP6超表達(dá)載體構(gòu)建、異源轉(zhuǎn)化擬南芥及超表達(dá)擬南芥低溫、鹽和PEG處理

超表達(dá)載體骨架為含35S啟動(dòng)子的pCAMBIA1301,EgrZFP6全長(zhǎng)序列擴(kuò)增引物見表1,利用多克隆位點(diǎn)處的KpnI和XbaI酶切位點(diǎn),雙酶切法構(gòu)建35S∷EgrZFP6超表達(dá)載體。提取質(zhì)粒,選取健壯盛花期擬南芥采用農(nóng)桿菌(Agrobacterium)蘸花法轉(zhuǎn)化擬南芥(許紅梅等, 2010)。收獲侵染植株種子,于含20 mg·L-1潮霉素(hygromycin)的1/4MS培養(yǎng)基上進(jìn)行篩選,陽性植株繼續(xù)繁殖,收獲,篩選,PCR檢測(cè),直到獲得T3代轉(zhuǎn)基因純合株系。提取10天苗齡的野生型和2個(gè)超表達(dá)EgrZFP6擬南芥純合株系RNA,逆轉(zhuǎn)錄后,設(shè)計(jì)引物(表1)以AtActin為內(nèi)參基因進(jìn)行半定量RT-PCR,鑒定EgrZFP6在轉(zhuǎn)基因株系中的表達(dá)情況。

野生型和超表達(dá)EgrZFP6擬南芥種子均勻播種在1/2MS培養(yǎng)基上,4 ℃暗處理24 h后置于生長(zhǎng)箱中生長(zhǎng)。1周后,比較和分析野生型和超表達(dá)株系表型變化; 參考Zhao等(2016)方法,將10天苗齡幼苗于-8 ℃低溫處理3天,然后正常培養(yǎng)條件下緩苗3天,拍照觀察表型,統(tǒng)計(jì)植株死亡率; 鹽(NaCl)處理梯度為0,50,100 mmol·L-1,使用PEG6000模擬干旱處理,處理梯度為1,5,9 g·L-1,種子發(fā)芽后,于生長(zhǎng)箱中生長(zhǎng)1周,觀察表型并拍照(Nikon, D7000)。

1.5 巨桉低溫、干旱和鹽脅迫處理

選取6個(gè)月苗齡生長(zhǎng)一致的巨桉幼苗,在植物低溫生長(zhǎng)箱(MC1000,Snijders,荷蘭)中進(jìn)行不同低溫(-8,-4,0,4 ℃,2 h)處理以及4 ℃低溫不同時(shí)間(0.5,2,6,12,24,48 h)處理,低溫處理均以正常生長(zhǎng)溫度(25 ℃)為對(duì)照(CK)。將處理苗的栽培盆置于200 mmol·L-1NaCl水溶液中,保持液面位于栽培盆高度的1/3處,以清水為對(duì)照(CK)進(jìn)行高鹽處理。干旱處理則以5,3,2,1天不澆水的苗作為處理組,正常澆水的(每天每盆苗澆水200 mL)為對(duì)照(CK)。每個(gè)處理3株苗,進(jìn)行3次重復(fù)。試驗(yàn)處理結(jié)束后同時(shí)收獲葉片,提取RNA置于-70 ℃冰箱(SANYO,日本)備用。

1.6 EgrZFP6互作蛋白篩選

利用Clontech公司酵母雙雜交試劑盒(Cat.630489),構(gòu)建巨桉酵母雜交文庫。同時(shí),構(gòu)建pGADT7-EgrZFP6和pGBKT7-EgrZFP6共轉(zhuǎn)化Y2H gold酵母菌株進(jìn)行自激活檢測(cè),然后抽提文庫質(zhì)粒與誘餌載體pGBKT7-EgrZFP6共轉(zhuǎn)化Y2H gold進(jìn)行文庫篩選。具體操作步驟按照試劑盒說明進(jìn)行。最后,對(duì)篩選到的與EgrZFP6互作的蛋白EgrERF4進(jìn)行酵母雙雜交一對(duì)一驗(yàn)證。

EgrZFP6和EgrERF4基因全長(zhǎng)序列擴(kuò)增引物見表1。利用多克隆位點(diǎn)EcoR I和BamH I酶切位點(diǎn),雙酶切法構(gòu)建pGBKT7-EgrZFP6和pGADT7-EgrERF4,pGBKT7-Lam為陰性對(duì)照,pGBKT7-53為陽性對(duì)照。

1.7 RNA提取、cDNA合成及基因定量表達(dá)分析

巨桉RNA提取參考CTAB+Trizol法(王亞紅等, 2010),擬南芥RNA提取參照Trizol法(金美芳, 2007)。cDNA反轉(zhuǎn)錄試劑盒由康為世紀(jì)公司提供,定量熒光染料SYBR由TAKARA公司(大連,中國)提供。設(shè)計(jì)引物(表1)用BIO-Rad CFX96實(shí)時(shí)熒光定量RT-PCR系統(tǒng)(BioRad, 美國)以及系統(tǒng)自帶的Bio-Rad CFX Manager(Ver 1.5.5.34)軟件進(jìn)行試驗(yàn)和結(jié)果分析。

表1 所用引物序列Tab.1 List of primer sequences used in the study

2 結(jié)果與分析

2.1 EgrZFP6編碼蛋白結(jié)構(gòu)分析

EgrZFP6編碼蛋白含有2個(gè)鋅指結(jié)構(gòu)域,對(duì)該基因蛋白序列進(jìn)行保守結(jié)構(gòu)域搜索,并將其與其他不同植物中的同源蛋白比對(duì)分析,結(jié)果表明該基因編碼蛋白含有2個(gè)高度保守的鋅指蛋白結(jié)構(gòu)域,且2個(gè)鋅指結(jié)構(gòu)域核心序列均為QALGGH,該序列是植物鋅指蛋白所特有的(Takatsuji, 1999)。另外,EgrZFP6蛋白序列還分別含有1個(gè)乙烯響應(yīng)元件結(jié)合因子相關(guān)雙性抑制子(ERF associated amphiphilic repression: EAR)基序: DLNLTP和1個(gè)L-box基序(圖1)。

圖1 巨桉EgrZFP6蛋白序列與其他植物同源蛋白序列比對(duì)Fig.1 Multiple alignments of homologus proteins with high similarity sequences to EgrZFP6 in Eucalyptus grandisMesZAT11:木薯Manihot esculenta(OAY41302.1); MtrZAT11:蒺藜苜蓿Medicago truncatula(XP_013468307.1); LusZAT11:亞麻L(zhǎng)inum usitatissimum(XP_002533000); GraZAT11:雷蒙德氏棉Gossypium raimondii(XP_012483278.1); AtZAT11: 擬南芥Arabidopsis thaliana (AEC09397.1).鋅指結(jié)構(gòu)域用加粗黑線標(biāo)示,L-box和EAR基序用雙實(shí)線表示。 The zinc finger domain is marked with thicken black line, L-box and EAR motif are showed with double lines.

2.2 EgrZFP6亞細(xì)胞定位結(jié)果分析

構(gòu)建EgrZFP6-GFP表達(dá)載體,利用基因槍轟擊洋蔥表皮的方法對(duì)EgrZFP6蛋白進(jìn)行亞細(xì)胞定位分析,結(jié)果表明該蛋白定位于細(xì)胞核中(圖2)。其可能是作為轉(zhuǎn)錄因子在細(xì)胞核內(nèi)發(fā)揮基因表達(dá)調(diào)控作用。

圖2 EgrZFP6的亞細(xì)胞定位Fig.2 Subcellular localization of EgrZFP6

2.3 超表達(dá)EgrZFP6轉(zhuǎn)基因擬南芥株系鑒定

半定量RT-PCR分析結(jié)果(圖3)表明,野生型COL中沒有檢測(cè)到EgrZFP6表達(dá),在2個(gè)轉(zhuǎn)基因純合株系EgrZFP6-OX1和EgrZFP6-OX2中EgrZFP6具有明顯表達(dá)(圖3)。

圖3 野生型和超表達(dá)EgrZFP6擬南芥轉(zhuǎn)基因株系鑒定Fig.3 Identification of EgrZFP6 expression in wild type and two EgrZFP6 over-expression lines in Arabidopsis thalianaCOL: 野生型; EgrZFP6-OX1, EgrZFP6-OX2: 超表達(dá)株系。下同。COL: Wild type; EgrZFP6-OX1, EgrZFP6-OX2: Over-expression lines. The same below.

2.4 超表達(dá)EgrZFP6基因擬南芥株系正常條件及低溫、高鹽和PEG處理下表型分析

超表達(dá)EgrZFP6擬南芥2個(gè)純合株系EgrZFP6-OX1和EgrZFP6-OX2,播種7天后與對(duì)照(COL)相比,根長(zhǎng)生長(zhǎng)明顯受到抑制(圖4A),2個(gè)轉(zhuǎn)基因株系的根長(zhǎng)分別為野生型的 89.4%和 87.0%(圖4B)。

鹽處理下,EgrZFP6超表達(dá)擬南芥株系與野生型擬南芥隨鹽濃度提高,主根、側(cè)根生長(zhǎng)都表現(xiàn)為受鹽抑制,但受抑制程度EgrZFP6超表達(dá)株系相對(duì)于野生型有所減弱,暗示超表達(dá)EgrZFP6在一定程度上能夠提高植株對(duì)鹽脅迫的耐受性(圖5)。

在PEG處理中,1 g·L-1以上的濃度即能誘導(dǎo)EgrZFP6超表達(dá)擬南芥株系側(cè)根大量發(fā)生,同時(shí)側(cè)根伸長(zhǎng)作用也明顯被促進(jìn)。但主根伸長(zhǎng)與對(duì)照相比,在PEG處理下受抑制作用減弱,表示超表達(dá)EgrZFP6株系主根伸長(zhǎng)生長(zhǎng)對(duì)滲透脅迫的抑制作用敏感性下降(圖6)。

超表達(dá)EgrZFP6轉(zhuǎn)基因株系,-8 ℃低溫處理3天,然后于正常溫度下(24 ℃)恢復(fù)生長(zhǎng)3天,轉(zhuǎn)基因株系生長(zhǎng)恢復(fù)速度很慢; 同時(shí),野生型死亡率為16%,而轉(zhuǎn)基因株系的植株死亡率分別達(dá)到了40%和48%。表明EgrZFP6超表達(dá)提高了轉(zhuǎn)基因株系對(duì)低溫的敏感性(圖7)。

2.5 酵母雙雜交結(jié)果分析

酵母雙雜交文庫中篩選到1個(gè)與EgrZFP6互作的蛋白EgrERF4,對(duì)該基因編碼蛋白與EgrZFP6的互作情況進(jìn)行了一對(duì)一驗(yàn)證。pGADT7/pGBKT7-EgrZFP6轉(zhuǎn)化后融合菌株在雙缺平板DDO(SD/-Trp/-Leu)和四缺平板QDO(SD/-Trp/-Leu/-His/-Ade)沒有菌斑生長(zhǎng),陰性對(duì)照(pGADT7-T/pGBKT7-Lam)也沒有菌斑生長(zhǎng),陽性對(duì)照(pGADT7-T/pGBKT7-53)菌斑生長(zhǎng)正常并且顯藍(lán)色(圖8 A),表明其沒有自激活活性。而pGBKT7-EgrZFP6與pGADT7-EgrERF4轉(zhuǎn)化后的融合菌株雙雜交在雙缺平板DDO(SD/-Trp/-Leu)上可正常生長(zhǎng),在四缺平板QDO(SD/-Trp/-Leu/-His/-Ade)上正常生長(zhǎng)且菌斑為藍(lán)色(圖8B),這些結(jié)果表明EgrZFP6和EgrERF4兩個(gè)蛋白存在互作現(xiàn)象。

2.6 EgrERF4定量表達(dá)結(jié)果分析

對(duì)正常巨桉幼苗低溫、干旱和鹽脅迫條件下,葉片中EgrERF4表達(dá)進(jìn)行分析,結(jié)果表明,不同低溫(-8,-4,0,4 ℃)2 h處理下,除了-8 ℃處理下EgrERF4表達(dá)受到抑制外,其他低溫條件都對(duì)基因表達(dá)呈誘導(dǎo)趨勢(shì),其中4 ℃處理對(duì)基因的誘導(dǎo)作用最強(qiáng),表達(dá)量為對(duì)照(25 ℃)的8.6倍(圖9A)。-8 ℃時(shí)的抑制作用可能是由于過低溫度造成凍害,引起細(xì)胞調(diào)控紊亂所致。4 ℃不同時(shí)間(0.5,2,6,12,24,48 h)處理定量結(jié)果表明,處理0.5 h后,表達(dá)量即明顯上調(diào),達(dá)到對(duì)照的1.5倍,處理6 h時(shí)基因相對(duì)表達(dá)量已是對(duì)照的7.6倍,12 h后誘導(dǎo)作用達(dá)到最大,上調(diào)至對(duì)照的9.6倍,之后表達(dá)量有所下降,但仍處于高度誘導(dǎo)水平(圖9B)。

圖4 野生型和超表達(dá)EgrZFP6擬南芥轉(zhuǎn)基因株系生長(zhǎng)7天后表型(A)和根長(zhǎng)差異(B)Fig.4 Phenotype(A) of wild type and EgrZFP6 over-expression lines after 7 days growth and difference of the primary root length(B)t檢驗(yàn) t test: **,Plt;0.01.

圖5 鹽脅迫下野生型和超表達(dá)EgrZFP6擬南芥的表型Fig.5 Phenotype of wild type and EgrZFP6 over-expression Arabidopsis thaliana lines under salt treatments

圖6 模擬干旱脅迫下野生型和超表達(dá)EgrZFP6擬南芥的表型Fig.6 Phenotype of wild type and EgrZFP6 over-expression Arabidopsis thaliana lines under PEG treatments

巨桉植株在200 mmol·L-1NaCl處理12 h后,EgrERF4表達(dá)量即開始受到明顯誘導(dǎo),至48 h時(shí)表達(dá)量達(dá)到對(duì)照組的12.6倍(圖9C),表明EgrERF4表達(dá)受到高鹽脅迫誘導(dǎo)。而干旱脅迫下,處理1天后EgrERF4表達(dá)即受到抑制,第2天恢復(fù)對(duì)照水平,隨后又表現(xiàn)出強(qiáng)烈的抑制效應(yīng),干旱處理5天時(shí),表達(dá)量?jī)H為對(duì)照的0.17倍(圖9D)。

圖7 -8 ℃處理后野生型和超表達(dá)EgrZFP6擬南芥的表型Fig.7 Phenotype of wild type and EgrZFP6 over-expression Arabidopsis thaliana lines after treatment at -8 ℃

3 討論

作為典型C2H2型鋅指結(jié)構(gòu)蛋白,EgrZFP6不僅有2個(gè)極為保守的鋅指結(jié)構(gòu)域,同時(shí)還含有1個(gè)EAR基序,該基序是1個(gè)轉(zhuǎn)錄抑制基序,含有它的轉(zhuǎn)錄因子往往作為負(fù)調(diào)控因子起作用。擬南芥中同樣含有EAR基序的鋅指結(jié)構(gòu)轉(zhuǎn)錄因子基因AtERF7超表達(dá)能夠通過降低保衛(wèi)細(xì)胞對(duì)ABA的敏感性,導(dǎo)致由于水分過度蒸發(fā)而負(fù)調(diào)控植株對(duì)干旱逆境的響應(yīng)(Songetal., 2005); 擬南芥AtZAT11基因超表達(dá)能夠下調(diào)液泡鎳轉(zhuǎn)運(yùn)蛋白表達(dá),進(jìn)一步降低植株中鎳含量,致使超表達(dá)AtZAT11植株對(duì)鎳的耐受性降低(Liuetal., 2014)。小麥(Triticumaestivum)基因TaZFP34可以被低溫、高鹽和干旱等非生物逆境因子誘導(dǎo)表達(dá),且干旱誘導(dǎo)時(shí)產(chǎn)生對(duì)根發(fā)育相關(guān)的B類響應(yīng)調(diào)節(jié)因子基因SHY2表達(dá)的抑制作用,提高植株根冠比(Changetal., 2016)。本研究中超表達(dá)EgrZFP6基因的2個(gè)擬南芥株系中,植株表現(xiàn)出根長(zhǎng)生長(zhǎng)受抑制現(xiàn)象,這極有可能是因?yàn)镋grZFP6作為負(fù)調(diào)控因子,下調(diào)了根伸長(zhǎng)相關(guān)分子途徑中重要基因表達(dá)而導(dǎo)致的。另外,轉(zhuǎn)基因株系對(duì)低溫敏感性的提高也可能與EgrZFP6對(duì)基因表達(dá)的負(fù)調(diào)控特性有關(guān),其可能抑制了植株中一些響應(yīng)低溫脅迫基因的表達(dá),提高了植株對(duì)低溫的敏感性。

圖8 EgrZFP6自激活檢測(cè)(A)及EgrZFP6與EgrERF4酵母雙雜結(jié)果(B)Fig.8 The self-activation detection of EgrZFP6(A)and the result of yeast two-hybrid of EgrERF4 and EgrZFP6(B)DDO: 雙缺平板(SD/-Trp/-Leu); QDO: 四缺平板(SD/-Trp/-Leu/-His/-Ade); X: 酵母半乳糖苷酶; A: 金擔(dān)子素A; NC: 陰性對(duì)照; PC: 陽性對(duì)照; 1, 1/10, 1/100: 稀釋倍數(shù)。DDO: SD/-Trp/-Leu; QDO: SD/-Trp/-Leu/-His/-Ade; X: X-α-Gal; A: Aureobasidin A; NC: Negative control; PC: Positive control; 1, 1/10, 1/100: Dilution multiple.

圖9 EgrERF4在不同低溫(A)、4 ℃不同時(shí)間(B)、鹽脅迫(C)和干旱脅迫(D)處理下相對(duì)表達(dá)量Fig.9 Relative expression of EgrERF4 under different temperature treatment(A)、different time treatment at 4 ℃(B)、salt treatment(C) and drought stress(D)

另外,也有研究表明,C2H2型鋅指結(jié)構(gòu)蛋白即使含有轉(zhuǎn)錄抑制基序EAR,其仍可以作為激活因子發(fā)揮正調(diào)控作用,在非生物逆境脅迫中發(fā)揮重要作用(Ohtaetal., 2001)。番茄(Lycopersiconesculentum)中含有EAR基序的C2H2型鋅指結(jié)構(gòu)蛋白基因SIZF2在擬南芥中超表達(dá)參與ABA信號(hào)傳導(dǎo),下調(diào)激素特別是ABA相關(guān)基因的表達(dá),增強(qiáng)其對(duì)鹽脅迫的耐受性(Hichrietal., 2014)。擬南芥基因ZFP3超表達(dá)可增強(qiáng)植株對(duì)鹽和滲透脅迫的耐受能力(Zhangetal., 2016a); 玉米(Zeamays)ZmZF1和野大豆(Glycinesoja)GsZFP1超表達(dá)擬南芥抗旱性都得到明顯增強(qiáng)(Huaietal., 2009; Luoetal., 2011); 水稻基因ZFP252和OsMSR15則能夠在水稻干旱脅迫調(diào)控中發(fā)揮重要作用,其超表達(dá)植株干旱耐受性提高(Xuetal., 2008; Zhangetal., 2016b)。本研究在模擬干旱PEG處理下,EgrZFP6擬南芥轉(zhuǎn)基因株系相對(duì)于對(duì)照根伸長(zhǎng)不受影響,而側(cè)根數(shù)量和長(zhǎng)度都明顯增加,這是干旱適應(yīng)性的表現(xiàn),暗示EgrZFP6的超表達(dá)能夠形成一定的抗旱性植株表型特征。高鹽脅迫下,EgrZFP6轉(zhuǎn)基因植株對(duì)鹽脅迫耐受性有一定程度提高。這應(yīng)該都與EgrZFP6對(duì)相應(yīng)逆境響應(yīng)相關(guān)基因的正向調(diào)控作用密不可分。EgrZFP6在低溫和干旱、高鹽不同逆境下所發(fā)揮的截然不同調(diào)控機(jī)制,表明了該基因在植物逆境調(diào)控中的復(fù)雜性。

EgrZFP6蛋白序列中還含有1個(gè)L-box基序,該基序參與蛋白與蛋白之間的互作效應(yīng)(Kagaleetal., 2011)。酵母雙雜交篩選結(jié)果表明,EgrZFP6能夠與EgrERF4互作,EgrERF4是乙烯應(yīng)答因子ERF轉(zhuǎn)錄因子基因家族中的1個(gè)成員,該家族成員編碼蛋白序列以含有1個(gè)AP2/ERF結(jié)構(gòu)域?yàn)橹匾卣?,在低溫、干旱和高鹽等非生物逆境脅迫響應(yīng)過程中發(fā)揮重要調(diào)控作用(Xuetal., 2011; Mizoietal., 2012)。非生物逆境響應(yīng)中,該家族轉(zhuǎn)錄因子和C2H2型鋅指結(jié)構(gòu)蛋白因子類似,發(fā)揮的作用也有兩面性,既可以是負(fù)調(diào)控因子,也可以是正調(diào)控因子。水稻OsERF109的超表達(dá)使轉(zhuǎn)基因植株的干旱耐受能力降低(Yuetal., 2016),超表達(dá)OsAP23則會(huì)提高轉(zhuǎn)基因植株對(duì)鹽的敏感性(Zhuangetal., 2013),這些ERF類轉(zhuǎn)錄因子都是作為負(fù)調(diào)控因子而存在的。而另外一些ERF基因家族成員則可以促進(jìn)非生物逆境抗性的提高。大豆(Glycinemax)中GmERF3和水稻中JERF3、JERF1和TERF1的超表達(dá)都能使轉(zhuǎn)基因植株有效增強(qiáng)對(duì)干旱和高鹽的抗性(Zhangetal., 2009; 2010a; 2010b; Gaoetal., 2008)。酵母雙雜交結(jié)果表明EgrZFP6蛋白能夠與EgrERF4蛋白互作。表達(dá)層面上,巨桉EgrERF4基因表達(dá)在低溫和鹽脅迫下都被不同程度誘導(dǎo),但受干旱逆境條件抑制。這與EgrZFP6的表達(dá)結(jié)果相似(Wangetal., 2014),二者表達(dá)具有一定協(xié)同性。這暗示它們?cè)诠δ馨l(fā)揮方面可能也存在較大相似性,EgrZFP6與EgrERF4的互作效應(yīng)在非生物逆境脅迫響應(yīng)中的具體作用,尚需進(jìn)一步的研究進(jìn)行揭示。

4 結(jié)論

巨桉C2H2型鋅指結(jié)構(gòu)蛋白轉(zhuǎn)錄因子EgrZFP6,參與低溫逆境脅迫響應(yīng)的負(fù)調(diào)控作用,提高植物對(duì)低溫的敏感性。但在干旱和高鹽等滲透脅迫下,其過表達(dá)能夠改變植株根構(gòu)型,使其向適應(yīng)脅迫的方向發(fā)展。同時(shí)EgrZFP6可與乙烯響應(yīng)因子蛋白EgrERF4互作,二者可能通過這種互作效應(yīng)協(xié)同參與巨桉低溫、干旱和高鹽等逆境脅迫響應(yīng)過程。

黃 驥, 王建飛, 張紅生. 2004.植物C2H2型鋅指蛋白的結(jié)構(gòu)與功能. 遺傳, 26(3): 414-418.

(Huang J, Wang J F, Zhang H S. 2004.Structure and function of plant C2H2 zinc finger protein. Hereditas, 26(3): 414-418.[in Chinese])

金美芳. 2007. 擬南芥總RNA的簡(jiǎn)便提取與效果分析. 福建師范大學(xué)福清分校學(xué)報(bào),79(2): 16-18.

(Jin M F. 2007. A simple method forArabidopsisthalianatotal RNA isolation and its advantage. Journal of Fuqing Branch of Fujian Normal University, 79(2): 16-18. [in Chinese])

許紅梅,張立軍,劉 淳. 2010.農(nóng)桿菌蘸花法侵染擬南芥的研究. 北方園藝,(14):143-146.

(Xu H M, Zhang L J, Liu C. 2010. Study of infection ofArabidopsisthalianabyAgrobacteriumdipping flower method. Northern Horticulture,(14):143-146.[in Chinese])

王亞紅,劉 縉,王玉國. 2010.高質(zhì)量提取銀杏種仁總RNA的改良方法. 中國農(nóng)學(xué)通報(bào), 26(15): 48-52.

(Wang Y H, Liu J, Wang Y G. 2010. An improved method for RNA isolation from seeds ofGinkgobilobaL. Chinese Agricultural Science Bulletin, 26(15):48-52.[in Chinese])

Agarwal P, Arora R, Ray S,etal. 2007. Genome-wide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Molecular Biology, 65(4): 467-485.

Chang H, Chen D, Kam J,etal. 2016. Abiotic stress upregulated TaZFP34 represses the expression of type-B response regulator and SHY2 genes and enhances root to shoot ratio in wheat. Plant Science, 252: 88-102.

Dos Reis S P, Lima A M, de Souza C R. 2012. Recent molecular advances on downstream plant responses to abiotic stress. International Journal of Molecular Sciences, 13(7): 8628-8647.

Englbrecht C C, Heiko S, Siegfried B. 2004. Conservation, diversification and expansion of C2H2 zinc finger proteins in theArabidopsisthalianagenome. BMC Genomics, 5(1): 39.

Gao S M, Zhang H W, Tian Y,etal. 2008. Expression ofTERF1 in rice regulates expression of stress-responsive genes and enhances tolerance to drought and high-salinity. Plant Cell Reports, 27(11): 1787-1795.

Gujjar R S, Akhtar M, Singh M. 2014. Transcription factors in abiotic stress tolerance. Indian Journal of Plant Physiology, 19(4): 306-316.

Hichri I, Muhovski Y, ?i?ková E,etal. 2014. TheSolanumlycopersicumZinc Finger2 cysteine-2/histidine-2 repressor-like transcription factor regulates development and tolerance to salinity in tomato andArabidopsis. Plant Physiology, 164(4): 1967-1990.

Huai J L, Zheng J, Wang G Y. 2009. Overexpression of a new Cys2/His2 zinc finger protein ZmZF1 from maize confers salt and drought tolerance in transgenicArabidopsis. Plant Cell, Tissue and Organ Culture, 99(2): 117-124.

Huang J, Sun S J, Xu D Q,etal. 2009. Increased tolerance of rice to cold, drought and oxidative stresses mediated by the overexpression of a gene that encodes the zinc finger protein ZFP245. Biochemical and Biophysical Research Communications, 389(3): 556-561.

Kagale S, Rozwadowski K. 2011. EAR motif-mediated transcriptional repression in plants: an underlying mechanism for epigenetic regulation of gene expression. Epigenetics, 6(2):141-146.

Kong J, Cao W H, Zhang J S,etal. 2004. Transgenic analysis of a salt-inhibitedOsZFP1 gene from rice. Acta Botanica Sinica, 46(5): 573-577.

Kubo K I, Sakamoto A, Kobayashi A,etal. 1998. Cys2/His2 zinc-finger protein family of petunia: evolution and general mechanism of target-sequence recognition. Nucleic Acids Research, 26(2): 608-615.

Liu X M, An J, Han H J,etal. 2014. ZAT11, a zinc finger transcription factor, is a negative regulator of nickel ion tolerance inArabidopsis. Plant Cell Reports, 33(12): 2015-2021.

Luo X, Bai X, Zhu D,etal. 2011. GsZFP1, a new Cys2/His2-type zinc-finger protein, is a positive regulator of plant tolerance to cold and drought stress. Planta, 235(6): 1141-1155.

Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K. 2012. AP2/ERF family transcription factors in plant abiotic stress responses. Biochimica et Biophysica Acta (BBA)-Gene Regulatory Mechanisms, 1819(2): 86-96.

Ohta M, Matsui K, Hiratsu K,etal. 2001. Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell, 13(8): 1959-1968.

Reddy D S, Mathur P B, Sharma K K. 2013. Regulatory role of transcription factors in abiotic stress responses in plants//Climate change and plant abiotic stress tolerance. Wiley-VCH Verlag GmbH amp; Co. KGaA, 555-588.

Roychoudhury A, Banerjee A, Lahiri V. 2015. Metabolic and molecular-genetic regulation of proline signaling and its cross-talk with major effectors mediates abiotic stress tolerance in plants. Turkish Journal of Botany, 39(6): 887-910.

Song C P, Agarwal M, Ohta M,etal. 2005. Role of anArabidopsisAP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell, 17(8): 2384-2396.

Sugano S, Kaminaka H, Rybka Z,etal. 2003. Stress-responsive zinc finger geneZPT2-3 plays a role in drought tolerance in petunia. The Plant Journal, 36(6): 830-841.

Takabe T. 2012. Engineering of betaine biosynthesis and transport for abiotic stress tolerance in plants. Journal of Plant Biochemistry and Biotechnology, 21(1): 58-62.

Takatsuji H. 1999. Zinc-finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Molecular Biology, 39(6): 1073-1078.

Wang S, Wei X L, Cheng L J,etal. 2014. Identification of a C2H2-type zinc finger gene family fromEucalyptusgrandisand its response to various abiotic stresses. Biologia Plantarum, 58(2): 385-390.

Xu Z S, Chen M, Li L C,etal. 2011. Functions and application of the AP2/ERF transcription factor family in crop improvement. Journal of Integrative Plant Biology, 53(7): 570-585.

Xu D Q, Huang J, Guo S Q,etal. 2008. Overexpression of a TFIIIA-type zinc finger protein geneZFP252 enhances drought and salt tolerance in rice (OryzasativaL.). FEBS Letters, 582(7): 1037-1043.

Yu Y, Yang D, Zhou S,etal. 2016. The ethylene response factor OsERF109 negatively affects ethylene biosynthesis and drought tolerance in rice. Protoplasma, 254: 401-408.

Zhang G, Chen M, Li L,etal. 2009. Overexpression of the soybeanGmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. Journal of Experimental Botany, 60(13): 3781-3796.

Zhang H, Wu L, Wan L,etal. 2010a. Functional analyses of ethylene response factor JERF3 with the aim of improving tolerance to drought and osmotic stress in transgenic rice. Transgenic Research, 19(5): 809-818.

Zhang Z, Li F, Li D,etal. 2010b. Expression of ethylene response factor JERF1 in rice improves tolerance to drought. Planta, 232(3): 765-774.

Zhang A, Liu D, Hua C,etal. 2016a. TheArabidopsisgene zinc finger protein 3(ZFP3) is involved in salt stress and osmotic stress response. PLoS One,11(12): e0168367.

Zhang X, Zhang B, Li M J,etal. 2016b.OsMSR15 encoding a rice C2H2-type zinc finger protein confers enhanced drought tolerance in transgenicArabidopsis. Journal of Plant Biology, 59(3): 271-281.

Zhao C, Zhang Z, Xie S,etal. 2016. Mutational evidence for the critical role of CBF transcription factors in cold acclimation inArabidopsis. Plant Physiology,171(4): 2744-2759.

Zhuang J, Jiang H H, Wang F,etal. 2013. A rice OsAP23, functioning as an AP2/ERF transcription factor, reduces salt tolerance in transgenicArabidopsis. Plant Molecular Biology Reporter, 31(6): 1336-1345.

(責(zé)任編輯 徐 紅)

FunctionofZFP6GenefromEucalyptusgrandisinResponsetoAbioticStresses

Wang Xiaorong Cheng Longjun Xu Fenghua Ni Xiaoxiang Lu Jun
(StateKeyLaboratoryofSubtropicalSilvicultureZhejiangAamp;FUniversityHangzhou311300)

【Objective】EgrZFP6(Eucgr.A01232)is a gene which is involved in abiotic stresses response inEucalyptusgrandis. With the study of protein structure and function of EgrZFP6, the roles it possibly played in abiotic stress response inE.grandiswere discussed in order to provide a basis for stress resistance breeding ofEucalyptus.【Method】 The EgrZFP6 protein structure was analyzed with CDD online software. And, sequences of ZFP protein in other plant species that have high similarity with EgrZFP6 were downloaded from NCBI after Blast software was used. Multiple alignments for these sequences were finished with Clustalx and their motifs were analyzed. EgrZFP6∷sGFP fused expression vector was also constructed and transformed into onion epidermal cells via gene gun bombardment to identify subcellular localization of EgrZFP6. Transformation of 35S∷EgrZFP6 intoArabidopsisthalianawas via floral-dip method. Two homozygous lines ofEgrZFP6 over-expression inA.thalianawere obtained, their phenotype under normal condition, low temperature, drought and high salinity treatments were evaluated compared to wild type (COL). Based on Yeast 2 Hybridization, EgrERF4 (Eucgr.F01164), a protein can interact with EgrZFP6, was screened from the Yeast 2 Hybridization library. The expression ofEgrERF4 under low temperature, drought and salinity inE.grandisseedlings was also analyzed. Protein that can interact with EgrZFP6 were screened and verified by Yeast 2 Hybridization. Gene expression ofEgrERF4 under abiotic stresses was analyzed by real time fluorescence quantitative RT-PCR method .【Result】 The EgrZFP6 is a classic C2H2 type zinc finger protein. There are 2 zinc finger domains with QALGGH sequence which is specific for plants in it. An ERF (ethylene responsive element binding factor) associated amphiphilic repression (EAR) motif and a L-box motif were also found in the protein sequence.Result of subcellular localization revealed the protein EgrZFP6 encoded was localized in the nuclear. Under normal condition, the twoEgrZFP6 over-expressionA.thalianalines showed primary root growth inhibition compared to wide type. However, its sensitivity to the low temperature was increased. PEG treatments can promote lateral root growth and increase the number of them and the transgenic lines showed tolerance to salinity treatment to some extent. EgrERF4, an ethylene responsive factor, can interact with EgrZFP6. For the low temperature treatments to theE.grandisseedlings,EgrERF4 expression can be induced under time course treatments (0.5,2,6,12,24,48 h) at 4 ℃ and different low temperature (-8,-4,0,4 ℃,2 h) except for -8 ℃.EgrERF4 expression induction was also found under high salinity (200 mmol·L-1), but drought inhibited theEgrERF4 expression.【Conclusion】 EgrZFP6 transcriptional factor was possibly involved in the low temperature, high salinity and drought stresses through interacting with EgrERF4 inEucalyptusgrandis. In plants, EgrZFP6 may negatively regulate the sensitivity to cold stress. But for drought and salinity stress responses, it possibly played a positive role via changing the root pattern.

Eucalyptusgrandis;EgrZFP6; abiotic stress; gene function

10.11707/j.1001-7488.20171107

2017-03-22;

2017-04-20。

國家自然科學(xué)基金項(xiàng)目“巨桉鋅指結(jié)構(gòu)蛋白基因EgrZPCT在抗冷脅迫中功能和調(diào)控機(jī)制研究”(31270657); 浙江省科技廳林木新品種選育重大科技專項(xiàng)“沿海防護(hù)林重點(diǎn)樹種高抗品種選育”(2016C02056-9)。

*程龍軍為通訊作者。

S718.46

A

1001-7488(2017)11-0060-09

猜你喜歡
鋅指株系逆境
超越逆境
做人與處世(2022年6期)2022-05-26 10:26:35
過表達(dá)NtMYB4a基因增強(qiáng)煙草抗旱能力
How adversity makes you stronger逆境如何讓你更強(qiáng)大
鋅指蛋白與肝細(xì)胞癌的研究進(jìn)展
C2H2型鋅指蛋白在腫瘤基因調(diào)控中的研究進(jìn)展
嫦娥5號(hào)返回式試驗(yàn)衛(wèi)星小麥育種材料研究進(jìn)展情況
衢州椪柑變異株系—黃皮椪柑相關(guān)特性研究
浙江柑橘(2016年1期)2016-03-11 20:12:31
Myc結(jié)合的鋅指蛋白1評(píng)估實(shí)驗(yàn)性急性胰腺炎疾病嚴(yán)重程度的價(jià)值
鋅指蛋白及人工鋅指蛋白對(duì)微生物代謝影響的研究進(jìn)展
完形填空Ⅳ
浠水县| 靖州| 南昌县| 南雄市| 扎兰屯市| 屏东市| 兖州市| 搜索| 顺昌县| 德昌县| 行唐县| 明光市| 沅陵县| 石河子市| 瓦房店市| 济南市| 南溪县| 会东县| 澄江县| 江北区| 布拖县| 宜昌市| 宝清县| 区。| 客服| 大荔县| 富顺县| 凤冈县| 商都县| 绥阳县| 盐山县| 怀集县| 桦甸市| 嘉禾县| 高尔夫| 泌阳县| 湖北省| 信丰县| 南阳市| 漳浦县| 辛集市|