国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

玉米季橫壟坡面徑流及可溶性有機(jī)碳流失特征

2017-12-09 07:09武萬(wàn)華何淑勤宮淵波鄭子成
中國(guó)水土保持科學(xué) 2017年5期
關(guān)鍵詞:徑流苗期生育期

武萬(wàn)華,何淑勤?,宮淵波,鄭子成

(1.四川農(nóng)業(yè)大學(xué)林學(xué)院,611130,成都;2.四川省水土保持與荒漠化防治重點(diǎn)實(shí)驗(yàn)室,611130,成都;3.四川農(nóng)業(yè)大學(xué)資源學(xué)院,611130,成都)

玉米季橫壟坡面徑流及可溶性有機(jī)碳流失特征

武萬(wàn)華1,2,何淑勤1,2?,宮淵波1,2,鄭子成3

(1.四川農(nóng)業(yè)大學(xué)林學(xué)院,611130,成都;2.四川省水土保持與荒漠化防治重點(diǎn)實(shí)驗(yàn)室,611130,成都;3.四川農(nóng)業(yè)大學(xué)資源學(xué)院,611130,成都)

為了探明紫色土坡耕地玉米各生育期可溶性有機(jī)碳流失特征與遷移途徑,為玉米種植過(guò)程中有機(jī)碳流失有效防控提供科學(xué)依據(jù)。通過(guò)采用野外徑流小區(qū)和人工模擬降雨相結(jié)合的方法,探討紫色土玉米季坡耕地地表徑流、壤中流及其可溶性有機(jī)碳的流失特征。結(jié)果表明,地表徑流量受降雨再分配作用明顯,表現(xiàn)為苗期最大,抽雄期最?。蝗乐辛鲃t受降雨強(qiáng)度和降雨再分配作用的影響較小。地表徑流DOC質(zhì)量濃度均呈現(xiàn)逐漸降低的趨勢(shì),且2.0 mm/min降雨強(qiáng)度下DOC質(zhì)量濃度初值相對(duì)較高;而壤中流DOC質(zhì)量濃度呈現(xiàn)先升后降的趨勢(shì),在1.0 mm/min降雨強(qiáng)度下變化最為顯著。自產(chǎn)流開始30 min內(nèi),地表徑流DOC遷移負(fù)荷表現(xiàn)為苗期>成熟期>拔節(jié)期>抽雄期,且受降雨強(qiáng)度影響較大;而壤中流DOC遷移負(fù)荷表現(xiàn)為苗期>拔節(jié)期>抽雄期>成熟期,且受降雨強(qiáng)度影響不明顯。同一生育期,壤中流DOC質(zhì)量濃度高于地表徑流,且壤中流產(chǎn)生晚于地表徑流,但壤中流DOC遷移負(fù)荷卻是地表徑流DOC遷移負(fù)荷的1.35倍。玉米生育期對(duì)地表徑流量影響明顯,壤中流是紫色土坡耕地DOC遷移的主要方式,徑流DOC質(zhì)量濃度的變化取決于產(chǎn)流時(shí)間和生育期的變化。

玉米; 生育期; 可溶性有機(jī)碳; 地表徑流; 壤中流; 遷移負(fù)荷

可溶性有機(jī)碳(dissolved organic carbon,DOC)不僅是水陸生態(tài)系統(tǒng)中活躍的化學(xué)組分之一,易于造成土壤有機(jī)碳庫(kù)的損失[1-2],影響全球土壤碳平衡[3],而且是養(yǎng)分和環(huán)境污染物遷移的載體[4],其遷移過(guò)程會(huì)加劇與農(nóng)藥、重金屬的絡(luò)合和吸附作用,進(jìn)而對(duì)水質(zhì)產(chǎn)生不同程度的影響[5]。土壤有機(jī)質(zhì)DOC質(zhì)量濃度和土壤水通量間存在顯著相關(guān)性,集水區(qū)可溶性有機(jī)碳通量的增加主要受降雨量增加的驅(qū)動(dòng)[6],有研究表明降雨強(qiáng)度與降雨量大小對(duì)DOC最顯著的影響發(fā)生在降雨初期,全年36%~50%的DOC輸出量是由高強(qiáng)度短歷時(shí)降雨時(shí)間引起[7],更有研究表明暴雨造成流域內(nèi)DOC流失量占其全年流失量的31%~66%[8]。目前,對(duì)土壤DOC遷移的研究較多,主要集中在森林和沼澤濕地生態(tài)系統(tǒng),對(duì)農(nóng)田生態(tài)系統(tǒng)DOC含量及遷移的研究相對(duì)較少[9],由于農(nóng)田生態(tài)系統(tǒng)作物生長(zhǎng)的季節(jié)性變化明顯,在降雨驅(qū)動(dòng)下,土壤DOC含量變化也會(huì)隨季節(jié)有明顯變化[10]。紫色土結(jié)構(gòu)松散、易風(fēng)化,故其極易發(fā)生水土流失,嚴(yán)重的水土流失往往伴隨了大量的養(yǎng)分元素隨徑流流失。玉米(Zeamays)作為紫色土區(qū)坡耕地主栽作物,對(duì)降雨有著較為復(fù)雜的再分配作用[11],馬波等[12]研究表明,莖干流量隨玉米生育期推進(jìn)呈顯著增長(zhǎng)趨勢(shì),并在抽雄后期達(dá)到最大,成熟期隨葉片枯萎莖稈流量呈減少趨勢(shì),莖稈流量的變化在一定程度上影響了徑流和養(yǎng)分流失的方式。橫坡壟作作為研究區(qū)主推農(nóng)耕措施,不僅能有效攔截地表徑流,而且對(duì)養(yǎng)分流失起到相應(yīng)的防控作用[13]。鑒于此,筆者以紫色土橫壟坡面為研究對(duì)象,系統(tǒng)探討不同降雨強(qiáng)度下玉米季坡耕地徑流及徑流DOC質(zhì)量濃度動(dòng)態(tài)變化特征,弄清徑流方式對(duì)DOC遷移負(fù)荷的影響,闡明DOC遷移的主要方式,以期為坡耕地有機(jī)碳流失預(yù)測(cè)和防控提供科學(xué)依據(jù)。

1 材料與方法

1.1 研究區(qū)概況

研究區(qū)位于長(zhǎng)江上游沱江水系花椒溝小支流的響水灘上端(E104°34′12″~104°35′19″,N 30°05′12″~30°06′44″),隸屬四川省資陽(yáng)市雁江區(qū)松濤鎮(zhèn),平均海拔395 m,年降雨量的80%集中于5—10月,且年均降雨量為965.8 m。研究區(qū)坡耕地以玉米種植為主,輔以種植白菜(Beassicapekinensis)、芋頭(Colocasiaesculenta)等。研究區(qū)為典型丘陵地貌,土壤為遂寧組母質(zhì)發(fā)育的紅棕紫泥,有機(jī)質(zhì)質(zhì)量分?jǐn)?shù)8.86 g/kg,有機(jī)碳質(zhì)量分?jǐn)?shù)5.14 g/kg,可溶性有機(jī)碳質(zhì)量濃度12.68 mg/L,全氮、堿解氮質(zhì)量分?jǐn)?shù)分別為0.82 g/kg、39.68 mg/kg,有效磷13.74 mg/kg,速效鉀84.52 mg/kg,土壤質(zhì)地較輕,肥力較低。

1.2 試驗(yàn)設(shè)計(jì)

基于野外實(shí)地調(diào)查,結(jié)合研究區(qū)分布零散的特點(diǎn),試驗(yàn)小區(qū)設(shè)計(jì)為4 m×2 m,每個(gè)小區(qū)由4個(gè)1 m×2 m微小區(qū)構(gòu)成,其中3個(gè)微小區(qū)為實(shí)驗(yàn)重復(fù),一個(gè)作為空白對(duì)照(圖1)。小區(qū)下墊面用混泥土固化防滲形成相對(duì)不透水層,并鋪10 cm厚石英砂,上面覆土60 cm。各小區(qū)坡面底部由水泥砌成V字形集水槽,且與PVC管連接,以便收集徑流。小區(qū)布設(shè)橫坡壟作,壟高25 cm,壟寬40 cm,壟距90 cm。2016年4月,選用玉米正紅6號(hào),采用壟上直播,每個(gè)微小區(qū)栽種8株。株距25 cm,行距80 cm。播種前基施氯化鉀和過(guò)磷酸鈣均為150 kg/hm2,于4、5月下旬分別追施尿素130和140 kg/hm2。其他管理措施與當(dāng)?shù)剞r(nóng)耕習(xí)慣一致。

采用野外人工模擬降雨法,降雨裝置采用中國(guó)科學(xué)院水土保持研究所生產(chǎn)的SR型降雨機(jī),噴頭系統(tǒng)為V-80100型,降雨高度為6 m,有效降雨面積為35 m2,降雨均勻系數(shù)超過(guò)85%。根據(jù)研究區(qū)坡度的分布特點(diǎn),試驗(yàn)坡度設(shè)置為15°,基于多年降雨特點(diǎn)及頻率,設(shè)計(jì)降雨強(qiáng)度分別為1.0、1.5和2.0 mm/min,降雨歷時(shí)從地表徑流產(chǎn)流開始計(jì)時(shí)分別為60、40和30 min,分別在玉米苗期、拔節(jié)期、抽雄期和成熟期進(jìn)行,共計(jì)12場(chǎng)降雨。

圖1 紫色土坡耕地徑流小區(qū)設(shè)計(jì)示意圖Fig.1 Schematic illustration of runoff plot structure on sloping cropland of purple soil

1.3 測(cè)定項(xiàng)目及方法

自產(chǎn)流開始每6 min為一時(shí)間段,用塑料桶收集地表徑流及壤中流,至降雨結(jié)束。采用體積法測(cè)定徑流體積,待徑流澄清后收集250 mL于用去離子水潤(rùn)洗好的塑料瓶,加硫酸調(diào)節(jié)pH≤2,待測(cè)??扇苄杂袡C(jī)碳采用TOC(TOC-V CPH)分析儀進(jìn)行測(cè)定。

1.4 數(shù)據(jù)處理及分析

徑流樣品中測(cè)定的 DOC 質(zhì)量濃度及遷移通量均為3個(gè)小區(qū)的平均值,以大降雨強(qiáng)度下產(chǎn)流時(shí)間為標(biāo)準(zhǔn),大、中、小降雨強(qiáng)度下,地表徑流、壤中流均取自地表徑流產(chǎn)生開始30 min內(nèi)DOC遷移負(fù)荷作為分析的依據(jù),不同降雨時(shí)間段下DOC遷移通量

Qi=Ciqi[14]。

(1)

式中:Qi為地表徑流或壤中流遷移通量,mg/m2;Ci為地表徑流或壤中流DOC質(zhì)量濃度,mg/L;qi為地表徑流或壤中流單位面積徑流量,L/m2。次降雨過(guò)程地表徑流和壤中流DOC累積遷移負(fù)荷為次降雨過(guò)程不同時(shí)間段地表徑流和壤中流 DOC 遷移通量累加:

(2)

式中:n為次降雨過(guò)程徑流收集的時(shí)間段數(shù);Q為地表徑流或壤中流遷移負(fù)荷,mg/m2。

試驗(yàn)數(shù)據(jù)統(tǒng)計(jì)分析采用SPSS 17.0軟件,圖表制作采用Origin 9.0和Excel 2007。

2 結(jié)果與分析

2.1 玉米季坡耕地徑流特征

由表1可知:玉米全生育期均表現(xiàn)為2.0 mm/min降雨強(qiáng)度下的地表徑流顯著高于其他降雨強(qiáng)度,地表徑流量最大值、最小值分別為15.72和6.05 L/m2,依次出現(xiàn)于苗期2.0 mm/min降雨強(qiáng)度與抽雄期1.0 mm/min降雨強(qiáng)度。不同降雨強(qiáng)度下,均表現(xiàn)為苗期、成熟期地表徑流顯著高于抽雄期。玉米各生育期壤中流則表現(xiàn)為1.5 mm/min降雨強(qiáng)度顯著高于其他降雨強(qiáng)度,最大值為25.18 L/m2,出現(xiàn)于苗期,可見1.5 mm/min降雨強(qiáng)度更有利于研究區(qū)壤中流的發(fā)育。2.0 mm/min降雨強(qiáng)度下壤中流最小,最小值僅為1.47 L/m2,出現(xiàn)于成熟期。不同降雨條件下,玉米各生育期壤中流均表現(xiàn)為苗期>拔節(jié)期>抽雄期>成熟期。1.0和2.0 mm/min降雨強(qiáng)度下,拔節(jié)期、抽雄期壤中流與苗期、成熟期之間差異顯著,成熟期壤中流顯著低于其他生育期。

表1不同降雨強(qiáng)度下玉米生長(zhǎng)階段坡耕地徑流量變化特征

Tab.1Changing characteristics of runoff at maize growth stages under different rainfall intensities

降雨強(qiáng)度Rainfallintensity/(mm·min-1)地表徑流量Surfacerunoff/(L·m-2)壤中流徑流量Interflow/(L·m-2)苗期拔節(jié)期抽雄期成熟期苗期拔節(jié)期抽雄期成熟期SeedlingJointingTasselingMatureSeedlingJointingTasselingMature1.010.90±0.23Ba8.14±0.59Bbc6.05±0.23Bc9.41±0.26Bab13.14±0.56Ba9.41±0.49Bb9.35±0.75Bb2.64±0.36Bc1.513.20±0.16Ba9.22±0.63Bbc7.76±0.36Bc10.82±0.31Bab25.18±1.62Aa23.55±0.53Aa18.13±1.38Ab4.43±0.56Ac2.015.72±0.49Aa12.69±0.16Abc10.19±0.54Ac14.03±1.08Aab8.95±1.02Ca5.32±0.28Cb6.34±0.92Cb1.47±0.21Cc

注:同列A、B、C表示降雨強(qiáng)度對(duì)徑流量的影響,同行a、b、c表示玉米生育期對(duì)徑流量的影響,相同字母表示差異不顯著,不同字母表示顯著(P<0.05)。Note: A, B and C in the same row indicate the effect of rainfall intensity on runoff, and a, b and c of the same period indicate that the growth stage of maize has an effect on runoff, and the same letters refer to not significant(P<0.05).

2.2 徑流DOC質(zhì)量濃度變化特征

圖2 玉米生育期不同降雨強(qiáng)度下地表徑流DOC質(zhì)量濃度變化特征Fig.2 Variation characteristics of DOC mass concentration in surface runoff under different rainfall intensities and mazie different growth stages

2.2.1 地表徑流DOC質(zhì)量濃度變化特征 圖2示出:1.0 mm/min降雨強(qiáng)度,隨玉米生育期的推進(jìn),地表徑流DOC質(zhì)量濃度表現(xiàn)為苗期>成熟期>拔節(jié)期>抽雄期,DOC質(zhì)量濃度的最大值、最小值分別出現(xiàn)于苗期(4.8 mg/L)和抽雄期(1.4 mg/L)。1.5 mm/min降雨強(qiáng)度,隨降雨歷時(shí)的延長(zhǎng),地表徑流DOC質(zhì)量濃度逐漸降低,玉米不同生育期地表徑流DOC質(zhì)量濃度變化表現(xiàn)為苗期>成熟期>拔節(jié)期>抽雄期,最大值為4.6 mg/L,出現(xiàn)在苗期產(chǎn)流開始的18 min左右,最小值為1.1 mg/L,出現(xiàn)在抽雄期產(chǎn)流開始42 min左右。2.0 mm/min降雨強(qiáng)度,隨玉米生育期的推進(jìn),地表徑流DOC質(zhì)量濃度變化與1.0 mm/min降雨強(qiáng)度相似,但其變化范圍為0.1~2.5 mg/L,DOC質(zhì)量濃度的最大值、最小值分別為7.1和0.9 mg/L。

2.2.2 壤中流DOC質(zhì)量濃度變化特征 由圖3可看出:1.0 mm/min降雨強(qiáng)度,自地表徑流開始,玉米各生育期壤中流產(chǎn)流時(shí)間依次為6、12、24和30 min左右;壤中流DOC質(zhì)量濃度變化整體呈現(xiàn)出先升高后降低的趨勢(shì),其質(zhì)量濃度的變化范圍為2.6~5.8 mg/L。1.5 mm/min降雨強(qiáng)度,其DOC質(zhì)量濃度變化范圍為1.7~7.0 mg/L,苗期、拔節(jié)期壤中流產(chǎn)流時(shí)間均晚于地表徑流12 min左右,抽雄期、成熟期分別晚于24和30 min左右;苗期和拔節(jié)期壤中流DOC質(zhì)量濃度變化呈先升高后降低的趨勢(shì)。1.0 和1.5 mm/min降雨強(qiáng)度下,壤中流DOC質(zhì)量濃度均表現(xiàn)為苗期>拔節(jié)期>成熟期>抽雄期。2.0 mm/min降雨強(qiáng)度,苗期、拔節(jié)期壤中流產(chǎn)流時(shí)間均晚于地表徑流18 min左右,而抽雄期、成熟期晚于24 min左右;玉米苗期和拔節(jié)期壤中流DOC質(zhì)量濃度先呈現(xiàn)陡增的趨勢(shì),隨后降低,而抽雄期和成熟期壤中流DOC質(zhì)量濃度僅表現(xiàn)出遞增的變化趨勢(shì),不同生育期壤中流DOC質(zhì)量濃度變化范圍為2.3~8.7 mg/L。

圖3 玉米生育期不同降雨強(qiáng)度下壤中流DOC質(zhì)量濃度變化特征Fig.3 Variation characteristics of DOC mass concentration in interflow under different rainfall intensities and mazie different growth stages

2.3 徑流DOC遷移負(fù)荷變化特征

2.3.1 地表徑流DOC遷移負(fù)荷變化特征 由圖4可以看出:自產(chǎn)流開始30 min內(nèi)玉米各生育期地表徑流DOC遷移負(fù)荷大小均表現(xiàn)為2.0>1.5>1.0 mm/min,且2.0 mm/min降雨強(qiáng)度下地表徑流DOC遷移負(fù)荷顯著高于其他降雨強(qiáng)度。整個(gè)玉米生育期,2.0、1.5和1.0 mm/min降雨強(qiáng)度下產(chǎn)流30 min內(nèi)地表徑流DOC遷移負(fù)荷分別為151.91、114.39和95.64 mg/m2,其中2.0 mm/min降雨強(qiáng)度下的遷移負(fù)荷分別是1.5和1.0 mm/min降雨強(qiáng)度下遷移負(fù)荷的1.33和1.59倍。隨玉米生育期推進(jìn),不同降雨強(qiáng)度地表徑流DOC遷移負(fù)荷均表現(xiàn)為苗期>成熟期>拔節(jié)期>抽雄期。1.0和2.0 mm/min降雨強(qiáng)度下,玉米各生育期之間地表徑流DOC遷移負(fù)荷差異顯著;1.5 mm/min降雨強(qiáng)度下,拔節(jié)期、成熟期與苗期、抽雄期地表徑流DOC遷移負(fù)荷間差異顯著。

大寫字母表示降雨強(qiáng)度對(duì)DOC遷移負(fù)荷的影響,小寫字母表示玉米生育期對(duì)DOC遷移負(fù)荷的影響,相同字母表示不顯著,不同字母表示顯著(P<0.05),下同。The capital letters in the Figure indicate the effect of rainfall intensity on DOC migration load, and the lower case letters indicate the effect of maize growth period on DOC migration load, the same letters refer to not significant, and different letters indicate significant (P<0.05).The same below圖4 玉米生育期不同降雨強(qiáng)度下地表徑流DOC遷移負(fù)荷變化特征Fig.4 Variation characteristics of DOC migration load in surface runoff under different rainfall intensities and different growth stages of maize

2.3.2 壤中流DOC遷移負(fù)荷變化特征 由圖5可以看出:自產(chǎn)流開始30 min內(nèi)玉米各生育期壤中流DOC遷移負(fù)荷大小均表現(xiàn)為1.5>1.0>2.0 mm/min,且1.5 mm/min降雨強(qiáng)度下壤中流DOC遷移負(fù)荷顯著高于其他降雨強(qiáng)度。壤中流DOC遷移負(fù)荷的變化范圍為6.19~103.26 mg/m2,1.0、1.5和2.0 mm/min降雨強(qiáng)度下玉米生育期壤中流DOC遷移負(fù)荷分別為137.84、240.32 和112.18 mg/m2。玉米苗期、拔節(jié)期,1.0 和1.5 mm/min降雨強(qiáng)度下壤中流DOC遷移負(fù)荷均顯著高于抽雄期和成熟期,玉米生育期壤中流DOC遷移負(fù)荷表現(xiàn)為苗期>拔節(jié)期>抽雄期>成熟期。

圖5 玉米生育期不同降雨強(qiáng)度下壤中流DOC遷移負(fù)荷變化特征Fig.5 Variation characteristics of DOC migration load in interflow under different rainfall intensities and different growth stages of maize

3 討論

研究結(jié)果表明,隨玉米生育期推進(jìn),地表徑流量在抽雄期最小,苗期最大,主要是因?yàn)槊缙谥仓旯诜?、葉表面積較小,截留和莖干流作用較弱,抽雄期則最大,從而延緩地表徑流產(chǎn)生。成熟期部分枯萎下垂葉片平鋪地表,降低了土壤入滲作用,地表徑流量呈現(xiàn)增加的趨勢(shì)[15]。地表徑流量與降雨強(qiáng)度呈正相關(guān),而壤中流變化較為復(fù)雜,在1.5 mm/min降雨強(qiáng)度下壤中流發(fā)育更好,主要是因?yàn)?.0 mm/min降雨強(qiáng)度下,雨滴擊濺作用較強(qiáng),使得土壤細(xì)小顆粒阻塞土壤孔隙,降水下滲作用減弱,以地表徑流為主;而1.0 mm/min降雨強(qiáng)度下主要受降雨量的限制,土壤充分下滲后才形成壤中流。

不同降雨強(qiáng)度下玉米各生育期地表徑流DOC質(zhì)量濃度變化呈現(xiàn)逐漸降低的趨勢(shì),而壤中流DOC質(zhì)量濃度呈現(xiàn)先升高后降低,最后趨于穩(wěn)定的趨勢(shì)。這主要與壤中流組成有關(guān),一般認(rèn)為壤中流由基質(zhì)流和土壤中大孔隙流組成,且基質(zhì)流形成速率遠(yuǎn)遠(yuǎn)小于大孔隙流[16]。降雨初期,由于壤中流產(chǎn)生以大孔隙流為主,且大孔隙入滲水與土壤DOC間溶解交互作用較小,隨降雨持續(xù),基流的形成,入滲水?dāng)y帶土壤DOC增加,故DOC質(zhì)量濃度呈升高趨勢(shì);而當(dāng)DOC質(zhì)量濃度產(chǎn)生峰值時(shí),降雨量的增加反而對(duì)DOC質(zhì)量濃度起到稀釋作用。地表徑流DOC質(zhì)量濃度表現(xiàn)為苗期>成熟期>拔節(jié)期>抽雄期。可見,玉米生育期對(duì)地表徑流DOC質(zhì)量濃度影響較大,可能原因有2方面:一是與玉米株高、葉面積有關(guān),株高、葉面積一定程度影響了徑流的產(chǎn)生和發(fā)育,進(jìn)而影響DOC質(zhì)量濃度;二是受溫度影響,本實(shí)驗(yàn)研究整個(gè)玉米生育期DOC質(zhì)量濃度變化,季節(jié)性變化一定程度影響DOC質(zhì)量濃度。DOC主要組成為簡(jiǎn)單的碳水化合物、有機(jī)酸及氨基酸[17],DOC的吸附能力對(duì)土層溫度的變化較為敏感[18],升溫有利于土壤對(duì)可溶性有機(jī)酸的吸附能力[19]。壤中流DOC質(zhì)量濃度表現(xiàn)為苗期>拔節(jié)期>成熟期>抽雄期,抽雄期是研究區(qū)玉米全生育期溫度最高的一個(gè)時(shí)期,溫度的升高一定程度增強(qiáng)了土壤對(duì)DOC的吸附能力,淋洗作用減弱,故導(dǎo)致壤中流DOC質(zhì)量濃度降低。

地表徑流DOC遷移負(fù)荷表現(xiàn)為苗期>成熟期>拔節(jié)期>抽雄期。這是因?yàn)榈乇韽搅鱀OC遷移負(fù)荷主要由地表徑流量和DOC質(zhì)量濃度大小共同決定,兩者隨玉米生育期推進(jìn)受降雨再分配作用明顯,使得降雨到達(dá)地表的時(shí)間延長(zhǎng),進(jìn)而減少了地表徑流量及降雨與土壤表面接觸的面積和時(shí)間[20],導(dǎo)致DOC質(zhì)量濃度降低。壤中流DOC遷移負(fù)荷表現(xiàn)為苗期>拔節(jié)期>抽雄期>成熟期。主要因?yàn)殡S玉米生育期推進(jìn),植株冠幅增加,截留和莖干流作用加強(qiáng),直接到達(dá)地面的降雨減少,從而延緩了壤中流產(chǎn)流時(shí)間;玉米成熟期,由于葉片枯萎、下垂,延緩了壤中流的發(fā)育。壤中流DOC遷移負(fù)荷則表現(xiàn)為1.5 mm/min降雨強(qiáng)度下最大,2.0 mm/min降雨強(qiáng)度下最小,主要由于壤中流與降雨歷時(shí)、降雨量有關(guān)[21]。壤中流產(chǎn)生較地表徑流晚,遷移負(fù)荷卻高于地表徑流,這與Zhu Bo等[22]研究表明紫色土坡耕地硝酸鹽淋失以壤中流為主要方式相一致。主要有2方面原因:一是由于紫色土獨(dú)特的土壤-母巖二元結(jié)構(gòu)體,水分下滲至透水性較弱的紫色泥頁(yè)巖極易匯集產(chǎn)生壤中流[16];二是由于采用橫壟的耕作方式,壟溝內(nèi)蓄水,使得壤中流產(chǎn)生時(shí)間有所提前。

4 結(jié)論

1)地表徑流量主要受降雨再分配作用影響,徑流量表現(xiàn)為苗期最大,抽雄期最小,且降雨強(qiáng)度越大徑流量越大,壤中流則受降雨強(qiáng)度和降雨再分配作用影響較小。

2)隨降雨歷時(shí)的延長(zhǎng),玉米不同生育期地表徑流DOC質(zhì)量濃度呈逐漸降低而后趨于穩(wěn)定的趨勢(shì),壤中流DOC質(zhì)量濃度呈現(xiàn)出先升后降,漸趨于穩(wěn)定的趨勢(shì);地表徑流DOC質(zhì)量濃度表現(xiàn)為苗期>成熟期>拔節(jié)期>抽雄期,壤中流DOC質(zhì)量濃度表現(xiàn)為苗期>拔節(jié)期>成熟期>抽雄期,表明產(chǎn)流時(shí)間和生育期對(duì)徑流DOC質(zhì)量濃度的影響較為明顯。

3)降雨強(qiáng)度和玉米生育期對(duì)不同徑流方式下DOC遷移負(fù)荷的影響與對(duì)徑流量的影響一致。同一條件下,壤中流DOC質(zhì)量濃度高于地表徑流,且壤中流產(chǎn)生晚于地表徑流;但壤中流DOC遷移負(fù)荷卻是地表徑流DOC遷移負(fù)荷的1.35倍,DOC隨壤中流遷移是紫色土坡耕地DOC徑流遷移的主要方式。

[1] FROBERG M, BERGGREN D K, BERGKVIST B, et al. Concentration and fluxes of dissolved organic carbon (DOC) in three Norway spruce stands along a climatic gradient in Sweden [J]. Biogeochemistry, 2006, 77(1): 1.

[2] 楊玉盛, 郭劍芬, 陳光水, 等. 森林生態(tài)系統(tǒng)DOM的來(lái)源特性及流動(dòng) [J]. 生態(tài)學(xué)報(bào), 2003, 23(3): 5478.

YANG Yusheng, GUO Jianfen, CHEN Guangshui, et al. Source characteristics and flow of DOM in forest ecosystem [J]. Acta Ecologica Sinica, 2003, 23(3): 547.

[3] LAL R. Soil erosion and the global carbon budget [J]. Environment International, 2003, 29(4): 437.

[4] FLORES-CESPEDES F, GONZALES-PRADAS E, FERNANDEZ-PEREZ M, et al. Effects of dissolved organic carbon on sorption and mobility of imidacloprid in soil [J]. Journal of Environmental Quality, 2002, 31(3): 880.

[5] LI K, XING B, TORELLO W A. Effect of organic fertilizers derived dissolved organic matter on pesticide sorption and leaching [J]. Environmental Pollution, 2005, 134(2): 187.

[6] EVANS C D, MONTEITH D T, COOPER D M. Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts [J]. Environmental Pollution, 2005,137(1): 55.

[7] INAMDAR S P, LEARY N, MITCHELL M J, et al. The impact of storm events on solute exports from a glaciated forested watershed in western New York, USA [J]. Hydrological Processes, 2006, 20(16): 3423.

[8] EIMERS M C, BUTTLE J, WATMOUGH S A. Influence of seasonal changes in runoff and extreme events on dissolved organic carbon trends in wetland-and upland-draining streams [J]. Canadian Journal of Fisheries and Aquatic Sciences, 2008, 65(5): 796.

[9] 趙滿興, 周建斌, 陳竹君, 等. 有機(jī)肥中可溶性有機(jī)碳氮含量及其特性 [J]. 生態(tài)學(xué)報(bào), 2007, 27(1): 397.

ZHAO Manxing, ZHOU Jianbin, CHEN Zhujun, et al. Contents and characteristics of dissolved organic carbon and nitrogen in organic manure [J]. Acta Ecologica Sinica, 2007, 27(1): 397.

[10] ALEX T Chowa, KENNETH K Tanjia, GAO Suduan, et al. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils [J]. Soil Biology and Biochemistry, 2006, 38(3): 477.

[11] 鄭子成, 李廷軒, 張錫洲, 等. 模擬降雨條件下玉米植株對(duì)降雨再分配的作用 [J]. 水土保持研究, 2012, 19(4): 72.

ZHENG Zicheng, LI Tingxuan, ZHANG Xizhou, et al. Effects of maize plants on rainfall redistribution under simulated rainfall conditions [J]. Research of Soil and Water Conservation, 2012, 19(4): 72.

[12] 馬波, 吳發(fā)啟, 陳宇, 等. 玉米不同生育期莖稈流特征及其模型構(gòu)建 [J]. 農(nóng)業(yè)工程學(xué)報(bào), 2011, 27(1): 118.

MA Bo, WU Faqi, CHEN Yu, et al. Characteristics and modeling of stem flow in different growth stages of maize [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 1183.

[13] 林超文, 龐良玉, 陳一兵, 等. 四川盆地紫色土N,P損失載體及其影響因子 [J]. 水土保持學(xué)報(bào), 2008, 22(2): 20.

LIN Chaowen, PANG Liangyu, CHEN Yibing, et al. N and P loss carriers and their influencing factors in purple soil of Sichuan Basin [J]. Journal of Soil and Water Conservation, 2008, 22(2): 20.

[14] 花可可, 朱波, 王小國(guó). 紫色土坡耕地可溶性有機(jī)碳徑流遷移特征 [J]. 農(nóng)業(yè)工程學(xué)報(bào), 2013, 29(5): 81.

HUA Keke, ZHU Bo, WANG Xiaoguo. Characteristics of runoff and migration of dissolved organic carbon in purple sloping land [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(5): 81.

[15] 何曉玲, 鄭子成, 李廷軒. 玉米種植下紫色坡耕地徑流中磷素流失特征研究 [J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào), 2012, 31(12): 2441.

HE Xiaoling, ZHENG Zicheng, LI Tingxuan. Study the characteristics of phosphorus loss in runoff of purple sloping farmland under maize cultivation [J]. Journal of Agro-Environment Science, 2012, 31(12): 2441.

[16] 汪濤, 朱波, 羅專溪, 等. 紫色土坡耕地硝酸鹽流失過(guò)程與特征研究 [J]. 土壤學(xué)報(bào), 2010, 47(5): 963.

WANG Tao, ZHU Bo, LUO Zhuanxi, et al. Study on the process and characteristics of nitrate loss in purple sloping land [J]. Acta Pedologica Sinica, 2010, 47(5): 963.

[17] KALBITZ K, SOLINGER S, PARK J H. Controls on the dynamics of dissolved organic matter in soils: a review [J]. Soil Science, 2000, 165(4): 277.

[18] KAISER K, KAUPENJOHANN M, ZECH W. Sorption of dissolved organic carbon in soils: effects of soil sample storage, soil-to-solution ratio, and temperature [J]. Geoderma, 2001, 99(3/4): 317.

[19] 喻艷紅, 張?zhí)伊? 李清曼, 等. 溫度和水土比對(duì)紅壤吸附低分子量有機(jī)酸的影響 [J]. 土壤, 2011, 43(1): 50.

YU Yanhong, ZHANG Taolin, LI Qingma, et al. Effects of temperature and soil water ratio on adsorption of low molecular weight organic acids in red soil [J]. Soils, 2011, 43(1): 50.

[20] WANG Guoqiang, WU Binbin, ZHANG Lei, et al. Role of soil erodibility in affecting available nitrogen and phosphorus losses under simulated rainfall [J]. Journal of Hydrology, 2014, 514: 180.

[21] JIA Haiyan, LEI Alin, LEI Junshan, et al. Effects of hydrological processes on nitrogen loss in purple soil [J]. Agriculture Water Management, 2007, 89: 89.

[22] ZHU Bo, WANG Tao, KUANG Fuhong, et al. Measurements of nitrate leaching from a hillslope cropland in the Central Sichuan Basin, China [J]. Soil Science Society of America Journal, 2009, 73(4): 1419.

Characteristicsofrunoffanddissolvedorganiccarbonlossinslopefarmlandwithcontourridgesduringmaizegrowthstages

WU Wanhua1,2, HE Shuqin1,2, GONG Yuanbo1,2, ZHENG Zicheng3

(1.College of Forestry, Sichuan Agricultural University, 611130, Chengdu, China;2.Key Laboratory of Soil & Water Conservation and Desertification Combating, Sichuan Agricultural University, 611130, Chengdu, China;3.College of Resource Science, Sichuan Agricultural University, 611130, Chengdu, China)

BackgroundThe purple soil region is one of the typical areas suffering serious soil erosion in Southwest China. At the same time, the growth periods of the maize coincide with the timing of rainstorms. Serious soil erosion would surely result in the loss of runoff and organic carbon. Our aims are to investigate the characteristics of the loss and the migration of dissolved organic carbon (DOC) during the growth period of maize in the slope farmland of purple soil, providing a scientific basis for the effective prevention and control of organic carbon loss during the maize planting.MethodsSurface runoff, interflow and its loss characteristics of dissolved organic carbon of the whole growth period of maize were studied by the combination methods of field runoff plots and artificial rainfall simulation in slope farmland of purple soil areas. Contour ridge is designed according to local agricultural customs. A total of 12 rainfall simulation experiments are conducted in two 1 m by 2 m boxes under three rainfall intensities (1.0, 1.5, and 2.0 mm/min) on a typical slope gradient of 15°.ResultsThe surface runoff was obviously affected by rainfall redistribution, and surface runoff presented the maximum in seedling stage and the minimum in tasseling stage. However, the interflow was less affected by rainfall intensity and rainfall redistribution. Although the DOC mass concentration of surface runoff showed a decreasing trend gradually, and the initial value of the DOC mass concentration was relatively higher under rainfall intensity of 2.0 mm/min. The interflow DOC mass concentration showed a trend of rising first and then decreasing and it was most significant under rainfall intensity of 1.0 mm/min. In the first 30 minutes of the runoff generation, the DOC migration load of surface runoff displayed an order of seedling stage > mature stage > jointing stage > tasseling stage, and it was affected greatly by rainfall intensity. However, the DOC migration load of interflow displayed an order of seedling stage > jointing stage > tasseling stage > mature stage, and the effect of rainfall intensity on the transfer load of the interflow DOC was not obvious. During the same growth period, the mass concentration of interflow DOC was higher than that of the surface runoff, besides, but interflow occurrence was later than that of surface runoff. The interflow DOC migration load was 1.35 times of the surface runoff DOC.ConclusionsThe growth period of maize had an obvious influence on surface runoff. Interflow was the main mode of the DOC migration in slope farmland of purple soil. The variation of mass concentration of DOC depended on the time of runoff generation and the change of maize growth stage.

maize; growth period; dissolved organic carbon; surface runoff; interflow; migration load

S157.1; S513

A

2096-2673(2017)05-0031-08

10.16843/j.sswc.2017.05.005

2017-04-13

2017-08-07

項(xiàng)目名稱: 國(guó)家自然科學(xué)基金“紫色土坡耕地侵蝕演化特征及其對(duì)作物防蝕的響應(yīng)機(jī)制”(41271307);四川省教育廳項(xiàng)目“紫色土區(qū)玉米季橫壟坡面片蝕過(guò)程研究”(15ZB0009)

武萬(wàn)華(1991—),男,碩士研究生。主要研究方向:土壤侵蝕。E-mail:919582094@qq.com

?

何淑勤(1976—),女,副教授。主要研究方向:土壤侵蝕與水土保持。E-mail:angelhsq@163.com

猜你喜歡
徑流苗期生育期
格陵蘭島積雪區(qū)地表徑流增加研究
大豆生育期組鑒定分組方法的比較研究
基于SWAT模型的布爾哈通河流域徑流模擬研究
吉林水稻關(guān)鍵生育期延遲型/障礙型冷害時(shí)空變化*
不同生育期大豆品種氮素積累特性研究
蔬菜苗期發(fā)生猝倒病怎么辦
茄子苗期怎樣蹲苗,需要注意什么?
雅魯藏布江河川徑流變化的季節(jié)性規(guī)律探索
基于遙感ET數(shù)據(jù)的遼寧地區(qū)典型農(nóng)作物生育期耗水規(guī)律分析
玉米苗期注重管 豐收高產(chǎn)有基礎(chǔ)
资中县| 东乡| 临泉县| 泸西县| 崇左市| 响水县| 大关县| 通河县| 吉木乃县| 如皋市| 聊城市| 华阴市| 东乌| 云和县| 古丈县| 伊宁县| 定州市| 平潭县| 蚌埠市| 长泰县| 北安市| 盖州市| 翁牛特旗| 河北区| 溆浦县| 潍坊市| 溧水县| 林芝县| 兴国县| 卓尼县| 莲花县| 丹寨县| 土默特右旗| 青冈县| 廉江市| 体育| 德安县| 成武县| 灵川县| 龙南县| 虹口区|