馮 旭, 趙麗敏, 柯 浩, 張洪磊
(1.昆明理工大學(xué) 生命科學(xué)與技術(shù)學(xué)院 云南 昆明 650500; 2.中國(guó)科學(xué)院昆明動(dòng)物研究所 遺傳資源與進(jìn)化國(guó)家重點(diǎn)實(shí)驗(yàn)室 云南 昆明 650223; 3.中國(guó)科學(xué)院大學(xué) 昆明生命科學(xué)學(xué)院 云南 昆明 650500)
DOI: 10.13705/j.issn.1671-6841.2017121
基于TCGA數(shù)據(jù)庫(kù)的乳腺癌進(jìn)程關(guān)鍵基因系統(tǒng)篩選和鑒定
馮 旭1, 趙麗敏2,3, 柯 浩2,3, 張洪磊2
(1.昆明理工大學(xué) 生命科學(xué)與技術(shù)學(xué)院 云南 昆明 650500; 2.中國(guó)科學(xué)院昆明動(dòng)物研究所 遺傳資源與進(jìn)化國(guó)家重點(diǎn)實(shí)驗(yàn)室 云南 昆明 650223; 3.中國(guó)科學(xué)院大學(xué) 昆明生命科學(xué)學(xué)院 云南 昆明 650500)
利用 TCGA 數(shù)據(jù)庫(kù)收集的乳腺癌轉(zhuǎn)錄組數(shù)據(jù)和病人臨床信息,分析基因表達(dá)與乳腺癌臨床病理學(xué)參數(shù)的相關(guān)性及其對(duì)預(yù)后的影響,同時(shí)結(jié)合表達(dá)差異分析篩選出與乳腺癌進(jìn)程密切相關(guān)的7個(gè)候選基因(UBE2T、RRM2、SGOL1、ERCC6L、CCNE1、HMGB3和SPDYC).通過(guò)基因功能注釋檢索確定SGOL1作為實(shí)驗(yàn)驗(yàn)證的候選基因.實(shí)驗(yàn)結(jié)果表明在乳腺癌細(xì)胞系MDA-MB-231中敲降SGOL1能顯著抑制細(xì)胞生長(zhǎng),細(xì)胞周期被阻滯在G2/M期.上述結(jié)果表明SGOL1在乳腺癌進(jìn)程中具有重要作用,同時(shí)也說(shuō)明該生物信息結(jié)合實(shí)驗(yàn)的篩選方法可以加速腫瘤關(guān)鍵基因的篩選和鑒定.
轉(zhuǎn)錄組; TCGA數(shù)據(jù)庫(kù);SGOL1
DOI: 10.13705/j.issn.1671-6841.2017121
乳腺癌是我國(guó)婦女最常見(jiàn)的癌癥,我國(guó)新發(fā)乳腺癌的病例占全球乳腺癌新發(fā)病例的 12.2%[1].作為目前最大的癌癥基因信息的數(shù)據(jù)庫(kù),TCGA收錄了包括29種原位腫瘤類(lèi)型,涉及基因組、轉(zhuǎn)錄組、蛋白質(zhì)組及表觀(guān)遺傳等多層次的腫瘤數(shù)據(jù),圍繞TCGA數(shù)據(jù)庫(kù)的研究提高了人們對(duì)腫瘤發(fā)病分子基礎(chǔ)的科學(xué)認(rèn)識(shí),同時(shí)提高我們?cè)\斷、治療和預(yù)防腫瘤的能力.這里我們結(jié)合臨床病理特征、分子分型、生存分析、基因富集分析(GSEA)等生物信息手段,篩選影響乳腺癌進(jìn)程的重要候選基因.在有絲分裂期間,染色體分離的保真度取決于對(duì)姐妹染色單體分離的精確控制,姐妹染色單體內(nèi)聚的維持可以確保姐妹染色體正確分離[2-3].而有絲分裂的異常與腫瘤的發(fā)生存在密切關(guān)系[4],SGOL1可以維持著絲粒凝聚素從前期直至后期轉(zhuǎn)變[5],是染色體穩(wěn)定的守護(hù)者[6].已有研究發(fā)現(xiàn)在胰腺癌中SGOL1呈現(xiàn)過(guò)度表達(dá)[7-8].而在結(jié)腸癌中敲降SGOL1可以引起細(xì)胞周期阻滯在G2/M期,導(dǎo)致細(xì)胞凋亡以及造成染色體不穩(wěn)定[3,9].在肝癌細(xì)胞中SGOL1的異常表達(dá)可以導(dǎo)致有絲分裂延遲,最終導(dǎo)致細(xì)胞死亡[10].SGOL1是有絲分裂中必不可少的蛋白質(zhì),本文通過(guò)對(duì)TCGA數(shù)據(jù)庫(kù)中乳腺癌數(shù)據(jù)集的分析,確定了7個(gè)與乳腺癌進(jìn)程密切相關(guān)的基因.確定SGOL1作為實(shí)驗(yàn)功能驗(yàn)證的候選基因,進(jìn)一步的實(shí)驗(yàn)結(jié)果顯示SGOL1在癌組織中高表達(dá),在MBA-MB231中敲降SGOL1能顯著抑制細(xì)胞生長(zhǎng),細(xì)胞周期被阻滯在G2/M期,上述結(jié)果表明SGOL1能在乳腺癌進(jìn)程中有重要作用.
1.1 TCGA數(shù)據(jù)下載
登陸firehose(http://gdac.broadinstitute.org/)網(wǎng)站下載公開(kāi)的乳腺癌(BRCA)轉(zhuǎn)錄組數(shù)據(jù)(RNASeqV2:https://wiki.nci.nih.gov/display/TCGA/RNASeq+Version+2)和腫瘤樣本臨床數(shù)據(jù)(數(shù)據(jù)版本:2016_01_28).其中:癌癥樣本1 093例;正常癌旁組織樣本112例.
1.2 乳腺癌樣本分子分型
利用乳腺癌轉(zhuǎn)錄組數(shù)據(jù)集進(jìn)行分子分型.首先通過(guò)Limma軟件包的lowess-fit方法對(duì)基因的原始表達(dá)量進(jìn)行歸一化處理[11-12].然后使用Genefu軟件包對(duì)乳腺癌樣本進(jìn)行PAM50分子分型[13-14].
1.3 基因表達(dá)與臨床病理學(xué)參數(shù)的相關(guān)性分析
使用survivalROC法將樣本分為兩組,基因表達(dá)邊界值為3.255 207,低于該值為低表達(dá)組,高于該值為高表達(dá)組,結(jié)合TCGA的臨床病理學(xué)參數(shù)(TNM分期)和乳腺癌分子分型結(jié)果,使用χ2檢驗(yàn)檢測(cè)基因表達(dá)與臨床病理學(xué)參數(shù)的相關(guān)性.
1.4 生存曲線(xiàn)分析
使用survivalROC法將樣本分為兩組,基因表達(dá)邊界值為3.255 207,低于該值為低表達(dá)組,高于該值為高表達(dá)組,使用R語(yǔ)言survival軟件包繪制總體生存曲線(xiàn).
1.5 GSEA基因富集分析
乳腺癌樣本根據(jù)基因表達(dá)水平的高低分為兩組.數(shù)據(jù)處理使用默認(rèn)參數(shù).利用FDRlt;0.25,Plt;0.01作為標(biāo)準(zhǔn)鑒定顯著富集信號(hào)通路.
1.6 基因表達(dá)差異分析
使用“RNASeqV2”數(shù)據(jù)中RSEM輸出的reads count評(píng)估基因表達(dá)水平,采用Limma軟件包中voom法[15]進(jìn)行均一化處理,并用貝葉斯模型進(jìn)行表達(dá)差異分析,篩選logFCgt;2的基因?yàn)楸磉_(dá)差異基因.
1.7 細(xì)胞來(lái)源、主要試劑及儀器
MDA-MB-231細(xì)胞購(gòu)自中科院昆明動(dòng)物所細(xì)胞庫(kù),siRNA購(gòu)自廣州瑞博公司,DMEM/F12培養(yǎng)基、胎牛血清(Gibco公司),Trizol總RNA提取試劑盒(Invitrogen公司),脂質(zhì)體轉(zhuǎn)染試劑盒Lipfectamine 2000,PrimeScriptTMRT Reagent反轉(zhuǎn)錄試劑盒(TaKaRa),Annexin V-FITC細(xì)胞凋亡檢測(cè)試劑盒、FACSAria流式細(xì)胞儀(BD公司).
1.8 細(xì)胞培養(yǎng)及 siRNA 轉(zhuǎn)染
細(xì)胞使用DMEM/F12完全培養(yǎng)基(DMEM/F12+10%胎牛血清+100-U/ml青霉素/鏈霉素),在37 ℃,5%CO2培養(yǎng)箱中培養(yǎng).待細(xì)胞貼壁生長(zhǎng),取對(duì)數(shù)生長(zhǎng)期細(xì)胞,利用脂質(zhì)體轉(zhuǎn)染試劑盒Lipfectamine 2000進(jìn)行轉(zhuǎn)染處理.
1.9 RT-PCR
采用Trizol法提取總RNA,使用PrimeScriptTMRT Reagent反轉(zhuǎn)錄試劑盒(TaKaRa)合成cDNA,PCR反應(yīng)條件為:預(yù)變性94 ℃ 10 s;變性94 ℃ 5 s;退火/延伸60 ℃ 34 s;共40個(gè)循環(huán);以β-Actin作為相對(duì)定量?jī)?nèi)參,采用2-ΔΔCT法計(jì)算基因相對(duì)表達(dá)量[28].
1.10 細(xì)胞生長(zhǎng)實(shí)驗(yàn)
采用不同siRNA轉(zhuǎn)染MDA-MB-231細(xì)胞,轉(zhuǎn)染24 h后用胰蛋白酶將細(xì)胞消化并計(jì)數(shù),按每孔2×105個(gè)細(xì)胞接種于6孔板,置于37 ℃培養(yǎng)箱培養(yǎng).分別在細(xì)胞培養(yǎng)36 h、60 h、84 h時(shí)采用胰蛋白酶消化細(xì)胞并計(jì)數(shù).
1.11 凋亡實(shí)驗(yàn)
MDA-MB-231用不同siRNA處理72 h后,胰酶消化細(xì)胞,并用PBS洗兩次,用染色緩沖液重懸細(xì)胞至每毫升1×106個(gè)細(xì)胞.取100 μl細(xì)胞(1×105),加入5 μl AnnexinV-FITC和5 μl PI室溫下避光孵育15 min左右后,用流式細(xì)胞儀檢測(cè)細(xì)胞凋亡.
1.12 周期實(shí)驗(yàn)
MDA-MB-231用不同siRNA處理72 h后,采用無(wú)血清培養(yǎng)基饑餓處理24 h,之后采用完全培養(yǎng)基繼續(xù)培養(yǎng)12 h,胰酶消化并收集細(xì)胞.加入1 ml預(yù)冷的70%乙醇中,吹打使細(xì)胞分散成單個(gè)細(xì)胞,4 ℃固定2 h.1 000 g離心3~5分鐘,沉淀細(xì)胞.棄上清,用1 ml預(yù)冷PBS洗1遍.PI染色,每個(gè)樣品用0.5 ml染色緩沖液重懸,加入25 μl PI染色液(20×)、10 μl RNase A(50×).37 ℃避光孵育30 min后,采用流式細(xì)胞儀檢測(cè)細(xì)胞周期.
2.1 篩選影響乳腺癌進(jìn)程的候選基因
表1 SGOL1與病理學(xué)參數(shù)相關(guān)性
A表示TCGA 數(shù)據(jù)庫(kù)中篩選乳腺癌進(jìn)程相關(guān)基因的流程; B表示GSEA分析顯示SGOL1的差異表達(dá)與細(xì)胞 周期過(guò)程相關(guān); C、D: 生存分析(左圖數(shù)據(jù)來(lái)源于TCGA乳腺癌數(shù)據(jù)、右圖數(shù)據(jù)來(lái)源于KM-plotter乳腺癌數(shù)據(jù))圖1 SGOL1與乳腺癌進(jìn)程相關(guān)Fig.1 SGOL1 is associated with breast cancer progression
2.2 SGOL1在乳腺癌樣本中高表達(dá)
首先檢測(cè)了SGOL1在人正常永生化的乳腺上皮細(xì)胞系(MCF10A)和人乳腺癌細(xì)胞系中的表達(dá)量,發(fā)現(xiàn)在SGOL1乳腺癌細(xì)胞系中表達(dá)偏高(圖2A).之后檢測(cè)了癌組織以及癌旁正常組織中SGOL1的表達(dá)量,發(fā)現(xiàn)除了7號(hào)和13號(hào)樣本中SGOL1的表達(dá)量略低于正常樣本(圖2B),在其余樣本中均發(fā)現(xiàn)SGOL1在癌組織中高表達(dá).這些結(jié)果表明SGOL1在乳腺癌進(jìn)程中很可能有重要作用.
A表示qRT-PCR檢測(cè)不同乳腺癌細(xì)胞系中SGOL1基因mRNA表達(dá)水平; B表示不同例乳腺癌組織與正常乳腺組織SGOL1基因mRNA相對(duì) 表達(dá)量; C表示在MDA-MB-231乳腺癌細(xì)胞系中檢測(cè)其敲降效率; D表示不同時(shí)間點(diǎn)檢測(cè)敲降SGOL1基因?qū)DA-MB-231細(xì)胞系生長(zhǎng)的影響圖2 SGOL1在乳腺癌中高表達(dá)Fig.2 SGOL1 is highly expressed in breast cancer
2.3 采用siRNA敲降SGOL1
為了檢驗(yàn)SGOL1與乳腺癌的關(guān)系,我們通過(guò)siRNA來(lái)敲降SGOL1(圖2C),設(shè)計(jì)了3對(duì)siRNA,結(jié)果顯示si-SGOL1-2、si-SGOL1-3都有很好的敲降效果.
2.4 敲降SGOL1抑制細(xì)胞生長(zhǎng)
采用不同siRNA處理MDA-MB-231細(xì)胞后,我們發(fā)現(xiàn)與si-Control組相比較,除了si-SGOL1-1(無(wú)明顯敲降效果),si-SGOL1-2和si-SGOL1-3后,細(xì)胞數(shù)目都明顯低于si-Control組(圖2D).這些結(jié)果證明敲降SGOL1能夠抑制MDA-MB-231細(xì)胞生長(zhǎng).
2.5 抑制G2/M細(xì)胞周期但不影響細(xì)胞凋亡.
我們前期的實(shí)驗(yàn)結(jié)果發(fā)現(xiàn)敲降SGOL1能顯著抑制細(xì)胞生長(zhǎng),因此我們開(kāi)始探索敲降SGOL1后通過(guò)什么途徑來(lái)影響細(xì)胞生長(zhǎng).敲降SGOL1后,首先檢測(cè)了細(xì)胞周期的變化,實(shí)驗(yàn)結(jié)果發(fā)現(xiàn),敲降SGOL1可使細(xì)胞G2/M期顯著增加(圖3).
A表示對(duì)照組中細(xì)胞周期; B、C、D表示siRNA敲降SGOL1的細(xì)胞周期; E表示細(xì)胞周期的統(tǒng)計(jì)結(jié)果圖3 敲降SGOL1后用流式細(xì)胞儀檢測(cè)細(xì)胞周期Fig.3 Knock down SGOL1 and then use flow cytometry to detect cell cycle
之后我們采用凋亡試劑盒來(lái)檢測(cè)細(xì)胞凋亡,發(fā)現(xiàn)敲降SGOL1凋亡細(xì)胞雖然比control組略微有所上升(圖4),但并沒(méi)有顯著的差異.因此在乳腺癌中SGOL1很可能主要是通過(guò)影響細(xì)胞周期來(lái)影響細(xì)胞增殖的.
A表示對(duì)照組中細(xì)胞凋亡結(jié)果;B、C、D表示siRNA敲降SGOL1的細(xì)胞凋亡結(jié)果;E表示細(xì)胞凋亡的統(tǒng)計(jì)結(jié)果圖4 Annexin V/PI雙染法檢測(cè)敲降SGOL1對(duì)MDA-MB-231細(xì)胞凋亡的影響Fig.4 Annexin V/PI double staining method to detect knockdown of SGOL1 on MDA-MB-231 cell apoptosis
由TCGA的臨床數(shù)據(jù)統(tǒng)計(jì)可知SGOL1的表達(dá)與癌癥大小、遠(yuǎn)端轉(zhuǎn)移、癌癥分級(jí)以及癌癥分子分型密切相關(guān).總體生存曲線(xiàn)顯示該基因高表達(dá)患者相較于低表達(dá)患者生存期顯著縮短.基因共表達(dá)網(wǎng)絡(luò)分析顯示,在乳腺癌中該基因所在的共表達(dá)模塊可能與細(xì)胞周期相關(guān),從而影響癌癥的進(jìn)程,GSEA分析可知SGOL1的表達(dá)差異與細(xì)胞周期和有絲分裂細(xì)胞通路相關(guān).作為進(jìn)化保守的蛋白質(zhì),SGOL1是有絲分裂過(guò)程中染色體準(zhǔn)確分離所必需的.文獻(xiàn)[23]表明哺乳動(dòng)物細(xì)胞中敲降SGOL1導(dǎo)致染色體分離異常,引起遺傳不穩(wěn)定和腫瘤轉(zhuǎn)化.文獻(xiàn)[24]發(fā)現(xiàn)通過(guò)短肽競(jìng)爭(zhēng)抑制SGOL1的功能能夠促進(jìn)癌癥凋亡.結(jié)腸癌中該基因的下調(diào)使遺傳不穩(wěn)定進(jìn)而影響癌癥的發(fā)展過(guò)程,然而乳腺癌中SOGL1的表達(dá)水平卻是上升的,該基因的高表達(dá)同樣伴隨大量的染色體不穩(wěn)定現(xiàn)象[25-26].因此,SOGL1在乳腺癌癥中控制染色體穩(wěn)定性的分子機(jī)制可能不同于其他癌癥類(lèi)型.已有研究發(fā)現(xiàn)SGOL1對(duì)細(xì)胞凋亡和細(xì)胞周期都有影響[10],但是在乳腺癌中,我們發(fā)現(xiàn)SGOL1并不影響細(xì)胞的凋亡,但是能顯著影響細(xì)胞周期.
乳腺癌是最常見(jiàn)的癌癥之一,且近年來(lái)的發(fā)病人數(shù)逐年增加[27].近年來(lái)精準(zhǔn)治療作為癌癥治療的探索新方向,本項(xiàng)研究發(fā)現(xiàn),乳腺癌中敲低SGOL1能夠有效抑制癌細(xì)胞生長(zhǎng)、致使細(xì)胞周期停滯在G2/M期,這能為癌癥治療提供了新的藥物靶標(biāo).
[1] FAN L, STRASSERWEIPPL K, LI J J, et al. Breast cancer in China[J]. Lancet oncology,2014, 15(7): 279-289.
[2] WANG L H, MAYER B, STEMMANN O, et al. Centromere DNA decatenation depends on cohesin removal and is required for mammalian cell division[J]. Journal of cell science,2010, 123(5): 806-813.
[3] YAMADA H Y, YAO Y, WANG X, et al. Haploinsufficiency of SGO1 results in deregulated centrosome dynamics, enhanced chromosomal instability and colon tumorigenesis[J]. Cell cycle,2012, 11(3): 479-488.
[4] FUNK L C, ZASADIL L M, WEAVER B A. Living in CIN: mitotic infidelity and its consequences for tumor promotion and suppression[J]. Developmental cell,2016, 39(6): 638-652.
[5] GIMENEZ-ABIAN J F, DIAZ-MARTINEZ L A, WIRTH K G, et al. Regulated separation of sister centromeres depends on the spindle assembly checkpoint but not on the anaphase promoting complex/cyclosome[J]. Cell cycle,2005, 4(11): 1561-1575.
[6] DIAZ-MARTINEZ L A, YU H. Sgo1 as a guardian of chromosome stability[J]. Cell cycle,2012, 11(4): 650-651.
[7] CUTTS R J, GADALETA E, HAHN S A, et al. The Pancreatic Expression database: 2011 update[J]. Nucleic acids research,2011, 39: D1023-1028.
[8] ANDRE F, MICHIELS S, DESSEN P, et al. Exonic expression profiling of breast cancer and benign lesions: a retrospective analysis[J]. Lancet oncol,2009, 10(4): 381-390.
[9] IWAIZUMI M, SHINMURA K, MORI H, et al. Human Sgo1 downregulation leads to chromosomal instability in colorectal cancer[J]. Gut,2009, 58(2): 249-260.
[10] WANG L H, YEN C J, LI T N, et al. Sgo1 is a potential therapeutic target for hepatocellular carcinoma[J]. Oncotarget,2015, 6(4): 2023-2033.
[11] KATZ Y, LI F, LAMBERT N J, et al. Musashi proteins are post-transcriptional regulators of the epithelial-luminal cell state[J]. Elife,2014, 3: e03915.
[12] RITCHIE M E, PHIPSON B, WU D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic acids research,2015, 43(7): e47.
[13] FUMAGALLI D, BLANCHET-COHEN A, BROWN D, et al. Transfer of clinically relevant gene expression signatures in breast cancer: from Affymetrix microarray to Illumina RNA-sequencing technology[J]. BMC genomics,2014, 15(1): 1008.
[14] GENDOO D M, RATANASIRIGULCHAI N, SCHRODER M S, et al. Genefu: an R/Bioconductor package for computation of gene expression-based signatures in breast cancer[J]. Bioinformatics,2016, 32(7): 1097-1099.
[15] LAW C W, CHEN Y, SHI W, et al. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts[J]. Genome biology,2014, 15(2): R29.
[16] HEAGERTY P J, LUMLEY T, PEPE M S. Time-dependent ROC curves for censored survival data and a diagnostic marker[J]. Biometrics,2000, 56(2): 337-344.
[17] UEKI T, PARK J H, NISHIDATE T, et al. Ubiquitination and downregulation of BRCA1 by ubiquitin-conjugating enzyme E2T overexpression in human breast cancer cells[J]. Cancer research,2009, 69(22): 8752-8760.
[18] PUTLURI N, MAITY S, KOMMAGANI R, et al. Pathway-centric integrative analysis identifies RRM2 as a prognostic marker in breast cancer associated with poor survival and tamoxifen resistance[J]. Neoplasia,2014, 16(5): 390-402.
[19] PU S Y, YU Q, WU H, et al. ERCC6L, a DNA helicase, is involved in cell proliferation and associated with survival and progress in breast and kidney cancers[J]. Oncotarget,2017, 8(26): 42116-42124.
[20] LUHTALA S, STAFF S, TANNER M, et al. Cyclin E amplification, over-expression, and relapse-free survival in HER-2-positive primary breast cancer[J]. Tumour biology,2016, 37(7): 9813-9823.
[21] GUO S, WANG Y, GAO Y, et al. Knockdown of high mobility group-box 3 (HMGB3) expression inhibits proliferation, reduces migration, and affects chemosensitivity in gastric cancer cells[J]. Medical science monitor international medical journal of experimental and clinical research,2016, 22: 3951-3960.
[22] CHENG A, SOLOMON M J. Speedy/Ringo C regulates S and G2 phase progression in human cells[J]. Cell cycle,2008, 7(19): 3037-3047.
[23] WANG X, YANG Y, DAI W. Differential subcellular localizations of two human Sgo1 isoforms: implications in regulation of sister chromatid cohesion and microtubule dynamics[J]. Cell cycle,2006, 5(6): 635-640.
[24] YANG Y, WANG X, DAI W. Human Sgo1 is an excellent target for induction of apoptosis of transformed cells[J]. Cell cycle,2006, 5(8): 896-901.
[25] TANNO Y, SUSUMU H, KAWAMURA M, et al. The inner centromere-shugoshin network prevents chromosomal instability[J]. Science,2015, 349(6253): 1237-1240.
[26] RADFORD D M, FAIR K L, PHILLIPS N J, et al. Allelotyping of ductal carcinoma in situ of the breast: deletion of loci on 8p, 13q, 16q, 17p and 17q[J]. Cancer research,1995, 55(15): 3399-3405.
[27] ZUO T T, ZHENG R S, ZENG H M, et al. Female breast cancer incidence and mortality in China, 2013[J]. Thoracis cancer,2017, 8(3): 214-218.
[28] 張芬. MicroRNA-124a對(duì)SCI繼發(fā)性損傷的影響及相關(guān)機(jī)制研究[J]. 鄭州大學(xué)學(xué)報(bào)(理學(xué)版), 2016, 48(1): 74-80.
(責(zé)任編輯:方惠敏)
AStudyofSystematicScreeningandIdentificationofEssentialGenesInvolvedinBreastCancerProgressionBasedonTCGADatabase
FENG Xu1, ZHAO Limin2,3, KE Hao2,3, ZHANG Honglei2
(1.FacultyofLifeScienceandTechnology,KunmingUniversityofScienceandTechnology,Kunming650500,China; 2.StateKeyLaboratoryofGeneticResourcesandEvolution,KunmingInstituteofZoology,ChineseAcademyofSciences,Kunming650223,China; 3.KunmingCollegeofLifeScience,UniversityofChineseAcademyofSciences,Kunming650500,China)
Based on the expression profile data and clinical information of breast cancer cohort in the TCGA database, the correlations between gene expression and clinical parameters and differential expression analysis were carried out. Seven genes (UBE2T,RRM2,SGOL1,ERCC6L,CCNE1,HMGB3 andSPDYC) which were closely related to the breast cancer progression were dentified. After gene function annotation surveySGOL1 was selected as one candidate gene for our experimental validation. Results showed that knockdown ofSGOL1 in breast cancer cell line MDA-MB-231 significantly inhibited cell growth and cell cycle was arrested in G2/M phase. These results suggested thatSGOL1 played an important role in the breast cancer progression and meanwhile the method of combining bioinformatics and experiment provided an efficient way for screening and identification of tumor essential genes.
transcriptome; TCGA database;SGOL1
2017-05-04
科技部重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2016YFA0100900);云南省應(yīng)用基礎(chǔ)研究計(jì)劃面上項(xiàng)目(2016FB038).
馮旭(1993—),男,陜西渭南人,主要從事生物信息研究,E-mail:cheerfulloster@protonmail.com;通信作者:張洪磊(1983—),男,山東煙臺(tái)人,助理研究員,主要從事表觀(guān)遺傳、生物信息研究,E-mail:hlzhang2014@163.com.
R857.3
A
1671-6841(2017)04-0093-07