高 杉, 郜海民, 趙佳楠, 袁祖麗
(1.河南農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,河南 鄭州 450002; 2.河南中煙工業(yè)有限責(zé)任公司黃金葉生產(chǎn)制造中心,河南 鄭州 450000)
叢枝真菌對(duì)Pb脅迫下煙草的解毒效應(yīng)
高 杉1, 郜海民2, 趙佳楠1, 袁祖麗1
(1.河南農(nóng)業(yè)大學(xué)生命科學(xué)學(xué)院,河南 鄭州 450002; 2.河南中煙工業(yè)有限責(zé)任公司黃金葉生產(chǎn)制造中心,河南 鄭州 450000)
為了探討叢枝真菌解除Pb脅迫下煙草氧化脅迫毒性的效應(yīng),采用盆栽試驗(yàn),以煙草(NicotianatabacumL.) 品種中煙100為材料,研究Pb脅迫下接種叢枝真菌對(duì)煙草根、葉Pb含量及葉片活性氧、丙二醛、丙酮醛含量及清除活性氧的抗氧化酶活性、酮醛轉(zhuǎn)位酶活性和還原型谷胱甘肽含量的影響。結(jié)果表明,接種叢枝真菌后與同質(zhì)量分?jǐn)?shù)Pb脅迫相比,煙草根中Pb含量顯著增加,葉片中Pb含量減少;葉片中過(guò)氧化氫含量和超氧陰離子產(chǎn)生速率、丙二醛含量均顯著下降,超氧化物歧化酶、過(guò)氧化氫酶、抗壞血酸過(guò)氧化物酶、過(guò)氧化物酶活性相應(yīng)降低;酮醛轉(zhuǎn)位酶I的活性升高,還原型谷胱甘肽含量增加。接種叢枝真菌可減少煙草葉片中的氧化脅迫,降低葉片Pb含量,提高煙葉質(zhì)量。
煙草;鉛;叢枝真菌;解毒效應(yīng)
1.1試驗(yàn)材料及設(shè)計(jì)
1.1.1 試驗(yàn)材料 試驗(yàn)材料為煙草(NicotianatabacumL.)品種中煙100(原品系CF 965),由河南省農(nóng)科院煙草研究中心提供。叢枝真菌為根內(nèi)球囊霉菌(Glomusintraradices, GI),由北京市農(nóng)林科學(xué)院植物營(yíng)養(yǎng)與資源研究所中國(guó)叢枝菌根真菌種質(zhì)研究庫(kù)提供。供試土壤為鄭州市農(nóng)田耕作表層土。裝盆前土壤過(guò)篩,每盆裝干土1 500 g。
1.1.2 試驗(yàn)設(shè)計(jì) 根據(jù)《土壤環(huán)境質(zhì)量標(biāo)準(zhǔn)》GB 15618的標(biāo)準(zhǔn),本試驗(yàn)設(shè)計(jì)為0,300 mg·kg-1(未接種),300 mg·kg-1(接種),500 mg·kg-1(未接種)和500 mg·kg-1(接種),其中供試土壤以干土計(jì),并以純Pb計(jì)。
1.1.3 試驗(yàn)處理 煙苗采用漂浮育苗的方法培育。取長(zhǎng)勢(shì)一致的煙苗(3片煙葉)移栽,每盆移栽煙苗1株。處理組每盆接入5 g根內(nèi)球囊霉菌接種物(孢子、菌絲體、侵染根數(shù)等)放在土表4~5 cm下,對(duì)照組不接種根內(nèi)球囊霉菌。處理組和對(duì)照組均設(shè)置3個(gè)重復(fù)。重金屬Pb以Pb(NO3)2的形式在移栽后7 d以污灌的方式施入,處理組和對(duì)照組均進(jìn)行Pb脅迫處理。常規(guī)管理,生長(zhǎng)60 d取樣。
1.2測(cè)定內(nèi)容及方法
1.2.1 根、莖、葉中Pb含量的測(cè)定 分別取各處理的根(根毛區(qū)及以下根段)、中部煙葉(自下向上第4和5片),將材料置于80 ℃烘箱中烘干72 h,分別取烘干磨碎(過(guò)40目篩)的煙草根、莖、葉各0.2 g,參照王瑞敏[20]的方法用電感耦合等離子體質(zhì)譜法(ICP-MS)測(cè)定。
1.2.3 抗氧化酶活性的測(cè)定 取新鮮煙草中部葉片適量,液氮研磨后,參照WANG等[24]的方法測(cè)定SOD活性,參照XU等[25]的方法測(cè)定POD活性,參照NAKANO等[26]的方法測(cè)定APX活性,參照AEBI[27]的方法測(cè)定CAT活性。
1.2.4 MG含量、GSH含量和Gly I活性的測(cè)定 MG含量的測(cè)定:取0.5 g的煙草中部葉片,加入高氯酸研磨,上清液加活性炭脫色,在測(cè)定MG之前,用飽和碳酸鉀溶液將上清液pH值調(diào)至中和,中和的上清液用于測(cè)定[28]。GSH含量的測(cè)定:取新鮮煙草中部葉片適量,DTNB法[21]測(cè)定。Gly I活性的測(cè)定:取0.1 g新鮮煙草中部葉片研磨后,加入反應(yīng)體系進(jìn)行測(cè)定[29]。
1.3數(shù)據(jù)處理
運(yùn)用Excel 2003進(jìn)行數(shù)據(jù)初步計(jì)算,采用DPS v 14.10數(shù)據(jù)處理軟件進(jìn)行單因素統(tǒng)計(jì)分析。
2.1Pb脅迫下接種GI對(duì)煙草根、莖、葉中Pb含量的影響
由表1可以看出,未接GI的處理,與對(duì)照相比,300和500 mg·kg-1的Pb脅迫下煙草葉內(nèi)Pb含量分別增加了0.47,1.96倍,莖中Pb含量分別增加了1.79,2.35倍,根內(nèi)Pb含量分別增加了3.69,8.28倍;而接種GI的處理,與同等脅迫質(zhì)量分?jǐn)?shù)未接種的煙草莖、葉內(nèi)Pb含量相比下降顯著,下降幅度為13.76%,16.61%和10.65%,11.35%,根內(nèi)Pb含量則比未接種的增加了57.15%,62.92%。這表明通過(guò)接種GI,菌絲及其分泌物可將部分Pb固定在煙株根部,顯著減少Pb向煙株地上部運(yùn)輸。
表1 Pb脅迫下接種GI對(duì)煙草根、莖、葉中Pb含量的影響Table 1 Effects of inoculation with Glomus intraradices on Pb content in tobacco leaves, stem and roots under Pb stress
注:不同大寫(xiě)字母表示在0.01水平上差異顯著,不同小寫(xiě)字母表示在0.05水平上差異顯著。下同。
Note:Capital letters show the significant at 0.01level, and lower-case letters show the significant difference at 0.05 level. The same as below.
表2 Pb脅迫下接種GI對(duì)煙草葉片H2O2含量、產(chǎn)生速率和MDA含量的影響Table 2 Effect of inoculation with Glomus intraradices on H2O2 content,production rate of and MDA content in tobacco leaves under Pb stress
2.3Pb脅迫下接種GI對(duì)煙草葉片抗氧化酶活性的影響
表3 Pb脅迫下接種GI對(duì)煙草葉片抗氧化酶活性的影響Table 3 Effect of inoculation with Glomus intraradices on autioxidant enzyme activities in tobacco leaves under Pb stress U·g-1
2.4Pb脅迫下接種GI對(duì)煙草葉片MG和GSH的含量及GlyI活性的影響
從表4看出,與對(duì)照組相比,在300 mg·kg-1和500 mg·kg-1Pb脅迫下煙草葉片中的MG含量分別增加了1.17和2.80倍,GSH含量分別增加了0.31和1.74倍,Gly I的活性分別升高了0.75和1.13倍,這可能是由于Pb脅迫導(dǎo)致MG含量增加,植株內(nèi)通過(guò)提高Gly I活性和GSH含量來(lái)解除MG毒性。而接種GI的煙草葉中Gly I的活性與同等脅迫(300和500 mg·kg-1Pb)未接種的相比,分別增強(qiáng)了7.14%, 26.47%,GSH含量分別增加39.73%, 15.94%,MG含量極顯著降低,分別降低了40.36%, 43.45%。這一方面可能是葉中Pb含量減少,Pb脅迫毒性相應(yīng)減少,MG含量減少;另一方面可能是接種GI后,Gly I活性增高,加速了MG代謝和減少,從而減少了對(duì)煙草造成的毒害。
表4 Pb脅迫下接種GI對(duì)煙草葉片MG和GSH含量及Gly I活性的影響Table 4 Effect of inoculation with Glomus intraradices on methylglyoxal and glutathione contentand activity of glyoxalase I in tobacco leaves under Pb stress
Pb是植物生長(zhǎng)的非必需元素,但卻很容易被植物吸收,且多數(shù)積累在根系,僅少量進(jìn)入地上部[30]。相關(guān)研究表明,AMF菌絲能分泌大量GRSP,使重金屬(尤其是Pb, Cd, Pb等)在根部形成絡(luò)合物,從而阻擋重金屬進(jìn)入植物體內(nèi)[31]。本研究結(jié)果顯示,Pb脅迫下,煙草根莖葉中Pb含量迅速增加,引起細(xì)胞內(nèi)ROS相應(yīng)增加;接種AMF后,根中Pb含量顯著增加,莖葉中Pb含量卻減少。這可能是因?yàn)锳MF與煙草形成菌根共生體后可將大量Pb固定在根部,減少向葉片轉(zhuǎn)移,使葉片中Pb積累量減少,最終MDA含量顯著降低,減輕了膜脂過(guò)氧化程度,緩解Pb脅迫對(duì)煙草造成的危害[32]。
本研究表明,煙草接種GI后,能在一定程度上減少煙葉中Pb含量,增強(qiáng)葉片的抗氧化脅迫能力,提高煙葉品質(zhì)。這不僅為深入了解煙草與GI互作解除Pb脅迫毒性的分子機(jī)制提供一定理論依據(jù),而且對(duì)農(nóng)業(yè)生產(chǎn)實(shí)踐具有一定的指導(dǎo)意義。
[1] 周澤義.中國(guó)蔬菜重金屬污染及控制[J].資源生態(tài)環(huán)境網(wǎng)絡(luò)研究動(dòng)態(tài),1999,10(3):21-27.
[2] 桑愛(ài)云,張黎明,曹啟民,等.土壤重金屬污染的植物修復(fù)研究現(xiàn)狀與發(fā)展前景[J].熱帶農(nóng)業(yè)科學(xué),2006,26(1)75-76.
[3] 周敏.環(huán)境Pb污染與Pb毒危害 [J].中國(guó)煤炭工業(yè)醫(yī)學(xué)雜志,2004,19(4):267-268.
[4] IRVING D E, BAIRD V M. Heat production and respiration by broccoli florets during senescence at 20 ℃[J]. New Zealand Journal of Crop and Horticultural Science, 1996,24:199-202.
[5] HOSSAIN M A, HASANUZZAMAN M ,FUJITA M. Up-regulation of antioxidant and glyoxalase systems by exogenous glycinebetaine and proline in mung bean confer to-lerance to cadmium stress [J]. Physiology and Molecular Biology of Plants, 2010, 16(3): 259-272.
[6] NAVARI-IZZO F. Thylakoid-bound and stromal antioxidative enzymes in wheat treated with excess copper [J]. Physiologia Plantarum, 1998, 104(4): 630-638.
[7] YADAV S K, SINGLA-PAREEK S L, RAY M, et al.Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione [J]. Biochemical and Biophysical Research Communications, 2005, 337: 61-67.
[8] HOSSAIN Z, LOPEZ-CLIMENT M F, ARBONA V, et al. Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage [J]. J Plant Physiol, 2009,166: 1391-1404.
[9] CHAPLEN F W R, CAMERON D C, FAHL W E. Detection of methylglyoxal as a degradation product of DNA and deoxyri-bonucleotides treated with strong acid [J]. Anal Biochem, 1998, 236: 262-269.
[10] DESAI. Enhanced tolerance and antitumor efficacy by docetaxel-loaded albumin nanoparticles [J]. Drug Delivery,2010,23(8):1-11.
[11] THORNALLEY. The glyoxalase system: new developments towards functional characterization of a metabolic pathway fundamental to biological life [J]. Biochemical Journal,1990, 269(1): 1-11.
[12] WRIGHT S. UPADHYAYA A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi [J]. Plant and Soil, 1998, 198(1): 97-107.
[13] 弓明欽,陳應(yīng)龍,仲崇祿.菌根研究及應(yīng)用[M]. 北京: 中國(guó)林業(yè)出版社, 1997.
[14] 陳衛(wèi)莉,趙曉改,王浩,等.Pb脅迫下接種叢枝菌根真菌對(duì)茶樹(shù)解毒能力的影響[J].河南科學(xué), 2014 (4): 511-515.
[15] 湛蔚,劉洪光,唐明.菌根真菌提高楊樹(shù)抗?jié)儾∩砩瘷C(jī)制的研究[J]. 西北植物學(xué)報(bào),2010, 30(12): 2437-2443.
[16] 石蕾,賀學(xué)禮.不同施P水平下AM真菌對(duì)黃芪生長(zhǎng)和生理學(xué)特性的影響[J]. 西北農(nóng)業(yè)學(xué)報(bào),2007,16(1): 46-50.
[17] 鄭紅麗,邢杰,胡?。畠煞N叢枝菌根真菌對(duì)小麥和大豆生長(zhǎng)的影響[J]. 內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報(bào),2002, 23(1): 22-23.
[18] 李敏,辛華,郭紹霞,等.AM真菌對(duì)鹽漬土中番茄、辣椒生長(zhǎng)和礦質(zhì)養(yǎng)分吸收的影響[J].萊陽(yáng)農(nóng)學(xué)院學(xué)報(bào),2005, 22(1): 38-41.
[19] 李義強(qiáng),王鳳龍,龔道新.我國(guó)無(wú)公害煙葉生產(chǎn)的問(wèn)題、優(yōu)勢(shì)及對(duì)策[J]. 中國(guó)煙草科學(xué),2009, 30(3): 54-57.
[20] 王瑞敏.電感耦合等離子體質(zhì)譜法(ICP—MS)測(cè)定植物中微量鉛和鎘[J]. 農(nóng)業(yè)科技與裝備,2011(1): 32—34.
[21] 李玲.植物生理學(xué)模塊實(shí)驗(yàn)指導(dǎo) [M]. 北京:科學(xué)出版社,2009:95-98.
[22] ANASTASIS C, GEORGE A M, LOANNIS P, et al. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways [J]. Journal of Experimental Botany, 2013, 64(7): 1953-1966.
[23] ELSTNER E H, HEUPLE A. Inhibition of nitrite formation from hydroxylammonium chloride: a simple assay for superoxide dismutase [J]. Analytical biochemistry, 1976, 70: 616-620.
[24] HWANG S Y, LIN H W, CHERN R H, et al. Reduced susceptibility to waterlogging together with high-light stress is related to increases in superoxide dismutase and catalase activities in sweet potato[J]. Plant Growth Regulation, 1999, 27(3):167-172.
[25] XU P L, GUO Y K, BAI J G, et al. Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light[J].Physiologia Plantarum, 2008, 132(4):467-478.
[26] NAKANO Y, ASADA K. Hydrogen peroxide is sca-venged by ascorbate-specific peroxidase in spinach chloroplasts [J]. Plant & Cell Physiology, 1981, 22(5):867-880.
[27] AEBI H. Catalaseinvitro[J]. Methods in Enzymology, 1984, 105: 121-126.
[28] YADAV S K, SINGLA-PAREEK S L, RAY M, et al.Methylglyoxal levels in plants under salinity stress are dependent on glyoxalase I and glutathione [J]. Biochemical and Biophysical Research Communications, 2005, 337: 61-67.
[29] HOSSAIN M A, HOSSAIN M Z, FUJITA M. Stress-induced changes of methylglyoxal level and glyoxalase I activity in pumpkin seedlings and cDNA cloning of glyoxalase I gene [J]. Australian Journal of Crop Science, 2009, 3(2): 53-64.
[30] PATRA M, BHOWMIK N, BANDOPADHYAY B, et al. Comparison of mercury,lead and arsenic with respect to genotoxic effects on plant systems and the development of genetic tolerance[J]. Environ Exp Bot, 2004, 52(2): 199-223.
[31] GONZáLEZ-CHáVEZ M C, CARRILLO-GONZáLEZ R, WRIGHT S F, et al. The role of glomalin, a protein produced by arbuscular mycorrhizal fungi, in sequestering potentially toxic elements[J]. Environmental Po-llution, 2004, 130(3): 317-323.
[32] 肖家欣,安靜,楊安娜,等.五種叢枝菌根真菌對(duì)白三葉耐銅污染的影響[J].中國(guó)草地學(xué)報(bào), 2011, 33(6): 57-63.
[33] 袁祖麗,吳中紅,劉秀敏.鎘脅迫對(duì)烤煙葉片抗氧化系統(tǒng)的影響[J]. 河南農(nóng)業(yè)科學(xué), 2008, 37(7): 43-46.
[34] YOUNESI O, MORADI A. The effects of arbuscular mycorrhizal fungi inoculation on reactive oxyradical scavenging system of soybean (Glycinemax) nodules under salt stress condition.[J]. Agriculturae Conspectus Scientificus, 2014, 78(4): 321-326.
(責(zé)任編輯:常思敏)
DetoxificationeffectofinoculationarbuscularmycorrhizalfungiwithtobaccoonitsPbstress
GAO Shan1, GAO Haimin2, ZHAO Jianan1, YUAN Zuli1
(1.College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China; 2.Golden Manulfacturing Center, Henan Zhongyan Industrial Co., Ltd, Zhengzhou 450000, China)
To study effects of inoculation arbuscular mycorrhizal fungi with tobacco on detoxification Pb stress, a pot experiment was carried out with tobacco (NicotianatabacumL.) andGlomusintraradice. The result showed that, under Pb stress, after inoculationGlomusintraradicewith tobacco, Pb contentdecreased in leaves, but significant increase in roots. The H2O2content and production rate of superoxide aninwere decreased significantly, and the activity of SOD, CAT, APX, POD and MDA content decline accordingly. As glyoxalase I activity was enhanced and glutathione content increase in the leaves, the potent cytotoxic compound methylglyoxal decreased. The result indicated that inoculation arbuscular mycorrhizal fungi with tobacco could reduce oxidative stress and content of Pb in leaves, and consequently raise the quality of tobacco.
tobacco; Pb; arbuscular mycorrhizal fungi; detoxification
2017-04-03
河南省煙草公司重大專項(xiàng)(620112)
高 杉(1989-),女,河南漯河人,碩士研究生,主要從事煙草重金屬方面的研究。
袁祖麗(1963-),女,河南鄭州人,教授,博士。
1000-2340(2017)05-0620-06
S 572
A