国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

PAI-1對氣道平滑肌增殖和ERK表達(dá)的影響

2017-11-16 08:06王亮朱述陽于晨希劉文靜朱潔晨
關(guān)鍵詞:增殖率平滑肌磷酸化

王亮,朱述陽,于晨希,劉文靜,朱潔晨

(徐州醫(yī)科大學(xué)附屬醫(yī)院 呼吸內(nèi)科,江蘇 徐州 221006)

PAI-1對氣道平滑肌增殖和ERK表達(dá)的影響

王亮,朱述陽,于晨希,劉文靜,朱潔晨

(徐州醫(yī)科大學(xué)附屬醫(yī)院 呼吸內(nèi)科,江蘇 徐州 221006)

目的 探討纖溶酶原激活物抑制物-1(PAI-1)對氣道平滑肌增殖的調(diào)控作用,以及對細(xì)胞外調(diào)節(jié)蛋白激酶(ERK)表達(dá)的影響。方法 體外培養(yǎng)小鼠氣道平滑肌細(xì)胞(ASMCs)并分為7組:空白對照組、PAI-1 5 μg/L 組、PAI-1 10 μg/L 組、PAI-1 20 μg/L 組、PAI-1 40 μg/L 組、PAI-1 80 μg/L 組、PAI-1 100 μg/L組。放入37℃培養(yǎng)箱分別培養(yǎng)12、24和48 h,采用CCK-8檢測ASMCs的A值,計(jì)算增殖率。以增殖率最高的實(shí)驗(yàn)組的濃度和作用時(shí)間作為PAI-1作用最適濃度和最適作用時(shí)間,進(jìn)一步分6組:A組(空白對照);B組(PAI-1 20 μg/L);C 組(PAI-1 40 μg/L);D 組(PAI-1 80 μg/L);E 組(PAI-1 100 μg/L);F 組(PAI-1 最適濃度+ERK通道抑制劑PD98059 10 μmol/L),用CCK-8檢測ASMCs的增殖,Western blot檢測ERK蛋白的表達(dá),實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)檢測ERK mRNA的表達(dá)。結(jié)果 5~100 μg/L PAI-1作用ASMCs 12、24和48 h后細(xì)胞增殖率結(jié)果顯示,在相同濃度下,不同時(shí)間各組比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),以48 h時(shí)ASMCs增殖率最高;在相同時(shí)間下,不同濃度各組比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),80 μg/L PAI-1的ASMCs增殖率最高;故選取48 h為最適作用時(shí)間,80 μg/L為最適濃度進(jìn)行后續(xù)實(shí)驗(yàn)。再次分組的實(shí)驗(yàn)結(jié)果表明,B、C、D、E組的ERK磷酸化水平和ERK mRNA的相對表達(dá)量與A組比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),B、C、D、E組增高;B、C、D、E組兩兩比較結(jié)果顯示,除B組與E組比較,差異無統(tǒng)計(jì)學(xué)意義(P>0.05)外,其余各組兩兩比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),當(dāng)PAI-1濃度波動于20~80 μg/L時(shí),ERK磷酸化水平和ERK mRNA相對表達(dá)量隨濃度升高而增高,>80 μg/L后則不再增高;加入PD98059的F組與D組比較,差異有統(tǒng)計(jì)學(xué)意義(P<0.05),ERK磷酸化水平和ERK mRNA表達(dá)降低。結(jié)論 外源性PAI-1可以通過促進(jìn)ERK通路的表達(dá),進(jìn)而促進(jìn)ASMCs的增殖。

纖溶酶原激活物抑制物-1;細(xì)胞外調(diào)節(jié)蛋白激酶;氣道平滑肌細(xì)胞;哮喘

哮喘是一種以慢性氣道炎癥為特征的異質(zhì)性疾病[1]。哮喘的反復(fù)發(fā)作可引起氣道重塑,導(dǎo)致不可逆氣流受限及持續(xù)性非特異性支氣管高反應(yīng)性,因此氣道重塑被認(rèn)為是除氣道慢性炎癥之外,哮喘的另一個(gè)主要特征。哮喘的氣道重塑主要表現(xiàn)為氣道平滑肌細(xì)胞(airway smooth muscle cell,ASMCs)量的增加、上皮細(xì)胞增生、杯狀細(xì)胞化生、網(wǎng)狀基底膜增厚、血管生成等[2]。其中,ASMCs量的增加是氣道重塑最重要的影響因素,而參與該環(huán)節(jié)的機(jī)制中包含ASMCs增殖、肥大及遷移[3]。纖溶酶原激活物抑制物-1(plasminogen activator inhibitor-1,PAI-1)是絲氨酸蛋白酶抑制劑家族成員之一,是尿激酶型纖溶酶原激活物和組織型纖溶酶原激活物主要的生理抑制劑。在細(xì)胞周期中,PAl-1轉(zhuǎn)錄水平的變化及其在細(xì)胞內(nèi)的積聚對細(xì)胞形態(tài)的維持、細(xì)胞與其間質(zhì)的黏附、細(xì)胞增殖、信號轉(zhuǎn)導(dǎo)及基因表達(dá)等都有重要意義[4]。已有臨床研究和體外實(shí)驗(yàn)發(fā)現(xiàn),PAI-1在哮喘發(fā)病及氣道重塑中發(fā)揮重要作用[5-8]。本研究旨在觀察PAI-1小鼠ASMCs中細(xì)胞外調(diào)節(jié)蛋白激酶(extracellular regulated protein kinases,ERK)通路的干預(yù)作用,從細(xì)胞分子水平研究PAI-1對體外培養(yǎng)的小鼠ASMCs增殖的影響。

1 材料與方法

1.1 實(shí)驗(yàn)材料

清潔級雌性BALB/c小鼠11只、體重20~24 g(徐州醫(yī)學(xué)院實(shí)驗(yàn)動物中心提供),PAI-1(大連美侖生物技術(shù)有限公司),α-平滑肌肌動蛋白(α-smooth muscle actin,α-SMA)(武漢博士德生物工程有限公司),活細(xì)胞計(jì)數(shù)法(cell counting kit-8,CCK-8)試劑盒(上海碧云天生物技術(shù)研究所),兔抗甘油醛-3-磷酸脫氫酶(glyceraldehyde-3-phosphate dehydrogenase,GAPDH)(杭州賢至生物有限公司),兔抗ERK(武漢三鷹生物技術(shù)有限公司),兔抗p-ERK(美國CST公司),ERK激酶抑制劑PD98059(美國Sigma-Aldrich公司),辣根過氧化物酶標(biāo)記的山羊抗兔二抗(武漢博士德生物工程有限公司),Trizol裂解液(北京艾德萊生物科技有限公司),dNTP Mixture(北京天根生化科技有限公司),2×All-in-oneTMqPCR Mix(美國Vazvme公司),Ex Taq、DL2000 DNA Marke(日本 TaKaRa公司)。

1.2 方法

1.2.1 ASMCs的培養(yǎng)及鑒定 無菌分離小鼠氣道平滑肌組織,采用貼壁法培養(yǎng)原代ASMCs[9];用胰酶消化法進(jìn)行傳代,并自然純化[9],實(shí)驗(yàn)用第4和5代。培養(yǎng)的ASMCs采用免疫組織化學(xué)法檢測α-SMA的表達(dá),并進(jìn)行鑒別。

1.2.2 CCK-8法 取上述對數(shù)生長期細(xì)胞,用含15%胎牛血清改良伊格爾培養(yǎng)基(dulbecco's modified eagle medium,DMEM),將細(xì)胞密度調(diào)整到1×105個(gè) /ml,接種于 96 孔板,100 μl/孔,在周邊加入100 μl無菌磷酸鹽緩沖溶液。培養(yǎng)24 h后,換不含血清的DMEM培養(yǎng)24 h,使細(xì)胞生長同步于G0期。根據(jù)不同處理方法將細(xì)胞分為7組:空白對照組、PAI-1 5μg/L組、PAI-1 10μg/L組、PAI-1 20μg/L組、PAI-1 40 μg/L 組、PAI-1 80 μg/L 組、PAI-1 100 μg/L組,每組重復(fù)7次,放入37℃培養(yǎng)箱分別培養(yǎng)12、24和48 h。按照每孔培養(yǎng)基總體積的10%加入CCK-8溶液,繼續(xù)孵育4 h,用酶標(biāo)儀測定450 nm處的吸光度值,依據(jù)公式計(jì)算增殖率,增殖率=(A處理組/A陰性對照組-1)×100%。再根據(jù)以上7個(gè)實(shí)驗(yàn)組的增殖率結(jié)果,以增殖率最高的實(shí)驗(yàn)組的濃度和作用時(shí)間作為PAI-1作用最適濃度和最適作用時(shí)間,進(jìn)一步分6組進(jìn)行后續(xù)檢測,具體分組如下:A組(空白對照組);B組(PAI-1 20 μg/L);C 組(PAI-1 40 μg/L);D 組(PAI-1 80 μg/L);E 組(PAI-1 100 μg/L);F組(PAI-1 最適濃度+ERK通道抑制劑PD98059 10μmol/L)。

1.2.3 Western blot檢測 ASMCs按上述A、B、C 3組干預(yù)后,倒掉培養(yǎng)液,洗滌細(xì)胞3次,加入無線電免疫沉淀裂解液和苯甲基磺酰氟混合物,置于冰上裂解30 min,刮下細(xì)胞移至1.5 ml離心管中,4℃、12 000 r/min離心5 min,取上清液,聚氰基丙烯酸正丁酯法測定蛋白濃度。取40 μg樣品蛋白進(jìn)行聚丙烯酰胺凝膠電泳,然后將蛋白轉(zhuǎn)移至聚偏氟乙烯膜上,用含5%脫脂奶粉的三羥甲基氨基甲烷緩沖鹽溶液(tris buffered saline and tween 20,TBST)(封閉液)浸泡聚偏氟乙烯膜,室溫?fù)u床封閉2 h,加入GAPDH 一抗(1∶1 000)、ERK 一抗(1∶5 000)、p-ERK 一抗(1∶2 000),4℃孵育過夜,TBST 洗膜 5或6次,5 min/次,加入辣根過氧化物酶標(biāo)記的羊抗兔二抗(1∶5 000),37℃搖床孵育 2 h,再次洗膜,滴加增強(qiáng)化學(xué)發(fā)光試劑顯影,曝光成像,用Band Scan分析膠片灰度值。

1.2.4 實(shí)時(shí)熒光定量聚合酶鏈反應(yīng)(quantitative real-time polymerase chain reaction,qRT-PCR) 收集各組細(xì)胞,采用Trizol法提取細(xì)胞總RNA,逆轉(zhuǎn)錄為cDNA,于-20℃冰箱冷藏保存。以β-actin作為內(nèi)參基因,qRT-PCR檢測ERK mRNA的相對表達(dá)量。β-actin正向引物:5'-CCCATCTATGAGGGTTA CGC-3',反向引物:5'-TTTAATGTCACGCACGATTT C-3';ERK 正向引物:5'-GGCTTTCTGACCGAGTATG TG-3',反向引物:5'-TTTAGGTCCTCTTGGGATGG-3'??偡磻?yīng)體系20 μl,主要反應(yīng)條件:95℃預(yù)變性10 min,95℃變性 30 s,60℃退火 30 s,共 40 個(gè)循環(huán)后進(jìn)行溶解曲線檢測。每個(gè)反應(yīng)管內(nèi)的熒光信號達(dá)到設(shè)定的閾值時(shí)所經(jīng)歷的循環(huán)數(shù)定義為Ct值;每對引物在每個(gè)模板中做3個(gè)重復(fù)管,得到的Ct值取平均值,每個(gè)目的基因的Ct平均值減去對應(yīng)模板的內(nèi)參基因的Ct平均值,得到△Ct。根據(jù)公式ΔCt=(Ct目的基因-Ct內(nèi)參基因)和ΔΔCt=(ΔCt研究組-ΔCt對照組),最終數(shù)據(jù)以2-△△Ct進(jìn)行分析。

1.3 統(tǒng)計(jì)學(xué)方法

數(shù)據(jù)分析采用SPSS 20.0和Graph Pad 5.1統(tǒng)計(jì)軟件,計(jì)量資料以均數(shù)±標(biāo)準(zhǔn)差(±s)表示,多組比較用單因素方差分析或重復(fù)測量設(shè)計(jì)的方差分析,進(jìn)一步兩兩比較用LSD-t法,P<0.05為差異有統(tǒng)計(jì)學(xué)意義。

2 結(jié)果

2.1 ASMCs的鑒定

倒置光學(xué)顯微鏡下觀察,培養(yǎng)的小鼠ASMCs呈梭形,束狀排列,細(xì)胞間相互交錯(cuò)呈峰谷狀(見圖1A)。免疫細(xì)胞化學(xué)檢測發(fā)現(xiàn),α-SMA呈陽性,其胞質(zhì)內(nèi)可見紅色熒光,證實(shí)培養(yǎng)的細(xì)胞為ASMCs(見圖 1B)。

圖1 小鼠ASMCs

2.2 CCK-8法檢測結(jié)果

2.2.1 不同濃度PAI-1對ASMCs增殖的影響CCK-8法分別檢測12、24和48 h時(shí)各組ASMCs的A值,計(jì)算細(xì)胞增殖率。結(jié)果表明,80 μg/L PAI-1作用 48 h時(shí),ASMCs增殖率為(46.64±0.830)%,為最高值。不同濃度PAI-1體外刺激ASMCs 12、24和48h后的增殖率比較,采用重復(fù)測量設(shè)計(jì)的方差分析,球形檢驗(yàn)結(jié)果表明差異無統(tǒng)計(jì)學(xué)意義(P=0.210),認(rèn)為多次測量結(jié)果間無相關(guān)性,故采用單變量方差分析。結(jié)果顯示:①不同時(shí)間ASMCs的增殖率比較,差異有統(tǒng)計(jì)學(xué)意義(F=3 826.486,P=0.000),作用 48 h時(shí),ASMCs的增殖率最大;②不同濃度PAI-1刺激下ASMCs的增殖率比較,差異有統(tǒng)計(jì)學(xué)意義(F=1 825.566,P=0.000),PAI-1 80 μg/L 刺激下 ASMCs的增殖率最大;③不同濃度PAI-1刺激下ASMCs的增殖率變化趨勢比較,差異有統(tǒng)計(jì)學(xué)意義(F=289.290,P=0.000)。見附表和圖 2。

附表 不同濃度PAI-1體外刺激ASMCs各時(shí)間的A值和增殖率比較

圖2 不同濃度PAI-1體外刺激ASMCs各時(shí)間的增殖率變化趨勢

2.2.2 同時(shí)加入PD98059和PAI-1對ASMCs生長的影響 各組A值比較,經(jīng)單因素方差分析,差異有統(tǒng)計(jì)學(xué)意義(F=142.980,P=0.000)。進(jìn)一步組間兩兩比較,經(jīng)LSD-t檢驗(yàn),B、C、D、E 組與A組比較,差異有統(tǒng)計(jì)學(xué)意義(t=8.218、17.177、22.817 和 8.930,均 P=0.000),B、C、D、E 組高于 A 組,提示各濃度PAI-1均可引起ASMCs增殖;F組(PAI-1 80 μg/L+PD98059 80 μg/L)與A組比較,差異有統(tǒng)計(jì)學(xué)意義(t=3.874,P=0.002),F(xiàn)組高于 A 組,表明 ERK 抑制劑PD98059部分抑制PAI-1引起的ASMCs增殖;F組與D組比較,差異有統(tǒng)計(jì)學(xué)意義(t=18.943,P=0.000),F(xiàn)組低于D組,提示PAI-1所引起的ASMCs增殖,可能與ERK通道有關(guān)(見圖3)。

圖3 ASMCs作用48 h各組的A值比較

2.3 PAI-1對小鼠ASMCs的ERK蛋白表達(dá)影響

各組ERK蛋白、p-ERK蛋白表達(dá)及ERK磷酸化水平比較,經(jīng)單因素方差分析,差異有統(tǒng)計(jì)學(xué)意義(F=72.294、87.809 和 27.946,均 P=0.000)。①各組ERK蛋白表達(dá)水平比較,經(jīng)LSD-t檢驗(yàn),B、C、D、E組高于A組,D組高于B、C、E組,C組高于B、E組,D組高于F組(P<0.05);B組與E組比較,差異無統(tǒng)計(jì)學(xué)意義(P>0.05);②各組p-ERK蛋白表達(dá)水平比較,經(jīng) LSD-t檢驗(yàn),B、C、D、E 組高于 A 組,D 組高于B、C、E組,C組高于B、E組,D 組高于 F組(P<0.05);B組與E組比較,差異無統(tǒng)計(jì)學(xué)意義(P>0.05);③各組 ERK 磷酸化水平比較,經(jīng) LSD-t檢驗(yàn),B、C、D、E 組高于A組,提示各濃度PAI-1均可促進(jìn)ERK1/2磷酸化;D 組高于B、C、E 組,C組高于 B、E 組(P<0.05),B組與E組比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05),表明當(dāng)PAI-1濃度波動于20~80 μg/L時(shí),ERK1/2磷酸化水平隨濃度升高而增高,>80 μg/L,ERK1/2磷酸化水平則不再增高;D組高于F組(t=8.612,P=0.000),顯示PAI-1引起ERK1/2磷酸化增高的現(xiàn)象可被PD98059抑制。見圖4。

2.4 PAI-1對小鼠ASMCs細(xì)胞ERK mRNA表達(dá)的影響

各組ERK mRNA水平比較,經(jīng)單因素方差分析,差異有統(tǒng)計(jì)學(xué)意義(F=229.035,P=0.000)。進(jìn)一步各組間兩兩比較,經(jīng)LSD-t檢驗(yàn),B、C、D、E組高于A組,D組高于B、C、E組,C組高于 B、E組,D組高于F組(P<0.05);B組與E組比較差異無統(tǒng)計(jì)學(xué)意義(P>0.05)。見圖 5。

圖4 各組ASMCs的ERK蛋白表達(dá)水平

圖5 各組ASMCs的ERK mRNA表達(dá)水平比較

3 討論

氣道重塑是慢性哮喘反復(fù)發(fā)作和頑固性哮喘的重要病理基礎(chǔ),其中ASMCs的增殖是其重要環(huán)節(jié)之一[10]。WOODRUFF等[11]指出,難治性哮喘患者與正常人相比,ASMCs的數(shù)量增加(50~80)%,這一現(xiàn)象主要由平滑肌的增殖而不是肥大引起。JAMES等[12]研究表明,在致死性哮喘(主要是重度哮喘)患者中,氣道平滑肌層厚度增加是由于大、中、小氣道的ASMCs增生;無論是致死性或是非致死性哮喘,ASMCs肥大均發(fā)生在大氣道。過度增殖的ASMCs引起氣道管腔狹窄,氣流通過受限,且ASMCs增殖會導(dǎo)致氣道高反應(yīng)[13],使氣道對變應(yīng)刺激源更加敏感,收縮更為強(qiáng)烈,導(dǎo)致更為嚴(yán)重的急性發(fā)作。同時(shí)增殖后的ASMCs由收縮型向增殖/合成型轉(zhuǎn)化[14],分泌大量細(xì)胞因子參與哮喘的炎癥反應(yīng),炎癥可進(jìn)一步促進(jìn)氣道重塑,導(dǎo)致惡性循環(huán)。由此可見ASMCs增殖處于哮喘氣道重塑的關(guān)鍵環(huán)節(jié),抑制ASMCs增殖可能成為治療難治性哮喘的一個(gè)重要靶點(diǎn)。

PAI-1是纖溶系統(tǒng)中重要的調(diào)控物質(zhì)之一,其主要作用是抑制u-PA和t-PA。在正常情況下,PAI-1在血漿中的含量是極低的(0~60 ng/ml),大部分以潛在活性形式存在于血小板中(200~300 ng/ml)[15-16]。在一些病理?xiàng)l件下,如感染、中風(fēng)、心肌梗死、糖尿病、肥胖癥、敗血癥和癌癥等,PAI-1水平升高[17-18]。異常的PAI-1表達(dá)也在哮喘中存在。已有研究證實(shí),PAI-1在致死性哮喘患者增多的肥大細(xì)胞內(nèi)高度表達(dá)[5],且PAI-1的4G等位基因頻率增多與血漿中PAI-1的高表達(dá)相關(guān),患有哮喘的父母易于將該等位基因遺傳給孩子[6-7]。哮喘患者升高的PAI-1血漿水平也與減少的用力肺活量相關(guān)[19]。體外實(shí)驗(yàn)表明,PAI-1可通過促進(jìn)氣道炎癥、氣道重塑及氣道高反應(yīng),在哮喘發(fā)病機(jī)制中扮演重要角色[3,8,20-23]。目前,關(guān)于 PAI-l對哮喘氣道重塑的研究主要集中兩方面,即PAI-1通過抑制纖溶和MMP-9的活化,促進(jìn)纖維蛋白和細(xì)胞外基質(zhì)沉積[8,23]、PAI-1通過影響VEGF的活化調(diào)節(jié)血管生成[8,22],但是PAI-1對ASMCs增殖的影響國內(nèi)外還少有研究。本研究結(jié)果顯示,PAI-1能促進(jìn)體外培養(yǎng)ASMCs增殖,并有一定的時(shí)間和濃度依賴性。PAI-1在各時(shí)間均能刺激ASMCs的增殖,隨時(shí)間延長,刺激增強(qiáng);在各劑量中,從5μg/L增至80μg/L,增殖率逐漸升高,>80μg/L后,增殖率不再增加。

ERK是EAPKs家族中的一員,主要包括2種異構(gòu)體ERK1和ERK2,ERK1/2可由生長因子通過Ras-Raf-MEK通路的磷酸化而被激活,與細(xì)胞增殖、轉(zhuǎn)化及分化相關(guān)的MAPK[24-25]。有研究表明,TGF-β1可通過激活ERK信號途徑促進(jìn)ASMCs的增殖,羅紅霉素能夠抑制上述途徑[26-29]。XIE等[27]實(shí)驗(yàn)表明,ERK1/2信號通路在哮喘大鼠ASMCs由收縮型向增殖/合成型轉(zhuǎn)化中發(fā)揮關(guān)鍵作用。YAO等[28]研究表明,白楊素能夠通過抑制ERK1/2信號途徑的激活,從而抑制人ASMCs的增殖。CHEN等[30]研究發(fā)現(xiàn),PAI-1可能促進(jìn)ERK的表達(dá)增加,從而導(dǎo)致血管平滑肌細(xì)胞的增殖。本研究結(jié)果顯示,PAI-1可以促進(jìn)大鼠ASMCs的增殖,與ERK信號通路有關(guān),該效應(yīng)存在一定的濃度依賴性;PD98059可以抑制該效應(yīng),但不能恢復(fù)至對照水平,說明ERK通路可能不是PAI-1引起大鼠ASMCs增殖的唯一效應(yīng)通路。

綜上所述,在體外實(shí)驗(yàn)中,外源性PAI-1可以通過促進(jìn)ERK通路的磷酸化,而促進(jìn)ASMCs的增殖。而減少PAI-1的作用和抑制ERK通路的磷酸化可減少ASMCs的增殖,從而可能減緩哮喘氣道重塑的發(fā)生。

[1]BOUSQUET J,HUMBERT M.GINA 2015:the latest iteration of a magnificent journey[J].European Respiratory Journal,2015,46(3):579-582.

[2]AL-MUHSEN S,JOHNSON J R,HAMID Q.Remodeling in asthma[J].Journal of Allergy and Clinical Immunology,2011,128(3):451-462.

[3]JOHNSON P R A,BURGESS J K.Airway smooth muscle and fibroblasts in the pathogenesis of asthma[J].Current Allergy and Asthma Reports,2004,4(2):102-108.

[4]M?YNARSKA A,WASZYROWSKI T,KASPRZAK J D.Plasminogen activator inhibitor-1(PAI-1):pathogenetic role in coronary disease[J].Kardiologia Polska,2007,65(9):1109.

[5]CHO S H,TAM S W,DEMISSIE-SANDERS S,et al.Production of plasminogen activator inhibitor-1 by human mast cells and its possible role in asthma[J].The Journal of Immunology,2000,165(6):3154-3161.

[6]CHO S H,HALL I P,WHEATLEY A,et al.Possible role of the 4G/5G polymorphism of the plasminogen activatorinhibitor1 gene in the development of asthma[J].Journal of Allergy and Clinical Immunology,2001,108(2):212-214.

[7]PAMPUCH A,KOWAL K,BODZENTA-LUKASZYK A,et al.The 675 4G/5G plasminogen activator inhibitor-1 promoter polymorphism in house dust mite-sensitive allergic asthma patients[J].Allergy,2006,61(2):234-238.

[8]OH C K,ARIUE B,ALBAN R F,et al.PAI-1 promotes extracellular matrix deposition in the airways of a murine asthma model[J].Biochemical and Biophysical Research Communications,2002,294(5):1155-1160.

[9]卓致遠(yuǎn),黃茂,崔學(xué)范,等.組織貼塊法培養(yǎng)小鼠氣道平滑肌細(xì)胞[J].中國組織化學(xué)與細(xì)胞化學(xué)雜志,2007,16(2):247-250.

[10]HASSAN M,JO T,RISSE P A,et al.Airway smooth muscle remodeling is a dynamic process in severe long-standing asthma[J].Journal of Allergy and Clinical Immunology,2010,125(5):1037-1045.

[11]WOODRUFF P G,DOLGANOV G M,FERRANDO R E,et al.Hyperplasia of smooth muscle in mild to moderate asthma without changes in cell size or gene expression[J].American Journal of Respiratory and Critical Care Medicine,2004,169(9):1001-1006.

[12]JAMES A.Airway remodeling in asthma[J].Current Opinion in Pulmonary Medicine,2005,11(1):1-6.

[13]BROOK B S,PEEL S E,HALL I P,et al.A biomechanical model of agonist-initiated contraction in the asthmatic airway[J].Respiratory Physiology Neurobiology,2010,170(1):44-58.

[14]DAMERA G,DRUEY K M,COOPER P R,et al.An RGS4-mediated phenotypic switch of bronchial smooth muscle cells promotes fixed airway obstruction in asthma[J].PLoS One,2012,7(1),DOI:10.1371/journal.pone.0028504.

[15]BROGREN H,KARLSSON L,ANDERSSON M,et al.Platelets synthesize large amounts of active plasminogen activator inhibitor 1[J].Blood,2004,104(13):3943-3948.

[16]CRAEN B V D,DECLERCK P J,GILS A.The biochemistry,physiology and pathological roles of PAI-1 and the requirements for PAI-1 inhibition in vivo[J].Thrombosis Research,2012,130(4):576-585.

[17]GRAMLING M W,CHURCH F C.Plasminogen activator inhibitor-1 is an aggregate response factor with pleiotropic effects on cell signaling in vascular disease and the tumor microenvironment[J].Thrombosis Research,2010,125(5):377-381.

[18]DECLERCK P J,GILS A.Three decades of research on plasminogen activator inhibitor-1:a multifaceted serpin[C].Seminars in Thrombosis and Hemostasis,2013,39(4):356-364.

[19]CHO S,KANG J,LYTTLE C,et al.Association of elevated plasminogen activator inhibitor 1 levels with diminished lung function in patients with asthma[J].Annals of Allergy Asthma Immunology,2011,106(5):371-377.

[20]SWAISGOOD C M,ARONICA M A,SWAIDANI S,et al.Plasminogen is an important regulator in the pathogenesis of a murine model of asthma[J].American Journal of Respiratory and Critical Care Medicine,2007,176(4):333-342.

[21]TEZUKA T,OGAWA H,AZUMA M,et al.IMD-4690,a novel specific inhibitor for plasminogen activator inhibitor-1,reduces allergic airway remodeling in a mouse model of chronic asthma via regulating angiogenesis and remodeling-related mediators[J].PLoS One,2015,10(3):DOI:10.1371/journal.pone.e0121615.

[22]MIYAMOTO S,HATTORI N,SENOO T,et al.Intra-airway administration of small interfering RNA targeting plasminogen activator inhibitor-1 attenuates allergic asthma in mice[J].American Journal of Physiology-Lung Cellular and Molecular Physiology,2011,301(6):L908-L916.

[23]LEE S H,EREN M,VAUGHAN D E,et al.A plasminogen activatorinhibitor-1 inhibitorreducesairwayremodeling in a murine model of chronic asthma[J].American Journal of Respiratory Cell and Molecular Biology,2012,46(6):842-846.

[24]ANDREEFF M.Targeted therapy of acute myeloid leukemia[M].New York:Springer,2015:275-305.

[25]黃文林,朱孝峰.信號轉(zhuǎn)導(dǎo)與疾病[M].第2版.北京:人民衛(wèi)生出版社,2012:275-305.

[26]CHEN G,KHALIL N.TGF-β1increases proliferation of airway smooth muscle cells by phosphorylation of map kinases[J].Respiratory Research,2006,7(1):2.

[27]XIE M,LIU X S,XU Y J,et al.ERK1/2 signaling pathway modulates the airway smooth muscle cell phenotype in the rat model of chronic asthma[J].Respiration,2007,74(6):680-690.

[28]YAO J,ZHANG Y S,FENG G Z,et al.Chrysin inhibits human airway smooth muscle cells proliferation through the extracellular signal-regulated kinase 1/2 signaling pathway[J].Molecular Medicine Reports,2015,12(5):7693-7698.

[29]DAI Y,LI F,WU L,et al.Roxithromycin treatment inhibits TGF-beta1-induced activation of ERK and AKT and downregulation of caveolin-1 in rat airway smooth muscle cells[J].Respir Res,2014,15:96.

[30]CHEN Y,BUDD R C,KELM R J,et al.Augmentation of proliferation of vascular smooth muscle cells by plasminogen activator inhibitor type 1[J].Arteriosclerosis Thrombosis and Vascular Biology,2006,26(8):1777-1783.

Effect of PAI-1 on proliferation of airway smooth muscle cells and expression of extracellular regulated protein kinase

Liang Wang,Shu-yang Zhu,Chen-xi Yu,Wen-jing Liu,Jie-chen Zhu
(Department of Respiratory Medicine,the Affiliated Hospital of Xuzhou Medical University,Xuzhou,Jiangsu 221006,China)

Objective To investigate the regulation of plasminogen activator inhibitor-1(PAI-1)on the proliferation of airway smooth muscle cells (ASMCs)and its effect on extracellular regulated protein kinase(ERK).Methods The ASMCs of mice culturedin vitrowere divided into 7 groups:control group,PAI-1 5 μg/L group,PAI-1 10 μg/L group,PAI-1 20 μg/L group,PAI-1 40 μg/L group,PAI-1 80 μg/L group and PAI-1 100 μg/L group.All groups were cultured respectively for 12,24 and 48 h in a 37℃ incubator.The absorbance values were tested by CCK-8,and the proliferation rates were calculated.The concentration and intervention time of the experimental group with the highest proliferation rate were taken as the optimal concentration and time of PAI-1 action.Then the subjects were further divided into 6 groups:group A(blank control),group B(PAI-1 20 μg/L),group C(PAI-1 40 μg/L),group D(PAI-1 80 μg/L),group E(PAI-1 100 μg/L)and group F (the optimal concentration of PAI-1+the inhibitor of ERK PD98059 10 μmol/L).The proliferation of ASMCs was detected by CCK-8.The expression of ERK protein was detected by Western blot.And the expression of ERK mRNA was detected by qRT-PCR.Results After 5-100 μg/L PAI-1 acted upon ASMCs for 12,24 and 48 h,the proliferation rates of each test group at different time points were statistically different (P<0.05),and the proliferation rates reached the maximal levels at the 48th h;at the same time point the proliferation rates of the test groups with different concentrations were statistically different(P<0.05),and the proliferation rates of ASMCs reached the peak at the concentration of 80 μg/L.Therefore,80 μg/L of PAI-1 was chosen to be the optimum concentration,and 48 hours was set to be the optimal intervention period for the subsequent experiments.In the subsequent experiments,the results showed that compared to the group A,ERK phosphorylation levels and the expressions of ERK mRNA in the groups B,C,D and E were significantly increased (P<0.05);in the pairwise comparison of the groups B,C,D and E,the ERK phosphorylation levels and the expressions of ERK mRNA in the ASMCs were statistically different only between the groups B and E (P < 0.05).When PAI-1 concentration varied from 20 to 80 μg/L,ERK phosphorylation leveland the expression ofERK mRNA increased with the concentration;when the concentration went up over 80 μg/L,the phosphorylation level of ERK no longer increased.Compared with the group D,the ERK phosphorylation level and the expression of ERK mRNA were decreased in the group F(added with PD98059)(P<0.05).Conclusions Exogenous PAI-1 may promote the proliferation of ASMCs through ERK pathway.

plasminogen activator inhibitor-1;extracellular regulated protein kinase;airway smooth muscle cells;asthma

R562.25

A

10.3969/j.issn.1005-8982.2017.26.004

1005-8982(2017)26-0018-07

2016-03-14

朱述陽,E-mail:jiechenz356@sohu.com

(童穎丹 編輯)

猜你喜歡
增殖率平滑肌磷酸化
子宮脂肪平滑肌瘤的發(fā)病機(jī)制及診斷治療研究進(jìn)展
T69E模擬磷酸化修飾對Bcl-2與Nur77相互作用的影響
GDM孕婦網(wǎng)膜脂肪組織中Chemerin的表達(dá)與IRS-1及其酪氨酸磷酸化分析
螺旋CT對上消化道平滑肌瘤的診斷價(jià)值
原發(fā)性腎上腺平滑肌肉瘤1例
提高室內(nèi)精養(yǎng)褶皺臂尾輪蟲增殖率的技術(shù)要點(diǎn)
手術(shù)創(chuàng)傷對在體口腔黏膜細(xì)胞狀態(tài)的影響研究
磷酸化肽富集新方法研究進(jìn)展
特殊類型子宮肌瘤的臨床與病理分析
MAPK抑制因子對HSC中Smad2/3磷酸化及Smad4核轉(zhuǎn)位的影響
江北区| 曲沃县| 灵璧县| 连云港市| 遵化市| 泾川县| 昌乐县| 兴海县| 重庆市| 东海县| 台北县| 海门市| 剑阁县| 定州市| 喀喇沁旗| 抚州市| 通城县| 五华县| 大埔县| 蒲江县| 梓潼县| 溆浦县| 胶南市| 钟祥市| 建始县| 九江市| 商都县| 五指山市| 苏尼特右旗| 富川| 岳阳县| 河津市| 广丰县| 西安市| 兴山县| 屯昌县| 吉木乃县| 嘉善县| 饶河县| 张家港市| 临江市|