劉晨,郭佳,趙敏,鐘斌,郭華,侯淑貞,徐煒杰,楊蕓,王任遠(yuǎn),葉正錢(qián),柳丹*1
毛竹幼苗與伴礦景天間作對(duì)銅鎘鋅轉(zhuǎn)運(yùn)積累的影響
劉晨1,2,郭佳3,趙敏4,鐘斌1,2,郭華1,2,侯淑貞1,2,徐煒杰1,2,楊蕓1,2,王任遠(yuǎn)1,2,葉正錢(qián)2,柳丹1,2*1
(1.浙江農(nóng)林大學(xué),亞熱帶森林培育國(guó)家重點(diǎn)實(shí)驗(yàn)室,杭州311300;2.浙江農(nóng)林大學(xué)環(huán)境與資源學(xué)院,浙江省土壤污染生物修復(fù)重點(diǎn)實(shí)驗(yàn)室,
杭州311300;3.浙江誠(chéng)邦園林股份有限公司,杭州310000;4.溫嶺市環(huán)境保護(hù)局,浙江溫嶺317500)
通過(guò)毛竹幼苗與伴礦景天間作在2 mm和5 mm土壤的盆栽試驗(yàn),探究間作對(duì)毛竹幼苗與伴礦景天生長(zhǎng)狀況的影響,并對(duì)重金屬遷移轉(zhuǎn)運(yùn)能力和其在不同部位的分布特征進(jìn)行研究。結(jié)果表明:間作更適合在疏松土壤上進(jìn)行;間作明顯降低了毛竹幼苗與伴礦景天的生物量,其中,在2 mm土壤中間作的伴礦景天地下部生物量下降了85.9%,在5 mm土壤中間作的毛竹幼苗莖、葉生物量顯著下降了75.5%和64.3%;間作減弱了毛竹幼苗根部對(duì)重金屬的吸收轉(zhuǎn)運(yùn)能力,使伴礦景天根部Zn與Cd的轉(zhuǎn)運(yùn)能力形成競(jìng)爭(zhēng),但有效促進(jìn)了毛竹幼苗與伴礦景天體內(nèi)重金屬由根向地上部的運(yùn)輸;間作能夠增加伴礦景天Cd和Zn的積累量,降低毛竹幼苗體內(nèi)Cu、Cd和Zn的積累量。可見(jiàn),毛竹幼苗與伴礦景天間作對(duì)Cu、Cd和Zn的轉(zhuǎn)運(yùn)積累起到了一定的促進(jìn)作用,但也在一定程度上抑制了植株生長(zhǎng)。
重金屬;毛竹;伴礦景天;間作;土壤修復(fù)
近年來(lái),國(guó)內(nèi)外學(xué)者展開(kāi)了一系列關(guān)于強(qiáng)化植物修復(fù)重金屬污染土壤的研究,采用的措施主要有螯合劑、微生物、基因工程改良和農(nóng)藝管理等[1-2]。從操作的簡(jiǎn)便性和環(huán)境友好型考慮,農(nóng)藝管理調(diào)控是更為適合并可大力推廣的一項(xiàng)強(qiáng)化措施。其中,間作是農(nóng)藝管理調(diào)控中一種典型的植物修復(fù)措施。王吉秀等[3]研究發(fā)現(xiàn),玉米和不同蔬菜間套模式是抑制作物可食部分吸收累積重金屬鉛(Pb)、銅(Cu)、鎘(Cd)含量的有效措施。而且,不同的植物間作對(duì)重金屬的吸收作用不盡相同。趙冰等[4]發(fā)現(xiàn),間作處理的小麥地上部重金屬濃度是單作處理的1.1~1.9倍。蔡麗等[5]通過(guò)在茶園間作樟樹(shù)發(fā)現(xiàn),茶園土壤重金屬元素含量明顯降低,但茶葉新梢中重金屬元素含量增加。徐健程等[6]研究發(fā)現(xiàn):在不同的Cu質(zhì)量分?jǐn)?shù)處理下,間作玉米地上部Cu含量均顯著低于單作,其中降幅最大的為100 mg/kg Cu處理,降幅為49.4%;而間作玉米地下部Cu含量均顯著高于單作,其中增幅最大的為100 mg/kg Cu處理,增幅為105.4%。因此,對(duì)間作植物的篩選一定要慎重,需盡可能地做到在保證產(chǎn)量的同時(shí)降低需求部位重金屬毒性或增加積累植物的重金屬含量。
毛竹具有極強(qiáng)的環(huán)境適應(yīng)性,其無(wú)性系種群具有強(qiáng)烈的生理整合能力,能夠集群抵御不良環(huán)境的影響;毛竹適宜生長(zhǎng)在疏松、肥沃、濕潤(rùn)、板巖或頁(yè)巖發(fā)育的黃紅壤上,其最適pH為4.5~7.0,同時(shí)具有一定的耐鹽堿性和修復(fù)重金屬污染土壤的能力[7-11]。因此,本文通過(guò)毛竹幼苗與鋅(Zn)、鎘(Cd)超富集植物伴礦景天間作的盆栽試驗(yàn),研究間作對(duì)2種植物生長(zhǎng)和轉(zhuǎn)運(yùn)積累重金屬的影響及重金屬在植株不同部位的分布特征,為Cu、Cd和Zn復(fù)合重金屬污染農(nóng)田土壤的修復(fù)和治理提供理論依據(jù)。
1.1 供試土壤與植物
供試土壤采自浙江省杭州市富陽(yáng)區(qū)某鍍鋅廠(chǎng)附近農(nóng)田。采集0~20 cm表層土壤,風(fēng)干后過(guò)篩以備用。其基本理化性質(zhì)見(jiàn)表1。供試植株:伴礦景天采自浙江省杭州市富陽(yáng)區(qū)某鍍鋅廠(chǎng)附近農(nóng)田,移至溫室培育繁殖,選長(zhǎng)勢(shì)良好的植株備用;毛竹幼苗是在浙江農(nóng)林大學(xué)購(gòu)買(mǎi)種子后以水培的方式培養(yǎng),待長(zhǎng)出4片葉子后選根系發(fā)達(dá)的幼苗備用。
表1 供試土壤基本理化性質(zhì)Table 1 Physicochemical properties of tested soil
1.2 試驗(yàn)設(shè)計(jì)與處理
盆栽試驗(yàn)于2016年6月在浙江農(nóng)林大學(xué)玻璃溫室大棚內(nèi)進(jìn)行,把土壤分成2 mm和5 mm 2組風(fēng)干土,每組3個(gè)處理,共6個(gè)處理組(表2),每個(gè)處理組4次重復(fù),總計(jì)24個(gè)處理,隨機(jī)分布。每盆裝4 kg土,以呈對(duì)角線(xiàn)的方式移栽4株植物,且間作保持同種植物在一條對(duì)角線(xiàn)上。生長(zhǎng)3個(gè)月后采樣分析。
表2 盆栽試驗(yàn)處理Table 2 Pot experiment treatment
1.3 樣品處理與元素分析
植株收獲后,先用20 mmol/L乙二銨四乙酸二鈉(EDTA-2Na)溶液交換20 min,去除根表面吸附的重金屬,然后用自來(lái)水和蒸餾水分別洗3次,將毛竹分為根、莖和葉,伴礦景天分為地上部和地下部,裝入牛皮紙信封內(nèi),分別測(cè)定鮮質(zhì)量;再于105℃下殺青30 min,然后在65℃下烘干72 h至恒量,測(cè)定干物質(zhì)量;最后用不銹鋼粉碎機(jī)將植物樣磨細(xì),過(guò)0.1 mm尼龍篩,供分析測(cè)定用。稱(chēng)取0.15 g樣品,以濃硝酸與少量過(guò)氧化氫進(jìn)行消煮,消煮液用5%硝酸溶液定容至25 mL,過(guò)濾,濾液用電感耦合等離子體發(fā)射光譜法(ICP-OES)測(cè)定重金屬含量。所有藥品及試劑均為優(yōu)級(jí)純或基準(zhǔn)試劑。
土壤經(jīng)風(fēng)干后,過(guò)2 mm篩,取5 g放入100 mL離心管中,用pH 7.3的0.005 mol/L二乙烯三胺五乙酸(DTPA)+0.01 mol/L CaCl2+0.1 mol/L三乙醇胺(TEA)浸提劑浸提,在(25±2)℃條件下振蕩2 h(180 r/min),離心后過(guò)濾,重金屬含量測(cè)定同上。
1.4 數(shù)據(jù)分析
轉(zhuǎn)移系數(shù)TFA-B=B中重金屬含量/A中重金屬含量[12]。
數(shù)據(jù)分析采用Excel 2013和SPSS 21.0軟件,作圖采用SigmaPlot 12.5軟件。采用方差分析和最小顯著差異法(LSD)對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,差異顯著性水平為p<0.05。
2.1 間作對(duì)毛竹幼苗與伴礦景天生長(zhǎng)狀況的影響
由圖1可見(jiàn),間作導(dǎo)致毛竹幼苗與伴礦景天二者的生物量明顯下降,其中伴礦景天在2 mm土壤上間作(J2)處理的地下部生物量降幅最大,為85.9%,毛竹在5 mm土壤上間作(J5)處理的地上部莖、葉生物量也顯著下降了75.5%和64.3%(p<0.05)。這表明毛竹在幼苗期會(huì)與伴礦景天爭(zhēng)奪養(yǎng)分,因此在這一時(shí)期間作不利于毛竹與伴礦景天生長(zhǎng)。毛竹的J2組生物量無(wú)顯著變化,而J5組生物量則顯著降低;伴礦景天的2組生物量均呈現(xiàn)顯著的下降趨勢(shì)(p<0.05)。試驗(yàn)還發(fā)現(xiàn),植株在2 mm土壤中生長(zhǎng)更容易爛根枯萎,且土壤板結(jié)嚴(yán)重??傮w上,毛竹比伴礦景天更適合在惡劣土壤環(huán)境中生長(zhǎng),但是在毛竹幼苗期選擇伴礦景天進(jìn)行間作不太適宜。
圖1 間作對(duì)毛竹和伴礦景天生物量的影響Fig.1 Effect of intercropping of moso bamboo and S.plumbizincicola on their biomass
2.2 間作對(duì)土壤-植物體系中重金屬轉(zhuǎn)移能力的影響
重金屬在土壤-植物體系的轉(zhuǎn)移基本遵循土壤→地下部→地上部或者土壤→根→莖→葉的順序[12-13]。重金屬在土壤-植物體系相鄰部位之間的轉(zhuǎn)移是其從土壤向上部轉(zhuǎn)運(yùn)過(guò)程中的組成環(huán)節(jié),每個(gè)環(huán)節(jié)的轉(zhuǎn)運(yùn)能力都會(huì)影響植物中Cu、Cd和Zn的富集。在不同處理下Cu、Cd和Zn在土壤-植物體系中各個(gè)環(huán)節(jié)的轉(zhuǎn)移系數(shù)分別如表3、表4所示。
由表3可知:伴礦景天地下部吸收Z(yǔ)n的能力最強(qiáng),Cd次之;而伴礦景天由地下部至地上部對(duì)Cd的輸運(yùn)能力最強(qiáng),Zn次之。伴礦景天的土壤—地下部轉(zhuǎn)移系數(shù)是地下部—地上部轉(zhuǎn)移系數(shù)的幾十倍甚至上百倍,說(shuō)明伴礦景天吸收Z(yǔ)n和Cd的能力較強(qiáng),但向上運(yùn)輸?shù)哪芰ι燥@不足。對(duì)土壤—地下部與土壤—地上部的轉(zhuǎn)移系數(shù)比較可知:Cu與Zn向地下部的根轉(zhuǎn)運(yùn)能力更強(qiáng);而Cd一般向地上部轉(zhuǎn)運(yùn),但是在板結(jié)土壤中,其轉(zhuǎn)運(yùn)能力會(huì)受到一定的限制。與單作相比,間作毛竹使Cu由土壤—地下部的轉(zhuǎn)移系數(shù)均有所減小,Cd則表現(xiàn)為在2 mm土壤中增加,在5 mm土壤中減??;Zn與Cd完全相反,在2 mm土壤中降低了37%,在5 mm土壤中增加了26%。但是間作增強(qiáng)了重金屬在伴礦景天中向上運(yùn)輸?shù)哪芰Γ渲蠮5組的Cd轉(zhuǎn)移系數(shù)達(dá)到2.14,是單作的1.5倍。這說(shuō)明在Cu、Cd和Zn復(fù)合重金屬污染土壤中,間作使Cd和Zn在伴礦景天地下部相互作用,進(jìn)而影響了轉(zhuǎn)運(yùn)重金屬的能力,從而對(duì)地上部轉(zhuǎn)運(yùn)具有一定的促進(jìn)作用。
由表4可知:與毛竹單作相比,在5 mm土壤中間作(J5)的Cu、在2 mm土壤中間作(J2)的Cd和Zn的轉(zhuǎn)移系數(shù)(土壤—根)下降,分別降低26.9%、16.9%和33.9%;間作對(duì)Cu及J2處理的Cd和Zn的根—莖、莖—葉、土壤—莖、土壤—葉及土壤—莖和葉的轉(zhuǎn)移系數(shù)均有所增加(J2組Zn從莖—葉的轉(zhuǎn)移系數(shù)除外),而J5處理的Cd和Zn在根—莖、莖—葉、土壤—莖、土壤—葉及土壤—莖和葉的轉(zhuǎn)移系數(shù)均有所減少(J5組Zn從莖—葉的轉(zhuǎn)移系數(shù)除外)。上述結(jié)果表明,間作對(duì)毛竹根吸收重金屬量與土壤—根的轉(zhuǎn)運(yùn)系數(shù)呈正相關(guān),但是在向上轉(zhuǎn)移重金屬過(guò)程中轉(zhuǎn)移系數(shù)會(huì)隨著該重金屬積累部位的不同而產(chǎn)生變化。
表3 Cu、Cd和Zn在土壤-伴礦景天體系中的轉(zhuǎn)移系數(shù)Table 3 Transfer factors of Cu,Cd and Zn in soil-S.plumbizincicola system
表4 Cu、Cd和Zn在土壤-毛竹體系中的轉(zhuǎn)移系數(shù)Table 4 Transfer factors of Cu,Cd and Zn in soil-moso bamboo system
2.3 間作對(duì)毛竹幼苗與伴礦景天重金屬積累的影響
毛竹與伴礦景天各部位的重金屬積累量如圖2所示:不同重金屬在植物體內(nèi)積累量不同,不同植物對(duì)重金屬的吸收、積累也不同,其中伴礦景天的Zn積累量最高;同一重金屬在同一植株不同部位的積累量不同。在2 mm板結(jié)土壤中,毛竹與伴礦景天各自單作比間作對(duì)重金屬的積累量高,且重金屬大多集中于根部,其中伴礦景天地下部的Cu和Zn濃度是間作的1.7和1.6倍,毛竹根部Zn和Cd濃度也在1.2~1.5倍之間。在5 mm疏松土壤中,間作降低了毛竹各部位對(duì)Cu、Cd和Zn的積累,同時(shí)使伴礦景天對(duì)重金屬積累量顯著增加;除Cu外,Cd在伴礦景天地上部的積累量相比單作增加了57%,Zn在伴礦景天地上部和地下部都有所增加,與單作相比分別增加了38%和82%。這表明間作更適合在5 mm疏松土壤環(huán)境中作用于毛竹與伴礦景天,從而增加伴礦景天的重金屬積累能力,減弱毛竹體內(nèi)重金屬的毒性。
由圖2可知,除在2 mm土壤上單作伴礦景天(B2)和在2 mm土壤上間作伴礦景天和毛竹(J2)外,Cu在毛竹與伴礦景天的根部積累量最高,間作使其積累量均有所減少,毛竹尤其是根部積累量顯著下降,伴礦景天變化不顯著。Cd積累在毛竹根和莖中,間作使其積累量呈現(xiàn)下降趨勢(shì);在伴礦景天中Cd主要積累在地上部,間作對(duì)地下部積累量無(wú)影響而使地上部積累量高達(dá)30 mg/kg。毛竹的Zn積累量表現(xiàn)為莖>根>葉,伴礦景天的Zn積累量則是地下部>地上部,而且Zn在伴礦景天的積累量遠(yuǎn)遠(yuǎn)大于毛竹。間作對(duì)于Zn積累量的作用表現(xiàn)為,毛竹各部分積累量都在下降,伴礦景天則完全相反。
本研究結(jié)果表明,5 mm土壤更有利于毛竹幼苗與伴礦景天間作,從而增加伴礦景天的Cd和Zn的積累量,削弱毛竹體內(nèi)Cu、Cd和Zn的積累量,但是毛竹和伴礦景天的生物量都因間作而有所下降,出現(xiàn)爛根、枯萎甚至死亡。同時(shí),間作促進(jìn)了伴礦景天根部重金屬向上轉(zhuǎn)移,也造成了根部Cd和Zn吸收轉(zhuǎn)運(yùn)的競(jìng)爭(zhēng)關(guān)系;間作導(dǎo)致了毛竹根部的重金屬轉(zhuǎn)運(yùn)能力降低,在向上轉(zhuǎn)運(yùn)重金屬時(shí)也因積累部位不同而受到影響。已有研究表明,毛竹在快速生長(zhǎng)過(guò)程中由于營(yíng)養(yǎng)消耗大,容易造成土壤養(yǎng)分匱乏[14]。因此,本試驗(yàn)中毛竹與伴礦景天生長(zhǎng)出現(xiàn)異常,甚至影響重金屬的轉(zhuǎn)運(yùn),很有可能是因?yàn)槊襁€處于幼生期,需要的養(yǎng)分不是供試土壤所能提供的,也有可能是因?yàn)橹亟饘僭诟课辙D(zhuǎn)運(yùn)過(guò)程中存在著競(jìng)爭(zhēng)關(guān)系。本試驗(yàn)伴礦景天根部對(duì)Zn和Cd的吸收轉(zhuǎn)運(yùn)呈現(xiàn)出對(duì)立關(guān)系,相互競(jìng)爭(zhēng),而且伴礦景天根部也與毛竹根部吸收轉(zhuǎn)運(yùn)呈現(xiàn)對(duì)立關(guān)系,從而導(dǎo)致根部重金屬毒性增強(qiáng)。這有待進(jìn)一步的試驗(yàn)解釋毛竹與伴礦景天間作的根系作用機(jī)制。在玉米與小花南芥間作中,小花南芥與單作相比,其地下部和地上部Pb的轉(zhuǎn)運(yùn)系數(shù)增加了22%,玉米則差異不顯著[15]。在蠶豆與小花南芥間作[16]中,間作對(duì)小花南芥從土壤轉(zhuǎn)移Cd和Pb的能力均高于蠶豆,但是無(wú)論間作還是單作二者對(duì)重金屬由根向上運(yùn)輸?shù)哪芰鶡o(wú)顯著變化。本試驗(yàn)伴礦景天Cd由根向上的轉(zhuǎn)移系數(shù)最高達(dá)到2.14,是單作的1.5倍;而毛竹地上部則因不同重金屬積累不同而呈現(xiàn)差異。這說(shuō)明2種植物間作會(huì)相互影響各自對(duì)重金屬的吸收轉(zhuǎn)運(yùn)[17]。
圖2 伴礦景天和毛竹的重金屬積累量Fig.2 Accumulation of heavy metals in moso bamboo and S.plumbizincicola
間作體系能充分挖掘光能、水源、熱量等自然資源[18],同時(shí),2種或多種植物通過(guò)種間互作或種間競(jìng)爭(zhēng),活化土壤進(jìn)而提高植物富集重金屬的能力[19]。李凝玉等[20]研究了不同作物與玉米間作對(duì)玉米吸收積累鎘的影響,結(jié)果表明,籽粒莧在自身大量累積Cd的同時(shí),在一定程度上抑制了與其間作的玉米的Cd積累量。本試驗(yàn)結(jié)果與其類(lèi)似,可能是由于間作植物對(duì)重金屬吸收具有不同的交互作用。有試驗(yàn)表明,間作植物之間的交互作用不止這一類(lèi)。王京文等[21]用伴礦景天與絲瓜間作,發(fā)現(xiàn)二者都具有去除Cd的能力,且重污染土壤中的景天和絲瓜對(duì)土壤Cd的移除能力大于低污染土壤種植的景天和絲瓜,可能是因?yàn)閼?yīng)用的工程菌吸附并鈍化了土壤有效態(tài)Cd,添加的鈣鎂磷肥使土壤有效態(tài)Cd含量減少了50%,從而降低了其有效態(tài)Cd。還有研究[22]發(fā)現(xiàn),在土壤Cd含量為10.37~20.37 mg/kg范圍內(nèi),間作種植使苜蓿地上部Cd含量較單作降低2.8%~48.3%,印度芥菜地上部Cd含量也較單作降低了1.1%~48.6%,原因可能是在Cd脅迫下印度芥菜和苜蓿間作能夠產(chǎn)生某類(lèi)有機(jī)酸,抑制了植物根系對(duì)Cd的吸收,降低了植物體內(nèi)的Cd含量[23]。
在本試驗(yàn)中,間作促進(jìn)伴礦景天吸收重金屬,抑制毛竹對(duì)重金屬的吸收,很可能是因?yàn)楦捣置诘哪撤N有機(jī)酸的相互作用[15,24],影響了毛竹對(duì)重金屬的吸收,而毛竹根部的轉(zhuǎn)移系數(shù)下降恰好說(shuō)明了這一點(diǎn),但具體的間作根系環(huán)境的作用機(jī)制有待進(jìn)一步研究。本研究結(jié)果表明,毛竹幼苗與伴礦景天間作可以修復(fù)重金屬污染土壤,但是不利于植物的生長(zhǎng),甚至存活。因而,毛竹與伴礦景天間作是否合適,還需要進(jìn)一步研究成長(zhǎng)為喬木的毛竹與伴礦景天間作對(duì)重金屬吸收轉(zhuǎn)運(yùn)及積累的影響。
4.1 間作更適合在疏松土壤上進(jìn)行。在本試驗(yàn)土壤條件下,間作明顯降低了毛竹幼苗與伴礦景天的生物量。其中,在2 mm土壤中間作的伴礦景天地下部生物量下降了85.9%,在5 mm土壤中間作的毛竹幼苗莖、葉生物量顯著下降了75.5%和64.3%。
4.2 間作促進(jìn)了重金屬?gòu)陌榈V景天根部向地上部的轉(zhuǎn)移,也造成了根部Cd和Zn吸收轉(zhuǎn)運(yùn)的競(jìng)爭(zhēng)關(guān)系;間作導(dǎo)致了毛竹根部的重金屬轉(zhuǎn)運(yùn)能力降低,在向上轉(zhuǎn)運(yùn)重金屬時(shí)也因積累部位不同而受到影響。
4.3 間作能夠增加伴礦景天的Cd和Zn積累量,其中Cd的積累量表現(xiàn)為地上部>地下部,Zn則相反,同時(shí),間作可降低毛竹體內(nèi)Cu、Cd和Zn的積累量。
[1] 熊璇,唐浩,黃沈發(fā),等.重金屬污染土壤植物修復(fù)強(qiáng)化技術(shù)研究進(jìn)展.環(huán)境科學(xué)與技術(shù),2012,35(6I):185-193.XIONG X,TANG H,HUANG S F,et al.Review in strengthening technology for phytoremediation of soil contaminated by heavy metals.Environmental Science&Technology,2012,35(6I):185-193.(in Chinese with English abstract)
[2] SARWAR N,IMRAN M,SHAHEEN M R,et al.Phytoremediation strategies for soils contaminated with heavy metals:Modifications and future perspectives.Chemosphere,2017,171:710-721.
[3] 王吉秀,祖艷群,李元,等.玉米和不同蔬菜間套模式對(duì)重金屬Pb、Cu、Cd累積的影響研究.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2011,30(11):2168-2173.WANG J X,ZU Y Q,LI Y,et al.Effects of maize and vegetable intercropping system on accumulation of Pb,Cu and Cd in plants.Journal of Agro-Environment Science,2011,30(11):2168-2173.(in Chinese with English abstract)
[4] 趙冰,沈麗波,程苗苗,等.麥季間作伴礦景天對(duì)不同土壤小麥-水稻生長(zhǎng)及鋅鎘吸收性的影響.應(yīng)用生態(tài)學(xué)報(bào),2011,22(10):2725-2731.ZHAO B,SHEN L B,CHENG M M,et al.Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types.Chinese Journal of Applied Ecology,2011,22(10):2725-2731.(in Chinese with English abstract)
[5] 蔡麗,夏麗飛,陳枚,等.樟茶間作對(duì)土壤養(yǎng)分及重金屬含量的影響研究.茶葉科學(xué)技術(shù),2013(2):9-12.CAI L,XIA L F,CHEN M,et al.Effect of tea and camphor tree intercropping on soil nutrients and heavy metals.Tea Science and Technology,2013(2):9-12.(in Chinese with English abstract)
[6] 徐健程,王曉維,聶亞平,等.不同銅濃度下玉米間作豌豆對(duì)土壤銅的吸收效應(yīng)研究.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2015,34(8):1508-1514.XU J C,WANG X W,NIE Y P,et al.Effect of maize-pea intercropping on crop copper accumulation under different copper concentrations.Journal of Agro-Environment Science,2015,34(8):1508-1514.(in Chinese with English abstract)
[7] 鄒躍國(guó).毛竹林種群結(jié)構(gòu)特征變化的海拔效應(yīng)研究.竹子研究匯刊,2012,31(4):17-21.ZOU Y G.Influence of altitude on population structure characteristic of moso bamboo forest.Journal of Bamboo Research,2012,31(4):17-21.(in Chinese with English abstract)
[8] CHEN J,SHFAI M,WANG Y,et al.Organic acid compounds in root exudation of moso bamboo(Phyllostachys pubescens)and its bioactivity as affected by heavy metals.Environmental Science and Pollution Research,2016,23(20):20977-20984.
[9] LI S,CHEN J R,ISLAM E,et al.Cadmium-induced oxidative stress,response of antioxidants and detection of intracellular cadmium in organs of moso bamboo(Phyllostachys pubescens)seedlings.Chemosphere,2016,153:107-114.
[10]孟昱,張鋼,李雪平,等.NaCl脅迫對(duì)毛竹葉片的電阻抗圖譜參數(shù)及膜透性的影響.武漢植物學(xué)研究,2010,28(3):341-346.MENG Y,ZHANG G,LI X P,et al.Effect of NaCl stress on electrical impedance spectroscopy parameters and membrane permeability of moso bamboo(phyllostachys edulis)seedling leaves.Journal of Wuhan Botanical Research,2010,28(3):341-346.(in Chinese with English abstract)
[11]陳俊任,柳丹,吳家森,等.我國(guó)典型植物修復(fù)材料研究及毛竹修復(fù)應(yīng)用可行性分析.竹子研究匯刊,2015,34(2):61-66.CHEN J R,LIU D,WU J S,et al.The research of typical materials for phytoremedication and the application feasibility of Phyllostachys heterocycla cv.pubescens.Journal of Bamboo Research,2015,34(2):61-66.(in Chinese with English abstract)
[12]唐守寅,董海霞,趙明柳,等.羥基磷灰石對(duì)鉛、鎘在土壤-水稻體系中吸收和轉(zhuǎn)移的影響.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(2):266-273.TANG S Y,DONG H X,ZHAO M L,et al.Effects of hydroxyapatite on absorption and transfer of Pb and Cd in soil-rice system.Journal of Agro-Environment Science,2016,35(2):266-273.(in Chinese with English abstract)
[13] 潘瑞熾.植物生理學(xué).4版.北京:高等教育出版社,2001:49.PAN R Z.Phytophysiology.4th ed.Beijing:Higher Education Press,2001:49.(in Chinese)
[14]彭丹莉,柳丹,晏聞博,等.基于豐產(chǎn)目的下毛竹生長(zhǎng)調(diào)控技術(shù)研究進(jìn)展.浙江林業(yè)科技,2015,35(1):85-89.PENG D L,LIU D,YAN W B,et al.Research progress of highyield techniques for Phyllostachys heterocycla cv.pubescens stand.Journal of Zhejiang Forestry Science and Technology,2015,35(1):85-89.(in Chinese with English abstract)
[15]王吉秀,湛方棟,李元,等.鉛脅迫下小花南芥與玉米間作對(duì)根系分泌物有機(jī)酸的影響.中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào),2016,24(3):365-372.WANG J X,ZHAN F D,LI Y,et al.Effects of Arabisalpina L.var.parviflora Franch and Zea mays L.intercropping system on rootexudated organic acids under lead stress.Chinese Journal of Eco-Agriculture,2016,24(3):365-372.(in Chinese with English abstract)
[16]陳興,郭先華,祖艷群,等.蠶豆與小花南芥間作體系中Cd、Pb在植物中的累積特征.云南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)),2016,31(1):167-172.CHEN X,GUO X H,ZU Y Q,et al.Accumulation characteristics of Cd and Pb in broad bean/Arabis alpina intercropping system.Journal of Yunnan Agricultural University(Natural Science),2016,31(1):167-172.(in Chinese with English abstract)
[17]何彩甄,王建煌,裴婕,等.少花龍葵與蘆薈間種對(duì)鎘脅迫的效應(yīng).安徽農(nóng)業(yè)科學(xué),2015,43(10):96-100.HE C Z,WANG J H,PEI J,et al.Cadmium stress effects on S.photeinocarpum Nakamura intercropping with Aloe Vera.Journal of Anhui Agricultural Sciences,2015,43(10):96-100.(in Chinese with English abstract)
[18]衛(wèi)澤斌,郭曉方,丘錦榮,等.間套作體系在污染土壤修復(fù)中的應(yīng)用研究進(jìn)展.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2010,29(增刊1):267-272.WEI Z B,GUO X F,QIU J R,et al.Innovative technologies for soil remediation:Intercropping or co-cropping.Journal of Agro-Environment Science,2010,29(Suppl.1):267-272.(in Chinese with English abstract)
[19]劉領(lǐng).種間根際相互作用下植物對(duì)土壤重金屬污染的響應(yīng)特征及其機(jī)理研究.杭州:浙江大學(xué),2011.LIU L.Responses of plant to soil contaminated with heavy metal under interspecific rhizosphere interactions and its mechanisms.Hangzhou:Zhejiang University,2011.(in Chinese with English abstract)
[20]李凝玉,李志安,丁永禎,等.不同作物與玉米間作對(duì)玉米吸收積累鎘的影響.應(yīng)用生態(tài)學(xué)報(bào),2008,19(6):1369-1373.LI N Y,LI Z A,DING Y Z,et al.Effects of intercropping different crops with maize on the Cd uptake by maize.Chinese Journal of Applied Ecology,2008,19(6):1369-1373.(in Chinese with English abstract)
[21]王京文,蔡梅,鄭潔敏,等.絲瓜與伴礦景天間作對(duì)土壤Cd形態(tài)及絲瓜Cd吸收的影響.農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào),2016,35(12):2292-2298.WANG J W,CAI M,ZHENG J M,et al.Investigating the intercropping effects of Sedum plumbizincicola and Luffa cylindrical on soil cadmium fractions and cadmium uptake by Luffa cylindrical.Journal of Agro-Environment Science,2016,35(12):2292-2298.(in Chinese with English abstract)
[22]李新博,謝建治,李博文,等.印度芥菜苜蓿間作對(duì)鎘脅迫的生態(tài)響應(yīng).應(yīng)用生態(tài)學(xué)報(bào),2009,20(7):1711-1715.LI X B,XIE J Z,LI B W,et al.Ecological responses of Brassica juncea-alfalfa intercropping to cadmium stress.Chinese Journal of Applied Ecology,2009,20(7):1711-1715.(in Chinese with English abstract)
[23]陳英旭,林琦,陸芳,等.有機(jī)酸對(duì)鉛、鎘植株危害的解毒作用研究.環(huán)境科學(xué)學(xué)報(bào),2000,20(4):467-472.CHEN Y X,LIN Q,LU F,et al.Study on detoxication of organic acid to raddish under the stress of Pb and Cd.Acta Scientiae Circumstantiae,2000,20(4):467-472.(in Chinese with English abstract)
[24]HUANG G R,GUO G G,YAO S R,et al.Organic acids,amino acids compositions in the root exudates and Cu-accumulation in castor(Ricinus communis L.)under Cu stress.International Journal of Phytoremediation,2016,18(1):33-40.
Effectsofmoso bamboo and Sedum plumbizincicola intercropping on transportand accumulation of Cu,Cd and Zn in soil-plant system.Journal of Zhejiang University(Agric.&Life Sci.),2017,43(5):615-622
LIU Chen1,2,GUO Jia3,ZHAO Min4,ZHONG Bin1,2,GUO Hua1,2,HOU Shuzhen1,2,XU Weijie1,2,YANG Yun1,2,WANG Renyuan1,2,YE Zhengqian2,LIU Dan1,2*
(1.State Key Laboratory of Subtropical Silviculture,Zhejiang A&F University,Hangzhou 311300,China;2.Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province,School of Environmental&Resource Sciences,Zhejiang A&F University,Hangzhou 311300,China;3.Zhejiang Chengbang Landscape Co.,Ltd.,Hangzhou 310000,China;4.Wenling Environmental Protection Bureau,Wenling 317500,Zhejiang,China)
heavy metal;moso bamboo;Sedum plumbizincicola;intercropping;soil remediation
X 131;X 53
A
10.3785/j.issn.1008-9209.2017.04.051
Summary Phytoremediation is a low-cost and eco-friendly technology by using plants to uptake and accumulate heavy metals from contaminated soils.Intercropping is a simple and feasible method of agricultural management which was applied here to increase plant production and facilitate the efficiency of phytoremediation.
A pot experiment based on an intercropping system of moso bamboo seedlings and Sedum plumbizincicola was conducted to investigate its influence on the growth of plants,transfer ability of heavy metals in the system of soil and plant,and the effect on accumulation of Cu,Cd and Zn in different parts of plant.
The results showed that the root biomass of S.plumbizincicola which was intercropped with moso bamboo in 2 mm soildecreased significantly,and the biomass of both stems and leaves of moso bamboo which was intercropped with S.plumbizincicola in 5 mm soil was also declined clearly compared with that of moso bamboo in 2 mm soil.Moreover,the biomass of moso bamboo seedlings and S.plumbizincicola was reduced as compared with those of CK(monocropping),which suggested that intercropping led to competition between moso bamboo seedlings and S.plumbizincicola.Intercropping resulted in the decline of heavy metal uptake for the roots of moso bamboo seedlings and the competition between Cd and Zn in the roots of S.plumbizincicola,while it improved both upward transport by roots,but there were differences in the process for different metals accumulated in different parts(stem or leaf)of moso bamboo seedlings.In addition,contrast to monocropping,Cu,Cd and Zn accumulation in any part of moso bamboo seedlings decreased distinctly,but Cd and Zn accumulation in the overground part of S.plumbizincicola increased by 57%and 82%in 5 mm soil.
國(guó)家自然科學(xué)基金(31670617);浙江省科技廳重點(diǎn)研發(fā)項(xiàng)目(2015C03020-2)。
柳丹(http://orcid.org/0000-0003-1102-6639),E-mail:liudan7812@aliyun.com
(First author):劉晨(http://orcid.org/0000-0003-2600-2357),E-mail:2029169646@qq.com
2017-04-05;接受日期(Accepted):2017-05-15
In sum,the intercropping system of moso bamboo and S.plumbizincicola shows the potential of upward transfer of heavy metals,and it also has positive impacts on Cu,Cd and Zn accumulation.