国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

CO2氣調(diào)脅迫下煙草甲谷胱甘肽S-轉(zhuǎn)移酶基因的表達(dá)分析

2017-11-14 09:46:36許抗抗丁天波嚴(yán)毅李燦楊文佳
關(guān)鍵詞:發(fā)育階段氣調(diào)低齡

許抗抗,丁天波,嚴(yán)毅,李燦,楊文佳*

(1.貴陽學(xué)院生物與環(huán)境工程學(xué)院/貴州省山地珍稀動(dòng)物與經(jīng)濟(jì)昆蟲重點(diǎn)實(shí)驗(yàn)室,貴陽550005;2.青島農(nóng)業(yè)大學(xué)植物醫(yī)學(xué)學(xué)院,山東青島266109)

CO2氣調(diào)脅迫下煙草甲谷胱甘肽S-轉(zhuǎn)移酶基因的表達(dá)分析

許抗抗1,丁天波2,嚴(yán)毅1,李燦1,楊文佳1*1

(1.貴陽學(xué)院生物與環(huán)境工程學(xué)院/貴州省山地珍稀動(dòng)物與經(jīng)濟(jì)昆蟲重點(diǎn)實(shí)驗(yàn)室,貴陽550005;2.青島農(nóng)業(yè)大學(xué)植物醫(yī)學(xué)學(xué)院,山東青島266109)

根據(jù)煙草甲(Lasioderma serricorne)轉(zhuǎn)錄組數(shù)據(jù)信息,克隆獲得3個(gè)谷胱甘肽S-轉(zhuǎn)移酶(glutathione S-transferases,GSTs)基因的cDNA全長(zhǎng)序列,同源性比對(duì)和系統(tǒng)進(jìn)化分析表明,這3個(gè)基因分別屬于GSTs基因Theta、Delta和 Sigma家族,分別命名為 LsGSTt1、LsGSTd1和 LsGSTs1(GenBank登錄號(hào):KY549655、KY549656和KY549657),并分析了其在煙草甲不同發(fā)育階段和CO2氣調(diào)脅迫后的表達(dá)特征,為研究煙草甲GSTs基因的生物學(xué)功能提供依據(jù)。實(shí)時(shí)熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(quantitative real-time polymerase chain reaction,qRT-PCR)結(jié)果顯示:煙草甲LsGSTt1、LsGSTd1和LsGSTs1基因在不同發(fā)育階段均有表達(dá),且在低齡幼蟲中表達(dá)量最高,顯著高于其他時(shí)期;經(jīng)LC10、LC30和LC503種CO2濃度處理低齡幼蟲6 h后,煙草甲LsGSTd1表達(dá)量相對(duì)于對(duì)照組無明顯變化,而LsGSTt1和LsGSTs1表達(dá)量顯著高于對(duì)照組,推測(cè)這2個(gè)基因可能主要參與了煙草甲對(duì)CO2氣調(diào)脅迫的應(yīng)激響應(yīng)。

谷胱甘肽S-轉(zhuǎn)移酶;煙草甲;基因克隆;表達(dá)模式

谷胱甘肽S-轉(zhuǎn)移酶(glutathione S-transferases,GSTs,EC 2.5.1.18)是一種多功能的超基因家族酶,廣泛存在于微生物、植物和動(dòng)物等生物體內(nèi)[1]。GSTs作為重要的次級(jí)代謝酶,其主要功能是降解內(nèi)源性和外源性有毒物質(zhì)[2]和保護(hù)細(xì)胞免受氧化損傷[3]。GSTs也會(huì)參與生物體內(nèi)其他生理途徑,例如細(xì)胞內(nèi)物質(zhì)的運(yùn)輸和儲(chǔ)存[1]、細(xì)胞信號(hào)通路的調(diào)節(jié)[4]以及嗅覺調(diào)控[5]等。根據(jù)其底物特異性、同源性和免疫反應(yīng),可將昆蟲GSTs分為7個(gè)家族,即Delta、Epsilon、Omega、Sigma、Theta和Zeta 6個(gè)已知家族及未知家族[6]。目前,已有多種昆蟲GSTs基因被克隆鑒定,研究發(fā)現(xiàn),它們?cè)跉⑾x劑抗性[7-8]、激素合成[9]和抗氧化應(yīng)激[10]過程中發(fā)揮著重要作用。

煙草甲[Lasioderma serricorne(Fabricius)],屬鞘翅目(Coleoptera)竊蠹科(Anobiidae),其寄主范圍廣泛,可危害煙草、糧食、茶葉、中藥材等多種儲(chǔ)藏物,是一種世界性分布的倉(cāng)儲(chǔ)害蟲[11]。煙草甲主要通過幼蟲潛居寄主體內(nèi)進(jìn)行蛀食,嚴(yán)重影響儲(chǔ)藏物的產(chǎn)量和品質(zhì),其發(fā)生危害具有較強(qiáng)的隱蔽性[12]。目前煙草甲的防治主要以化學(xué)藥劑熏蒸為主,不僅對(duì)食品安全和人類安全存在隱患,而且導(dǎo)致煙草甲對(duì)殺蟲劑產(chǎn)生了不同程度的抗藥性,因此,需要探索新的倉(cāng)儲(chǔ)害蟲防治策略[13]。CO2氣調(diào)技術(shù)具有安全、有效、無殘留等特點(diǎn),在倉(cāng)儲(chǔ)害蟲防治中應(yīng)用廣泛[14-15]。已有研究表明,CO2氣調(diào)處理可以有效控制煙草甲危害,但不同濃度CO2對(duì)煙草甲的毒理作用不同,其中高濃度CO2對(duì)煙草甲的控制效果更佳[16]。本課題組前期研究發(fā)現(xiàn),CO2氣調(diào)處理后煙草甲體內(nèi)GSTs酶活性顯著升高,推測(cè)GSTs在害蟲應(yīng)對(duì)氣調(diào)脅迫過程中起著重要作用[17]。目前有關(guān)GSTs參與CO2氣調(diào)脅迫應(yīng)激響應(yīng)的分子機(jī)制研究較少,因此,鑒定煙草甲GSTs基因并研究其與氣調(diào)脅迫之間的關(guān)系,對(duì)于防治倉(cāng)儲(chǔ)害蟲具有重要的理論和實(shí)踐意義。

本研究以轉(zhuǎn)錄組測(cè)序獲得的GSTs序列為基礎(chǔ),應(yīng)用反轉(zhuǎn)錄聚合酶鏈?zhǔn)椒磻?yīng)(reverse transcriptionpolymerase chain reaction,RT-PCR)技術(shù)克隆了煙草甲3條不同家族GSTs基因的cDNA全長(zhǎng)序列,并對(duì)這些基因的分子特性進(jìn)行了分析。利用實(shí)時(shí)熒光定量PCR技術(shù)分析了煙草甲體內(nèi)GSTs基因在不同發(fā)育階段和CO2氣調(diào)脅迫后的表達(dá)特性,為研究GSTs基因在煙草甲體內(nèi)的功能奠定基礎(chǔ),也為闡明昆蟲在氣調(diào)脅迫下的應(yīng)激機(jī)制提供科學(xué)依據(jù)。

1 材料與方法

1.1 供試蟲源

本研究所用煙草甲種群于2010年采自貴州省貴陽市,將其置于溫度(28±1)℃、相對(duì)濕度(75±5)%、光照14 h、黑暗10 h的人工氣候箱內(nèi),以中藥材當(dāng)歸(Angelica sinensis)為食料連續(xù)飼養(yǎng)繁殖40代以上。

1.2 總RNA提取與第1鏈cDNA合成

按照TRIzol試劑(Invitrogen公司,美國(guó))說明書提取煙草甲成蟲的總RNA,利用Nanodrop 2000核酸濃度測(cè)定儀(Thermo Scientific公司,美國(guó))和瓊脂糖凝膠電泳檢測(cè)總RNA的濃度和完整性。取1 μg總RNA,利用DNA酶(Promega公司,美國(guó))去除基因組DNA,并按照PrimeScript?RT試劑盒(大連寶生物工程有限公司)說明書合成第1鏈cDNA,稀釋2倍保存于-20℃冰箱備用。

1.3 基因克隆

從貴州省山地珍稀動(dòng)物與經(jīng)濟(jì)昆蟲重點(diǎn)實(shí)驗(yàn)室構(gòu)建的煙草甲轉(zhuǎn)錄組數(shù)據(jù)庫(kù)中獲得3個(gè)GSTs基因的cDNA序列,經(jīng)BLAST分析后,采用Primer 5.0軟件設(shè)計(jì)3對(duì)全長(zhǎng)驗(yàn)證引物(表1)進(jìn)行開放閱讀框的擴(kuò)增。PCR反應(yīng)體系為:10×PCR緩沖液2.5 μL,MgCl2(25 mmol/L)2.5 μL,dNTPs(2.5 mmol/L)2 μL,上下游引物(20 μmol/L)各1 μL,cDNA模板1.5 μL,Taq酶(5 U/μL)0.25 μL,加 ddH2O 補(bǔ)至總體積25 μL。反應(yīng)條件為:95℃預(yù)變性3 min,95℃變性30 s,55℃退火30 s,72℃延伸1 min,共35個(gè)循環(huán);最后72℃延伸10 min。擴(kuò)增產(chǎn)物用1%瓊脂糖凝膠電泳檢測(cè),按照膠回收試劑盒(Gel Extraction Mini Kit,Omega公司,美國(guó))說明書回收目的條帶,并連接至pGEM-T Easy載體(Promega公司,美國(guó)),再轉(zhuǎn)化到DH5α大腸桿菌感受態(tài)細(xì)胞中,經(jīng)藍(lán)白斑篩選和PCR鑒定,將陽性克隆送成都擎科梓熙生物技術(shù)有限公司進(jìn)行測(cè)序。

表1 本研究使用的引物Table 1 Primers used in this study

1.4 序列分析

采用DNAMAN 6.03(Lynnon Biosoft公司,美國(guó))對(duì)測(cè)序結(jié)果進(jìn)行編輯和分析,推導(dǎo)的氨基酸采用BLAST工具(http://www.ncbi.nlm.gov/BLAST/)進(jìn)行同源性比對(duì)分析。利用ProtParam(http://web.expasy.org/)和 NetNGlys 1.0 Server(http://www.cbs.dtu.dk/services/NetNGlyc/)分析編碼蛋白的理化性質(zhì)和N-糖基化位點(diǎn),并利用SMART程序(http://smart.emblheidelberg.de/)分析結(jié)構(gòu)域。利用MEGA 5.0軟件中的鄰接法(neighbor-joining)構(gòu)建系統(tǒng)進(jìn)化樹,各分支均進(jìn)行1 000次重復(fù)檢驗(yàn)[18]。

1.5 實(shí)時(shí)熒光定量PCR檢測(cè)

分別收集各個(gè)發(fā)育階段的煙草甲,包括低齡幼蟲、高齡幼蟲、蛹和成蟲,每個(gè)蟲態(tài)設(shè)置4個(gè)生物學(xué)重復(fù),每個(gè)重復(fù)40頭試蟲。參照本實(shí)驗(yàn)室CO2氣調(diào)處理方法[17],取煙草甲低齡幼蟲80頭放入培養(yǎng)盒,加入40 g當(dāng)歸作為飼料,加蓋密封,通過氣調(diào)混配器,用導(dǎo)管通入不同濃度的CO2氣體,待CO2濃度配比達(dá)到要求后停止通氣。將培養(yǎng)盒進(jìn)出氣口密封后放入人工氣候箱培養(yǎng)觀察,并統(tǒng)計(jì)不同濃度CO2處理后煙草甲的存活與死亡數(shù)。根據(jù)本課題組前期CO2氣調(diào)毒理測(cè)定結(jié)果[16],采用2個(gè)亞致死濃度LC10(30%CO2+70%空氣)和LC30(70%CO2+30%空氣),以及致死中濃度LC50(90%CO2+10%空氣)的CO2氣調(diào)處理試蟲,6 h后挑取存活的試蟲,以相同條件下的空氣處理作為對(duì)照,每組處理設(shè)置4個(gè)重復(fù)。按照1.2節(jié)方法分別提取所有樣品的總RNA并反轉(zhuǎn)錄合成cDNA用于實(shí)時(shí)熒光定量PCR。使用Primer 3.0軟件設(shè)計(jì)特異性表達(dá)引物,內(nèi)參基因采用煙草甲LsEF1α基因(GenBank登錄號(hào):KY549658),引物序列信息如表1。實(shí)時(shí)熒光定量PCR反應(yīng)體系(20 μL)為:GoTaq?qPCR Master Mix(Promega公司,美國(guó))10 μL、ddH2O 7 μL、cDNA模板1 μL和10 μmol/L上下游引物各1 μL。混勻后輕微離心,反應(yīng)在CFX96TM實(shí)時(shí)熒光定量PCR儀(Bio-Rad公司,美國(guó))中進(jìn)行,反應(yīng)條件為:95℃預(yù)變性5 min;然后95℃變性15 s,60℃退火30 s,72℃延伸30 s,共40個(gè)循環(huán);最后運(yùn)用熔解曲線保證反應(yīng)的特異性。根據(jù)2-ΔΔCT法計(jì)算LsGSTt1、LsGSTd1和LsGSTs1基因在煙草甲不同發(fā)育階段和不同濃度CO2氣調(diào)處理后的相對(duì)表達(dá)量[19]。

1.6 數(shù)據(jù)分析

煙草甲不同發(fā)育階段間及CO2氣調(diào)處理間mRNA表達(dá)差異采用單因素方差分析(ANOVA),平均數(shù)的多重比對(duì)采用鄧肯新復(fù)極差法(Duncan’s multiple range test,DMRT),顯著性水平為p<0.05,數(shù)據(jù)處理軟件采用SPSS 23.0。

2 結(jié)果與分析

2.1 LsGSTt1、LsGSTd1和LsGSTs1的克隆及序列分析

根據(jù)實(shí)驗(yàn)室前期獲得的煙草甲轉(zhuǎn)錄組數(shù)據(jù),利用RT-PCR擴(kuò)增獲得3個(gè)GSTs基因的cDNA全長(zhǎng)序列,通過同源性比對(duì)確定這3個(gè)基因分別屬于GSTs基因Theta、Delta和Sigma家族,分別命名為L(zhǎng)sGSTt1、LsGSTd1和 LsGSTs1(GenBank登 錄 號(hào) :KY549655、KY549656和KY549657)。LsGSTt1開放閱讀框?yàn)?64 bp,編碼187個(gè)氨基酸,預(yù)測(cè)蛋白質(zhì)分子質(zhì)量為22.4 kDa,理論等電點(diǎn)為8.54。根據(jù)NetNGlyc 1.0 Server分析結(jié)果,LsGSTt1可能存在2個(gè)N-糖基化位點(diǎn),分別為N106和N111。利用SMART程序搜索,發(fā)現(xiàn)LsGSTt1具有2個(gè)保守結(jié)構(gòu)域:N末端結(jié)構(gòu)域(第4~80位氨基酸)和C末端結(jié)構(gòu)域(第93~181位氨基酸)(圖1A)。LsGSTd1開放閱讀框?yàn)?51 bp,編碼216個(gè)氨基酸,預(yù)測(cè)蛋白質(zhì)分子質(zhì)量為24.5 kDa,理論等電點(diǎn)為5.95。LsGSTd1不存在糖基化位點(diǎn),其氨基酸序列第3~76位為保守的N末端結(jié)構(gòu)域,第90~207位為C末端結(jié)構(gòu)域(圖1B)。LsGSTs1開放閱讀框?yàn)?96 bp,編碼231個(gè)氨基酸,預(yù)測(cè)蛋白質(zhì)分子質(zhì)量為26.2 kDa,理論等電點(diǎn)為5.06。LsGSTs1不存在糖基化位點(diǎn),其氨基酸序列第32~101位為保守的N末端結(jié)構(gòu)域,第111~213位為C末端結(jié)構(gòu)域(圖1C)。

2.2 LsGSTt1、LsGSTd1和LsGSTs1的序列比對(duì)和系統(tǒng)進(jìn)化分析

將LsGSTt1、LsGSTd1和LsGSTs1編碼的氨基酸序列進(jìn)行BLAST比對(duì)。結(jié)果發(fā)現(xiàn):LsGSTt1與其他昆蟲Theta家族GSTs的同源性較高,其中與墓地甲蟲(Nicrophorus vespilloides)(XP_017784965)、赤擬谷盜(Tribolium castaneum)(XP_008196475)和黃粉蟲(Tenebrio molitor)(AIL23552)的相似性分別為62%、59%和58%;LsGSTd1與同為鞘翅目的圣甲蟲(Oryctes borbonicus)(KRT80357)Delta家族 GSTs的同源性最高,為81%;與赤擬谷盜(T.castaneum)(XP_974273)、黃粉蟲(T.molitor)(AIL23531)以及中歐山松大小蠹(Dendroctonus ponderosae)(XP_019755130)的相似性分別為79%、77%和70%;LsGSTs1與其他昆蟲Sigma家族GSTs的同源性較高,與墓地甲蟲(N.vespilloides)(XP_017775172)、白蠟窄吉?。ˋgrilus planipennis)(XP_018334284)和赤擬谷盜(T.castaneum)(XP_967475)的相似性分別為57%、56%和53%。

將上述所得的氨基酸序列與GenBank登錄的其他昆蟲(赤擬谷盜、黑腹果蠅和家蠶)的GSTs氨基酸序列進(jìn)行比對(duì),并利用MEGA 5.0中的鄰接法構(gòu)建系統(tǒng)進(jìn)化樹。結(jié)果(圖2)發(fā)現(xiàn),上述4種昆蟲GSTs可分為6 個(gè)家族(Delta、Epsilon、Omega、Sigma、Theta和Zeta),本文克隆獲得的煙草甲LsGSTt1、LsGSTd1和LsGSTs1基因分別屬于Theta、Delta和Sigma家族,且與同為鞘翅目的赤擬谷盜親緣關(guān)系最近。

圖1 煙草甲LsGSTs基因的cDNA序列及推導(dǎo)的氨基酸序列Fig.1 cDNA and deduced amino acid sequences of LsGSTs in Lasioderma serricorne

圖2 煙草甲和其他昆蟲GSTs的系統(tǒng)聚類分析Fig.2 Phylogenetic analysis of GSTs from Lasioderma serricorne and other insects

2.3 LsGSTt1、LsGSTd1和LsGSTs1在不同發(fā)育階段的表達(dá)

利用實(shí)時(shí)熒光定量PCR技術(shù)對(duì)3個(gè)GSTs基因在煙草甲不同發(fā)育階段的相對(duì)表達(dá)量進(jìn)行分析。結(jié)果(圖3)表明:LsGSTt1、LsGSTd1和LsGSTs1基因在煙草甲各個(gè)時(shí)期均有表達(dá),其中LsGSTt1 mRNA在低齡幼蟲、高齡幼蟲及蛹中的表達(dá)量分別是成蟲期的31.5、7.29和4.13倍,且在低齡幼蟲期的表達(dá)量顯著高于其他發(fā)育階段(p<0.05);LsGSTd1 mRNA在低齡幼蟲期的表達(dá)量分別是高齡幼蟲、蛹和成蟲的 1.93、2.99和 4.16倍,且差異顯著(p<0.05);LsGSTs1 mRNA在低齡幼蟲、高齡幼蟲及成蟲期的相對(duì)表達(dá)量顯著高于蛹期(p<0.05),蛹期的mRNA表達(dá)量分別為上述時(shí)期的15%、31%和64%。

圖3 煙草甲不同發(fā)育階段LsGSTs的相對(duì)表達(dá)量Fig.3 Relative expression levels of LsGSTs in different developmental stages of Lasioderma serricorne

2.4 不同濃度CO2對(duì)LsGSTt1、LsGSTd1和LsGSTs1基因表達(dá)的影響

采用LC10、LC302個(gè)亞致死濃度和致死中濃度LC50的CO2氣調(diào)脅迫處理煙草甲低齡幼蟲。結(jié)果(圖4)顯示:6 h后LsGSTt1基因表達(dá)量分別為對(duì)照組的2.25、4.64和19.12倍,LC30和LC50處理組的表達(dá)量顯著高于對(duì)照組(p<0.05);CO2處理后LsGSTd1基因表達(dá)量與對(duì)照組表達(dá)量在統(tǒng)計(jì)學(xué)上差異不顯著(P>0.05);LsGSTs1 mRNA的相對(duì)表達(dá)量分別為對(duì)照的1.48、1.06和3.13倍,且在LC50氣調(diào)脅迫下,mRNA表達(dá)量顯著高于對(duì)照、LC10及LC30處理(p<0.05),但對(duì)照、LC10及LC30處理間mRNA相對(duì)表達(dá)量的差異并不顯著。

3 討論

昆蟲GSTs是一類多功能超基因家族酶系,在內(nèi)源和外源化合物的解毒代謝、防御氧化、激素合成等生命活動(dòng)過程中發(fā)揮著重要作用[7,9-10]。隨著昆蟲基因組計(jì)劃開展以來,多種昆蟲不同家族GSTs基因被陸續(xù)克隆,如岡比亞按蚊(Anopheles gambiae)[20]、黑腹果蠅(Drosophila melanogaster)[21]、家蠶(B.mori)[6]、赤擬谷盜(T.castaneum)[22]等。轉(zhuǎn)錄組測(cè)序也為昆蟲GSTs基因的鑒定提供了方便,研究人員分別從斜紋夜蛾(Spodoptera litura)[23]、飛蝗(Locusta migratoria manilensis)[24]、搖蚊(Chironomus tentans)[25]和橘小實(shí)蠅(Bactrocera dorsalis)[8]的轉(zhuǎn)錄組數(shù)據(jù)庫(kù)中鑒定獲得了8、10、11和17個(gè)GSTs基因,為深入研究GSTs基因的生物學(xué)功能奠定了基礎(chǔ)。本研究在煙草甲轉(zhuǎn)錄組測(cè)序基礎(chǔ)上,通過RT-PCR技術(shù)克隆獲得3個(gè)GSTs基因的cDNA全長(zhǎng)序列,經(jīng)與其他昆蟲GSTs氨基酸進(jìn)行序列比對(duì)和聚類分析,發(fā)現(xiàn)3個(gè)煙草甲GSTs分別歸屬于Delta、Theta和Sigma家族。其中Delta是昆蟲所特有的家族,在多種殺蟲劑的代謝和昆蟲抗藥性形成過程中起著重要作用[26],Theta和Sigma家族GSTs在昆蟲中廣泛分布,可能發(fā)揮著基本的解毒代謝作用[23]。

昆蟲的GSTs基因在不同發(fā)育階段的表達(dá)水平存在一定的差異,說明其在生長(zhǎng)發(fā)育過程中發(fā)揮著不同的作用。本研究發(fā)現(xiàn),3個(gè)GSTs基因在煙草甲各發(fā)育階段均有表達(dá),且低齡幼蟲期的表達(dá)量顯著高于高齡幼蟲、蛹期和成蟲期,這可能與它們?cè)诘妄g幼蟲期發(fā)揮著重要作用有關(guān)。進(jìn)一步分析發(fā)現(xiàn),低齡幼蟲剛由卵孵化形成,需要大量取食以滿足器官發(fā)育,這一時(shí)期外源化合物的攝取和代謝產(chǎn)生的物質(zhì)隨之增多,因此相關(guān)的解毒代謝酶如GSTs的mRNA表達(dá)量相應(yīng)升高。橘小實(shí)蠅的5個(gè)GSTs基因(BdGSTe4、BdGSTe2、BdGSTd5、BdGSTd6和BdGSTo1)在幼蟲期的表達(dá)量明顯高于成蟲期[8],此類現(xiàn)象同岡比亞按蚊[20]、小菜蛾(Plutella xylostella)[27]、斜紋夜蛾[23]等昆蟲的研究結(jié)果相一致。不同物種體內(nèi)的GSTs在各發(fā)育階段的表達(dá)量變化不盡相同:如柑橘全爪螨6個(gè)GSTs基因在卵期表達(dá)量較高,推測(cè)其可能與卵發(fā)育過程中激素調(diào)節(jié)相關(guān)[28];QIN等[24]應(yīng)用半定量RT-PCR分析了10個(gè)GSTs基因在飛蝗卵、一齡幼蟲至成蟲期的表達(dá)情況,發(fā)現(xiàn)LmGSTd1、LmGSTs1、LmGSTs3、LmGSTs5和LmGSTt3在各發(fā)育階段的表達(dá)量沒有明顯的變化,說明這些酶屬于組成型表達(dá)酶,在飛蝗整個(gè)生命過程中均起作用。

氣調(diào)技術(shù)被廣泛應(yīng)用于倉(cāng)儲(chǔ)害蟲的管理中,它主要利用高濃度CO2和低濃度O2的協(xié)同作用來提高控制害蟲的效果[14,29]。CO2主要通過觸殺途徑起效,使昆蟲神經(jīng)過度興奮,刺激昆蟲氣門開放,改變通風(fēng)速率,導(dǎo)致蟲體水分喪失而出現(xiàn)死亡[30]。不僅如此,CO2氣調(diào)還可以引起昆蟲體內(nèi)解毒代謝酶系和靶標(biāo)酶的變化,并導(dǎo)致其體內(nèi)能源物質(zhì)不斷被消耗[11,15-16]。本課題組前期研究發(fā)現(xiàn),CO2氣調(diào)處理煙草甲成蟲6 h后,GST酶活性顯著高于對(duì)照,說明GSTs在煙草甲應(yīng)對(duì)CO2氣調(diào)脅迫過程中發(fā)揮著關(guān)鍵作用[17]。本研究以GSTs基因高表達(dá)的低齡幼蟲為研究對(duì)象,發(fā)現(xiàn)經(jīng)CO2氣調(diào)處理6 h后,LsGSTt1和LsGSTs1表達(dá)量顯著高于對(duì)照組,而LsGSTd1表達(dá)量相對(duì)于對(duì)照無顯著差異,我們推測(cè)CO2氣調(diào)脅迫所引起的損傷修復(fù)需要多個(gè)GSTs基因參與,通過轉(zhuǎn)錄和翻譯合成多種GST同工酶以共同應(yīng)對(duì)外源脅迫。多種GSTs基因的過量表達(dá)可能是煙草甲應(yīng)對(duì)CO2氣調(diào)脅迫耐受性形成的重要因素。

本研究根據(jù)煙草甲轉(zhuǎn)錄組信息,成功克隆了LsGSTt1、LsGSTd1和LsGSTs1基因的cDNA全長(zhǎng)序列,這3個(gè)基因在煙草甲各發(fā)育時(shí)期均有表達(dá),且在低齡幼蟲期的表達(dá)量最為活躍。經(jīng)CO2氣調(diào)脅迫后,LsGSTt1和LsGSTs1表現(xiàn)出了明顯的應(yīng)激表達(dá)反應(yīng)。下一步將研究煙草甲體內(nèi)其他GSTs基因在氣調(diào)脅迫過程中的作用,為系統(tǒng)闡明煙草甲GSTs基因家族對(duì)氣調(diào)脅迫應(yīng)答的分子機(jī)制奠定基礎(chǔ)。

[1] SHEEHAN D,MEADE G,FOLEY V M,et al.Structure,function and evolution ofglutathione transferases:Implicationsfor classification of non-mammalian members of an ancient enzyme superfamily.Biochemical Journal,2001,360(1):1-16.

[2] LI X C,SCHULER M A,BERENBAUM M R.Molecular mechanism of metabolic resistance to synthetic and natural xenobiotics.Annual Review of Entomology,2007,52:231-253.

[3] PARKES T L,HILLIKER A J,PHILIPS J P.Genetic and biochemical analysis of glutathione-S-transferases in the oxygen defense system of Drosophila melanogaster.Genome,1993,36(6):1007-1014.

[4] AGIANIAN B,TUCKER P A,SCHOUTEN A,et al.Structure of a Drosophila sigma class glutathione S-transferase reveals a novel active site topography suited for lipid peroxidation products.Journal of Molecular Biology,2003,326(1):151-165.

[5] ROGERS M E,JANI M K,VOGT R G.An olfactory-specific glutathione-S-transferase in the sphinx moth Manduca sexta.Journal of Experimental Biology,1999,202(12):1625-1637.

[6] YU Q Y,LU C,LI B,et al.Identification,genomic organization and expression pattern of glutathione S-transferase in the silkworm,Bombyx mori.Insect Biochemistry and Molecular Biology,2008,38(12):1158-1164.

[7] QIN G H,JIA M,LIU T,et al.Characterization and functional analysis of four glutathione S-transferases from the migratory locust,Locusta migratoria.PLoS One,2013,8(3):e58410.

[8] HU F,DOU W,WANG J J,et al.Multiple glutathione S-transferase genes:Identification and expression in oriental fruit fly,Bactrocera dorsalis.Pest Management Science,2014,70(2):295-303.

[9] GULLIPALLI D,ARIF A,APAROY P,et al.Identification of a developmentally and hormonally regulated delta-class glutathione S-transferase in rice moth Corcyra cephalonica.Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2010,156(1):33-39.

[10]ZHANG Y Y,GUO X L,LIU Y L,et al.Functional and mutational analyses of an omega-class glutathione S-transferase(GSTO2)that is required for reducing oxidative damage in Apis cerana cerana.Insect Molecular Biology,2016,25(4):470-486.

[11]LI C,LI Z Z,CAO Y,et al.Partial characterization of stressinduced carboxylesterase from adults of Stegobium paniceum and Lasioderma serricorne(Coleoptera:Anobiidae)subjected to CO2-enriched atmosphere.Journal of Pest Science,2009,82(1):7-11.

[12]OMAE Y,FUCHIKAWA T,NAKAYAMA S,et al.Life history and mating behavior of a black-bodied strain of the cigarette beetle Lasioderma serricorne(Coleoptera:Anobiidae).Applied Entomology and Zoology,2012,47(2):157-163.

[13]PIMENTEL M A G,F(xiàn)ARONI L R D,TóTOLA M R,et al.Phosphine resistance,respiration rate and witness consequences in stored-product insects.Pest Management Science,2007,63(9):876-881.

[14]GUNASEKARAN N,RAJENDRAN S.Toxicity of carbon dioxide to drugstore beetle Stegobium paniceum and cigarette beetle Lasioderma serricorne.Journal of Stored Products Research,2005,41(3):283-294.

[15]李燦,李子忠,周波,等.高濃度二氧化碳對(duì)藥材甲和煙草甲乙酰膽堿酯酶活性的影響.植物保護(hù)學(xué)報(bào),2007,34(6):642-646.LI C,LI Z Z,ZHOU B,et al.Effect of carbon dioxide enriched atmosphere on the activity of acetylcholinesterase in adults of Stegobium paniceum and Lasioderma serricorne.Journal of Plant Protection,2007,34(6):642-646.(in Chinese with English abstract)

[16]曹宇,楊文佳,孟永祿,等.CO2氣調(diào)對(duì)煙草甲的毒理作用及其能源物質(zhì)的含量和利用率.西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2015,43(11):123-128.CAO Y,YANG W J,MENG Y L,et al.Toxicity of CO2to Lasioderma serricorne and content and utilization of its energy substances.Journal of Northwest A&F University(Natural Science Edition),2015,43(11):123-128.(in Chinese with English abstract)

[17]李燦,李子忠.氣調(diào)脅迫下3種中藥材儲(chǔ)藏期害蟲谷胱甘肽轉(zhuǎn)移酶活性研究.植物保護(hù),2009,35(2):91-94.LI C,LI Z Z.GSTs activity of three pests in stored Chinese medicinal materials.Plant Protection,2009,35(2):91-94.(in Chinese with English abstract)

[18]TAMURA K,PETERSON D,PETERSON N,et al.MEGA5:Molecular evolutionary genetics analysis using maximum likelihood,evolutionary distance,and maximum parsimony methods.Molecular Biology and Evolution,2011,28(10):2731-2739.

[19]LIVAK K J,SCHMITTGEN T D.Analysis of relative gene expression data using real-time quantitative PCR and the2-ΔΔCTmethod.Methods,2001,25(4):402-408.

[20]DING Y C,ORTELLI F,ROSSITER L C,et al.The Anopheles gambiae glutathione transferase supergene family:Annotation,phylogeny and expression profiles.BMC Genomics,2003,4:35.

[21]TU C P D,AKGüL B.Drosophila glutathione S-transferases.Methods in Enzymology,2005,401:204-226.

[22]SHI H X,PEI L H,GU S S,et al.Glutathione S-transferase(GST)genes in the red flour beetle,Tribolium castaneum,and comparative analysis with five additional insects.Genomics,2012,100(5):327-335.

[23]HUANG Y F,XU Z B,LIN X Y,et al.Structure and expression of glutathione S-transferase genes from the midgut of the common cutworm,Spodoptera litura(Noctuidae)and their response to xenobiotic compounds and bacteria.Journal of Insect Physiology,2011,57(7):1033-1044.

[24]QIN G H,JIA M,LIU T,et al.Identification and characterisation of ten glutathione S-transferase genes from oriental migratory locust,Locusta migratoria manilensis(Meyen).Pest Management Science,2011,67(6):697-704.

[25]LI X W,ZHANG X,ZHANG J Z,et al.Identification and characterization of eleven glutathione S-transferase genes from the aquatic midge Chironomus tentans(Diptera:Chironomidae).Insect Biochemistry and Molecular Biology,2009,39(10):745-754.

[26]LOW W Y,FEIL S C,NG H L,et al.Recognition and detoxification of the insecticide DDT by Drosophila melanogaster glutathione S-transferase D1.Journal of Molecular Biology,2010,399(3):358-366.

[27]CHEN X E,ZHANG Y L.Identification and characterization of multiple glutathione S-transferase genes from the diamondback moth,Plutella xylostella.Pest Management Science,2015,71(4):592-600.

[28]LIAO C Y,ZHANG K,NIU J Z,et al.Identification and characterization of seven glutathione S-transferase genes from citrus red mite,Panonychus citri(McGregor).International Journal of Molecular Sciences,2013,14(12):24255-24270.

[29]WONG-CORRAL F J,CASTANé C,RIUDAVETS J.Lethal effects of CO2-modified atmospheres for the control of three Bruchidae species.Journal of Stored Products Research,2013,55:62-67.

[30]MITCHAM E J,MARTIN T A,ZHOU S.The mode of action of insecticidal controlled atmospheres.Bulletin of Entomological Research,2006,96(3):213-222.

Expression analysis of glutathione S-transferase genes in Lasioderma serricorne(Coleoptera:Anobiidae)subjected to CO2-enriched atmosphere.Journal of Zhejiang University(Agric.&Life Sci.),2017,43(5):599-607

XU Kangkang1,DING Tianbo2,YAN Yi1,LI Can1,YANG Wenjia1*
(1.College of Biology and Engineering of Environment,Guiyang University/Guizhou Provincial Key Laboratory for Rare Animal and Econimic Insects of the Mountainous Region,Guiyang 550005,China;2.College of Plant Health and Medicine,Qingdao Agricultural University,Qingdao 266109,Shandong,China)

glutathione S-transferase;Lasioderma serricorne;gene cloning;expression pattern

S 435.72;Q 965

A

10.3785/j.issn.1008-9209.2017.02.261

Summary The cigarette beetle,Lasioderma serricorne(Fabricius)(Coleoptera:Anobiidae),is a destructive stored pest distributed worldwide.Females typically oviposit in the stored materials,and the developing larvae tunnel through the stored food products on which they feed,resulting in tremendous damages to stored grains and seeds,tobacco,pet food,and dried flowers.Currently,excessive use of fumigation with insecticides has developed resistance to commonly insecticides in this insect,leading to environmental risk and its resurgence.

Controlled atmosphere(CA)treatments using low oxygen(O2)and high carbon dioxide(CO2)have been used commercially to control stored pests.The application of CA is a safe alternative way to chemical pesticides,and has been used to control the cigarette beetles.Our earlier studies showed that L.serricorne displayed a great capacity to withstandCO2stress.The activities of glutathione S-transferases(GSTs)in L.serricorne were significantly increased after exposed to CO2enriched atmosphere,implying that GSTs might be critical for tolerating to CO2stress.However,little is known about the molecular mechanism of GSTs in response to CO2exposure in L.serricorne.

國(guó)家自然科學(xué)基金(31460476);貴州省科學(xué)技術(shù)基金聯(lián)合基金(黔科合LH字〔2014〕7167);貴州省高層次創(chuàng)新型人才培養(yǎng)(黔科合人才〔2016〕4020);貴陽學(xué)院高層次人才科研啟動(dòng)費(fèi)(校人才2014003)。

楊文佳(http://orcid.org/0000-0003-4339-2158),E-mail:yangwenjia10@126.com

(First author):許抗抗(http://orcid.org/0000-0002-4203-911X),E-mail:kkxu1988@163.com

2017-02-26;接受日期(Accepted):2017-06-20

In this study,three full-length cDNAs of GSTs in L.serricorne were cloned by reverse transcription-polymerase chain reaction(RT-PCR).The deduced amino acid sequence analysis of the three genes was performed by bioinformatics methods.Quantitative real-time polymerase chain reaction(qRT-PCR)was used to establish expression profiles for those genes from different developmental stages and in response to CO2exposure.

According to the predicted GST sequences from the transcriptome datesets of L.serricorne,the full-length cDNAs of three novel genes were obtained and named LsGSTt1,LsGSTd1 and LsGSTs1(GenBank accession numbers:KY549655,KY549656,KY549657),respectively.The LsGSTt1 cDNA contained an open reading frame(ORF)of 564 nucleotides,encoding a polypeptide of 187 amino acids with an estimated molecular mass of 22.4 kDa and an isoelectric point(pI)of 8.54.The LsGSTd1 cDNA contained an ORF of 651 nucleotides,encoding a polypeptide of 216 amino acids with an estimated molecular mass of 24.5 kDa and a pI of 5.95.The LsGSTs1 cDNA contained an ORF of 696 nucleotides,encoding a polypeptide of 231 amino acids with an estimated molecular mass of 26.2 kDa and a pI of 5.06.Homology analysis indicated that the predicted amino acid sequences of the three genes had typical features of GSTs,including an N-terminal domain and a C-terminal domain.Phylogenetic analysis revealed that the three genes belonged to three different cytosolic classes,including Theta(LsGSTt1),Delta(LsGSTd1)and Sigma(LsGSTs1).Temporal expression profile revealed that all the three GSTs genes were constitutively expressed in the testing stages,exhibited similar developmental expression patterns,with the highest expression level measured in the early larval stage.Compared with the control,the mRNA levels of LsGSTd1 did not change significantly following exposure to CO2stress.However,when exposed to 50%lethal concentration(LC50)of CO2,the expression levels of LsGSTt1 and LsGSTs1 were significantly increased.

In conclusion,the results suggest that LsGSTt1 and LsGSTs1 in L.serricorne might play important roles in defense responses challenged by CO2stress.This study provides the basis for clarifying the response mechanism of insects to CO2stress.

猜你喜歡
發(fā)育階段氣調(diào)低齡
低齡未成年人案件核準(zhǔn)追訴問題研究
小麥生殖發(fā)育階段對(duì)低溫的敏感性鑒定
果蔬氣調(diào)貯藏技術(shù)及設(shè)備
對(duì)森工林區(qū)在商品林基地培養(yǎng)速生楊樹探討
顯微外科技術(shù)治療低齡兒先天性并指
低齡未婚先孕者人工流產(chǎn)負(fù)壓吸引術(shù)后心理健康教育干預(yù)的研究
新型簡(jiǎn)易氣調(diào)箱可延長(zhǎng)果蔬保質(zhì)期
低齡晚孕穿透性胎盤植入1例分析
大花黃牡丹葉片發(fā)育過程中氣孔密度和氣孔指數(shù)的動(dòng)態(tài)變化
黃肉桃果實(shí)發(fā)育階段類胡蘿卜素的變化
石屏县| 改则县| 榆社县| 佛教| 新邵县| 东山县| 门头沟区| 大邑县| 武夷山市| 盘锦市| 陆川县| 布尔津县| 广宁县| 杭锦后旗| 文登市| 松滋市| 波密县| 石屏县| 三穗县| 柳州市| 南漳县| 亳州市| 山丹县| 纳雍县| 泰安市| 清原| 衡山县| 平泉县| 库车县| 宁南县| 临泉县| 马尔康县| 静安区| 万源市| 霍林郭勒市| 靖远县| 明溪县| 荥阳市| 滨海县| 买车| 资兴市|