国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

齒輪泵側(cè)隙卸荷的界定標準與驗證

2017-11-13 03:27孫付春李玉龍文昌明
農(nóng)業(yè)工程學(xué)報 2017年20期
關(guān)鍵詞:齒輪泵卸荷玉龍

孫付春,李玉龍,文昌明,鐘 飛

?

齒輪泵側(cè)隙卸荷的界定標準與驗證

孫付春,李玉龍,文昌明,鐘 飛

(成都大學(xué)機械工程學(xué)院,成都 610106)

為解決當前泵用齒輪副側(cè)隙大、小界定含糊的問題,基于側(cè)隙傳動與困油的性能要求,從雙齒嚙合區(qū)內(nèi)的2困油容積連通和單齒嚙合區(qū)卸荷的性能完善方面,通過困油循環(huán)及困油過程的分析,建立出2類區(qū)域內(nèi)的困油流量及峰值,推導(dǎo)出卸荷用側(cè)隙、連通用側(cè)隙及其均值和峰值;并進行實例運算和驗證分析。結(jié)果表明:卸荷區(qū)與連通區(qū)的困油流量峰值比為3,前者的卸荷負擔最大;連通區(qū)的真正連通,所需側(cè)隙高達2.41 mm,實際上并不存在;卸荷側(cè)隙大于連通側(cè)隙,以連通側(cè)隙作為側(cè)隙大與小的分界點,卸荷側(cè)隙作為上限值的界定可行;計算與試驗的側(cè)隙誤差為7.5%,比較吻合,且上限值有20%的安全裕度,比較可靠等。泵用側(cè)隙的界定為大、小側(cè)隙的正確區(qū)分提供了參考,也可為后續(xù)的相關(guān)研究提供參考。

泵;振動;齒輪泵;連通側(cè)隙;卸荷側(cè)隙;大小界定;困油流量

0 引 言

外嚙合齒輪泵(簡稱齒輪泵)是一種用于泵送工作油液的動力泵,有著極其廣泛的應(yīng)用[1]。結(jié)構(gòu)上,一對外嚙合齒輪副為其核心部件。該齒輪副在常規(guī)的動力傳遞中,為利于嚙合齒廓之間形成潤滑油膜、避免因輪齒摩檫發(fā)熱膨脹而卡死,非工作齒廓之間常留有一定的齒側(cè)間隙,簡稱側(cè)隙;但側(cè)隙同時也會產(chǎn)生齒間沖擊,影響齒輪傳動的平穩(wěn)性。故在滿足傳動性能要求的基礎(chǔ)上,一般采用0.0050.01(為模數(shù),mm)的小側(cè)隙[2],但設(shè)計上仍按無側(cè)隙對待。不過作為常規(guī)齒輪傳動在泵中的特殊應(yīng)用,雖然大側(cè)隙能有效改善困油性能,卻同時也造成了容積效率下降、振動加劇、噪聲增加[3-5];反之,容積效率提高和振動減緩、噪聲下降[6-8],同時也降低了困油性能[9-12],所以泵用側(cè)隙同樣會受到一定的限制,一般采用0.010.08的有側(cè)隙[13],或參照推薦值選擇[14]。

目前,在關(guān)于容積效率和困油性能等的文獻研究中,一般都需要計算通過側(cè)隙處的介質(zhì)交換流量,但針對某一具體的側(cè)隙值,文獻[13]雖然給出了有側(cè)隙或者無側(cè)隙的界定標準,但側(cè)隙究竟屬于小側(cè)隙還是大側(cè)隙,一直很模糊。更多的是以小側(cè)隙的名義默認雙齒嚙合區(qū)內(nèi)2困油容積的非連通問題[15-17];或以大側(cè)隙的名義默認雙齒嚙合區(qū)內(nèi)2困油容積的連通、單齒嚙合區(qū)域的無困油問題等[5,13,18]。而偏偏大、小側(cè)隙的界定又直接涉及到后續(xù)不同的計算方法[13,19-20],例如,卸荷槽形位計算的不同方法[13,21-24]等,這些恰恰被大多數(shù)的研究所忽略。即針對泵用的這對齒輪副,何為側(cè)隙的大、小,截至目前為止,學(xué)術(shù)界并沒有給出具體的劃分界定標準。為此,論文擬從雙齒嚙合內(nèi)2個困油容積的連通和單齒嚙合區(qū)內(nèi)困油性能的完善角度,對此進行深入的研究,并給出相應(yīng)的界定標準。

1 有無側(cè)隙的現(xiàn)有界定

何謂有、無側(cè)隙,文獻[13]給出了如式(1)的界定式。設(shè)為公法線方向上的側(cè)隙值,mm;0為有、無側(cè)隙的分界值,mm。當<0時,由于工作介質(zhì)通過側(cè)隙的阻力相當大,介質(zhì)的通過流量被認為是微乎其微接近于零,泵幾何尺寸上的計算,可按無側(cè)隙關(guān)系式來確定;否則,按有側(cè)隙關(guān)系式來確定。而有側(cè)隙又可分為大側(cè)隙和小側(cè)隙,但目前對此卻沒有明顯的界定,大小之分比較含糊與籠統(tǒng)。

式中為介質(zhì)動力黏度,(N·s)/m2;為節(jié)圓圓周速度,m/s;pp為泵的高、低壓腔的介質(zhì)壓力,Pa;為模數(shù),mm。

2 困油循環(huán)及困油過程

圖1描述了齒輪泵的困油循環(huán)及困油過程。輪心分別記為1、2,偏向1、2側(cè)的2個困油容積、困油壓力,分別記為1、2,mm3和1、2,Pa。其中,圖1中a→b→c→d→e和d→e→f→a→b分別為1、2的困油循環(huán);a→b→c→d→e→f→a為一個完整的困油過程。其中,a為1剛剛形成;b為2剛剛脫開;c為1在最小困油容積時的位置;d為2剛剛形成;e為1剛剛脫開;f為2在最小困油容積時的位置。a→b為單側(cè)隙雙齒嚙合區(qū)間,簡稱為側(cè)隙連通區(qū);b→c→d和e→f→a為單側(cè)隙單齒嚙合區(qū)間,簡稱為側(cè)隙卸荷區(qū)。設(shè)剛形成1的嚙合點在1工作齒面上對應(yīng)的曲率半徑為,并以此作為困油過程的位置變量,記對應(yīng)于圖1中a~f的6個位置的分別用s~表示[1],mm。其中

式中為理論嚙合線的長度,mm;p為基節(jié),mm;ε為根切重合度[25]。由于泵用齒輪副允許存在一定的根切現(xiàn)象,2上的齒頂點能否參與嚙合,取決于根切程度[26];它們均為齒形參數(shù)的函數(shù)。

注:1、2表示主、從齒輪的輪心;表示嚙合位置;表示側(cè)隙位置;p表示進口壓力,Pa;p表示出口壓力,Pa;1、2表示偏向1、2側(cè)的困油容積,mm3;1、2表示1、2的困油壓力,Pa;為由主動輪上嚙合點處的曲率半徑所定義的位置變量,mm;s表示1剛剛形成位置,mm;s表示2剛剛脫開位置,mm;s表示1的最小容積位置,mm;s表示2剛剛形成位置,mm;s表示1剛剛脫開位置,mm;s表示2的最小容積位置,mm;下同。

Note:1and2indicate two center points of driving gear and driven gear;indicates meshing point;indicates backlash point;pindicates inlet pressure, Pa;pindicates outlet pressure, Pa;1and2indicate the two different trapped-oil volumes on1side and2side, mm3;1and2indicate trapped-oil pressure of1and2, Pa;indicates the location variables defined as the curvature radius of meshing point of driving gear, mm;sindicates the location of1just formed, mm;sindicates the location of2just disappeared, mm;sindicates the location of1with minimum volume, mm;sindicates the location of2just formed, mm;sindicates the location of1just disappeared, mm;sindicates the location of2with minimum volume, mm; similarly hereinafter.

圖1 困油循環(huán)及困油過程

Fig.1 Trapped oil circulation and trapped oil process

3 困油流量及峰值

3.1 側(cè)隙卸荷區(qū)

在側(cè)隙卸荷區(qū)內(nèi),始終只存在由一個嚙合點和一個側(cè)隙點所圍成的單一困油容積1或2。每單一的困油容積及其變化率為

式中0為最小的困油容積,mm3;為齒數(shù),稱1、2為1、2對時間的變化率,稱為困油流量,mm3/s,它們的峰值均為

式中Q為側(cè)隙卸荷區(qū)內(nèi)的困油流量峰值,mm3/s;為齒寬,mm;為角速度,rad/s。

3.2 側(cè)隙連通區(qū)

小側(cè)隙時,在圖1中[s,s]區(qū)間內(nèi)的1、2不能連成一體,并形成了2個單一的困油容積。此時,每個單一1或2均由一個嚙合點和一個側(cè)隙點所圍成。其間的困油流量與式(4)相同,峰值與式(5)相同。

大側(cè)隙時,1、2連成一體,該連體困油的體積、壓力設(shè)為和,且該連體與高、低壓油腔之間,分別被2個嚙合點所隔開。由于該2個嚙合點處的嚙合間隙極小,此時雖為大側(cè)隙,但困油現(xiàn)象仍始終存在。此時

式中為1、2的連體體積,mm3;為對應(yīng)于的困油流量,mm3/s;Q為側(cè)隙連通的困油流量峰值,mm3/s;Q為側(cè)隙卸荷的困油流量峰值,mm3/s;K為卸荷區(qū)和連通區(qū)困油流量的峰值比。

例取ε=1.1,則K=3,說明側(cè)隙卸荷區(qū)比連通區(qū)內(nèi)的困油壓力卸荷的負擔大很多。

4 側(cè)隙界定的理論計算

如果設(shè)困油流量以困油容積的膨脹為正,壓縮為負;困油壓力的變化率以壓力增大為正,降低為負;且僅考慮困油流量是產(chǎn)生困油壓力的唯一主因。那么,困油的體積彈性模量可定義為[1]

式中為體積彈性模量,Pa,in、Qout為外界流進、流出困油容積的交換流量,mm3/ s;且記以流入為正。則

式中為對時間的變化率,Pa/s。

在側(cè)隙連通區(qū)內(nèi),對于2個單一的1、2,各自與外界交換的總流量,包括通過側(cè)隙的流量(簡稱為側(cè)隙流量)、軸向(間隙)流量、嚙合(間隙)流量、卸荷槽的卸荷流量等,如將除側(cè)隙流量外的其他流量均以側(cè)隙流量的形式體現(xiàn),則所折算出的連通側(cè)隙,如圖2所示,故該區(qū)間內(nèi)的困油為一封閉容積。由2>1,得

式中1、2為1、2對時間的變化率,Pa/s;Q、QΔpd為側(cè)隙處的剪切流量和壓差流量,mm3/s。

注:Q、Δpd表示側(cè)隙處的剪切流量和壓差流量,mm3·s-1;c表示連通側(cè)隙,mm;1、2和表示壓力變化率,Pa·s-1;1、2、表示容積變化率,mm3·s-1;下同。

Note:QandΔpdindicate shear flow and differential pressure flow through backlash gap, mm3·s-1; cindicates backlash for connection of two trapped-oil volumes, mm;1,2andindicate trapped-oil pressure rate of change over time, Pa·s-1;1and2,indicate trapped-oil volume rate of change over time, Pa·s-1; similarly here in after.

圖2 連通側(cè)隙的計算

Fig.2 Gap calculation of backlash for connection

在側(cè)隙連通區(qū)內(nèi)的任何位置,由于困油流量與流進、流出困油容積的各流量,始終處于平衡狀態(tài),即Δp=p1?2≈1?p始終為一確定值。則2≡1≡0。

式中Δp為許可壓差,Pa,為節(jié)圓壓力角,rad,c為滿足Δp的側(cè)隙值,mm;為流量系數(shù);為等效卷吸速度,mm/ s;為介質(zhì)密度,kg/m3。得

式中c,A和c,M為c均值和最大值,mm。其中,最大值的位置為=0.5(s+s)。

圖2中2個單一的1、2如能實現(xiàn)真正的連通,即需滿足Δp≡0,則真正連通下的側(cè)隙為

式中c為實現(xiàn)零壓差所需要的最小側(cè)隙,mm,為分度圓壓力角,rad。

例取=3 mm,=10,=20°,=30°,則c=2.41 mm,該值很大,小齒數(shù)的泵用齒輪副是無法實現(xiàn)的,即2個單一的1、2的真正連通是不存在的,只能是一定允許壓差下的近似連通。

在側(cè)隙卸荷區(qū)內(nèi),對于單一的1或2,各自與外界交換的總流量,同樣也包括通過側(cè)隙的側(cè)隙卸荷流量、軸向流量、嚙合流量、卸荷槽的卸荷流量等,如將除側(cè)隙卸荷流量外的其他流量均以側(cè)隙卸荷流量的形式體現(xiàn),則可折算出相應(yīng)的卸荷側(cè)隙。對于1,由[27]

式中Δp1為許可壓差,Pa,1為滿足Δp1時1所需的折算側(cè)隙的下限值,mm,當1>p,取“+”;否則,取“-”。

對于2,由

式中Δp2為許可壓差,Pa,2為滿足Δp2時2所需的折算側(cè)隙的下限值,mm,當2>p,取“+”;否則,取“-”。

式中cc1和c2中的最大值,mm。且

式中ccc的均值和最大峰值,mm;Kcc的比值,1max、2max為困油壓力1、2的最大峰值,Pa。

由于1max≈2max,所以K大于1,即c>c。定義

式中max與min為側(cè)隙的上、下限。

由此定義出側(cè)隙的大與小,max時為超大側(cè)隙,問題均得到了解決。

5 實例運算及驗證

文獻[17]提供了試驗用側(cè)隙=30、50、200m的一組試驗結(jié)果,如圖3a所示。試驗用泵的幾何參數(shù)為模數(shù)4.75齒數(shù)10,齒頂圓直徑58 mm,中心距48.8 mm,=12.7 mm,由齒輪副三維模型測得0=20 mm3,對應(yīng)于試驗用側(cè)隙分別為30、50、200m的壓力角為23°50′、23°40′、23°10′,出口壓力p為2、1、2 MPa。=870 kg/m3,=0.09 Pa·s,=0.62。由圖3a中,知轉(zhuǎn)速=1 000 r/min下困油壓力的峰值為2.7、3.7、7.3 MPa。另外,由矩形卸荷槽距中心線的距離B=6.4 mm,經(jīng)計算知采用的是大側(cè)隙卸荷槽,其卸荷效果一般[13]。

注:Δpd為連通許可壓差,Pa;Δps2為卸荷許可壓差,Pa;p2max為p2的最大值,Pa;Bd表示卸荷槽離中心線的距離,h表示試驗用側(cè)隙,下同。

經(jīng)計算得傳動性能所要求的0.0050.01的側(cè)隙為23.75~47.5m;困油性能所要求的0.01~0.08的側(cè)隙為47.5~380m;0=3~7m。由此可見,泵用齒輪副均為有側(cè)隙齒輪副。

分別將Δp取2.7、3.7、7.3 MPa和Δp2取0.7、2.7、5.3 MPa,分別代入式(11)和式(18),計算結(jié)果,如圖4所示。其中,圖3a為試驗結(jié)果,圖3b為擇算后的連通側(cè)隙,圖3c為擇算后的卸荷側(cè)隙,其最大值和均值,如表1所示。其中,d,和s,為由卸荷槽關(guān)閉點位置,即B=6.4 mm計算出的連通側(cè)隙和卸荷側(cè)隙。

困油壓力峰值多出現(xiàn)在卸荷槽關(guān)閉點附近[28-29],動態(tài)的流場分析也說明了這一點[30],即此時的卸荷槽的卸荷流量近乎為零,嚙合流量本來就很小,也近乎忽略。因此,在卸荷槽關(guān)閉點附近,除側(cè)隙外的其他交換流量近乎為軸向流量。

表1 六類側(cè)隙值的計算結(jié)果

注:d,、d,表示連通側(cè)隙的均值和最大峰值;s,、s,表示卸荷側(cè)隙的均值和最大峰值;d,表示卸荷槽關(guān)閉點附近的連通側(cè)隙值;s,表示卸荷槽關(guān)閉點附近的卸荷側(cè)隙值;為大側(cè)隙時理論值與試驗值的相對誤差,%。

Note:d,andd,indicate the mean value and the maximum peak value of backlash gap used for the connection of two trapped-oil volumes;s,ands,indicate the mean value and the maximum peak value of backlash gap used for trapped-oil relief;d,indicates the backlash gap used for the connection of two trapped-oil volumes when the trapped-oil relief was closed;s,indicates the backlash gap used for trapped-oil relief when the trapped-oil relief was closed;indicates the relative error between theoretical value and experimental value when large backlash,%.

表1中=200m下的擇算側(cè)隙值s,=215m,即其中的s,?15m為以軸向流量為主的其他流量的擇算量,其他流量忽略后的誤差為(s,?)/=7.5%。且max=239m≥=200m,說明有(max?)/≈20%的安全裕度,比較可靠。

圖3a中=30、50m本為小側(cè)隙,在所計算出的max中超過60%的部分,用于彌補其他流量,此時也就不存在所謂的連通問題。由于齒輪泵側(cè)隙常大于85m[14],=30、50m在實際運用中,并不常見。

在=30、50m的情況下,如采用min=62、76m作為實際的側(cè)隙值,則由式(15)的計算,原有的Δp為7.3、3.7 MPa,減小后為1.7、1.6 MPa,此時2個單一的1、2可視為近乎的連通。說明以min作為側(cè)隙大與小的界定參考,是可行的。

6 結(jié) 論

1)側(cè)隙卸荷區(qū)和側(cè)隙連通區(qū)的困油流量比為3,側(cè)隙卸荷區(qū)內(nèi)的卸荷負擔最大。側(cè)隙連通區(qū)的真正連通,所需側(cè)隙高達2.41 mm,實際上并不存在。

2)卸荷用側(cè)隙大于連通用側(cè)隙,以107m的連通側(cè)隙作為側(cè)隙大與小的分界點,以239m的卸荷側(cè)隙作為側(cè)隙上限的界定可行。計算側(cè)隙與試驗側(cè)隙的誤差為7.5%,且約有20%的安全裕度,理論計算和試驗結(jié)果比較吻合。

[1] 李玉龍. 外嚙合齒輪泵困油機理、模型及試驗研究[D]. 合肥:合肥工業(yè)大學(xué),2009.

Li Yulong. Mechanism, Modeling and Experiment Investigation of Trapped Oil in External Gear Pump[D]. Hefei: Hefei University of Technology, 2009. (in Chinese with English abstract)

[2] 聞邦椿. 機械設(shè)計手冊[M]. 第5版. 北京:機械工業(yè)出版社,2010.

[3] Yanada H, Ichikawa T, Itsuji Y. Study of the trapping of fluid in a gear pump[J]. Proceedings of the Institution of Mechanical Engineers Part A Journal of Power & Energy, 1987, 201(11):39-45.

[4] Eaton M, Keogh P S, Edge K A. The modelling, prediction, and experimental evaluation of gear pump meshing pressures with particular reference to aero-engine fuel pumps[J]. Proceedings of the Institution of Mechanical Engineers Part I Journal of Systems & Control Engineering, 2006, 220(5): 365-379.

[5] 李玉龍,劉春艷,王生. 大側(cè)隙外嚙合齒輪泵的困油特性和流量特性[J]. 機械科學(xué)與技術(shù),2015,34(3):454-458.

Li Yulong, Liu Chunyan, Wang Sheng. The trapped oil characteristics and flow characteristics with large backlash gap in external gear pumps[J]. Mechanical Science and Technology for Aerospace Engineering, 2015, 34(3): 454-458. (in Chinese with English abstract)

[6] Dalpiaz G, Fernández del Rincón A, Mucchi E. Modeling meshing phenomena in gear pumps[C]//Proceedings of ISMA 2004, Leuven, Belgium, September 2004: 949-963.

[7] Eaton M, Keogh P S, Edge K A. Modeling and simulation of pressures within the meshing teeth of gear pumps[C]// Proceedings of International Conference on Recent Advances in Aerospace Actuation Systems and Components, Toulouse, France, 2001.

[8] Borghi M, Milani M, Paltrinieri F, et al. The Influence of Cavitation and Aeration on Gear Pumps and Motors Meshing Volumes Pressures[C]// ASME 2006 International Mechanical Engineering Congress and Exposition, 2006:47-56.

[9] 李玉龍,孫付春. 齒輪泵齒側(cè)間隙與卸荷槽間距關(guān)系的定量分析[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(22):63-68.

Li Yulong, Sun Fuchun. Quantitative analysis of relationship between backlash value and distance of two relief grooves in external gear pump [J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(22): 63-68. (in Chinese with English abstract)

[10] 李玉龍,孫付春. 齒輪泵困油的分析模型及側(cè)隙計算[J]. 排灌機械工程學(xué)報,2011,29(2):118-122.

Li Yulong, Sun Fuchun. Analysis model on trapped oil and backlash calculation in external gear pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2011, 29(2): 118-122. (in Chinese with English abstract)

[11] 李玉龍. 外嚙合齒輪泵側(cè)隙流量的精確計算[J]. 排灌機械工程學(xué)報,2013,31(8):656-661.

Li Yulong. Accurate calculation of backlash flow in external gear pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(8): 656-661. (in Chinese with English abstract)

[12] 李玉龍,唐茂. 困油壓力對齒輪泵流量脈動的影響分析[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(20):60-66.

Li Yulong, Tang Mao. Influence analysis of trapped oil pressure on flow pulsation in external gear pumps[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(20): 60-66. (in Chinese with English abstract)

[13] 何存興. 液壓元件[M]. 北京:機械工業(yè)出版社,1985.

[14] 河北遠東泵業(yè)有限公司.怎樣檢查齒輪泵齒輪嚙合狀況[EB/OL].[2009-10-30].http://www.Chilunbeng.org/Information/ Info-show. asp.

[15] 何培雙.無側(cè)隙嚙合齒輪泵[J]. 液壓與氣動,2004(7): 62-63.

He Peishuang. Gear pump of meshing engagement without backlash[J]. Chinese Hydraulics & Pneumatics, 2004(7): 62-63. (in Chinese with English abstract)

[16] 甘學(xué)輝,侯東海,吳曉鈴. 斜齒齒輪泵無側(cè)隙嚙合困油特性的研究[J]. 機械工程學(xué)報,2003,39(2):145-148.

Gan Xuehui, Hou Donghai, Wu Xiaoling. Research on trapping property of no clearance helical gear pump[J]. Chinese Journal of Mechanical Engineering, 2003, 39(2): 145-148. (in Chinese with English abstract)

[17] Yanada H, Ichikawa T, Itsuji Y. 齒輪泵困油現(xiàn)象研究[J]. 液壓與氣動,1988(3):47-52.

Yanada H, Ichikawa T, Itsuji Y. The phenomenon of trapped-oil in gear pump[J]. Chinese Hydraulics & Pneumatics, 1988(3): 47-52. (in Chinese with English abstract)

[18] 甘學(xué)輝,吳曉鈴,向平. 斜齒齒輪泵有側(cè)隙嚙合困油特性的研究[J]. 機械傳動,2002,26(2):8-10.

Gan Xuehui, Wu Xiaoling, Xiang Ping. Research on trapping property helical gear pump with clearance[J]. Journal of Mechanical Transmission, 2002, 26(2): 8-10. (in Chinese with English abstract)

[19] 李玉龍,劉焜. 外嚙合齒輪泵困油面積和卸荷面積計算式的建立[J]. 農(nóng)業(yè)機械學(xué)報,2009,40(6):203-207.

Li Yulong, Liu Kun. Established formulas for trapped-oil area and relief-load area of external spur-gear pump[J]. Transactions of the Chinese Society of Agricultural Machinery, 2009, 40(6): 203-207. (in Chinese with English abstract)

[20] 李玉龍,劉焜. 外嚙合齒輪泵卸荷面積的精確仿真分析[J].農(nóng)業(yè)工程學(xué)報,2009,25(3):42-45.

Li Yulong, Liu Kun. Precise simulation analysis of relief area of external spur-gear pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(3): 42-45. (in Chinese with English abstract)

[21] 王建,吳炳勝,馬戎,等. 齒輪泵卸荷槽設(shè)計的新方法[J]. 機械傳動,2013,37(12):73-76.

Wang Jian, Wu Bingsheng, Ma Rong, et al. New method of gear pump unloading groove design[J]. Journal of Mechanical Transmission, 2013, 37(12): 73-76. (in Chinese with English abstract)

[22] 臧克江,周欣,顧立志,等. 降低齒輪泵困油壓力新方法的研究[J]. 中國機械工程,2004,15(7):579-582. Zang Kejiang, Zhou Xin, Gu Lizhi, et al. Study on new method of reducing the trap pressure of gear pump[J]. China Mechanical Engineering, 2004, 15(7): 579-582. (in Chinese with English abstract)

[23] 李玉龍. 齒輪泵圓形卸荷槽下的困油壓力分析[J]. 中國農(nóng)業(yè)大學(xué)學(xué)報,2014,19(4):155-160.

Li Yulong. Trapped-oil pressure analysis of gear pump with arc unloading groove[J]. Journal of China Agricultural University, 2014, 19(4): 155-160. (in Chinese with English abstract)

[24] 李玉龍,孫付春,唐茂. 高速齒輪泵漸開線型卸荷槽的設(shè)計與分析[J]. 機械科學(xué)與技術(shù),2014,33(9):1377-1381.

Li Yulong, Sun Fuchun, Tang Mao. Design and analysis of the relief groove with involutes shape in the higher speed external gear pumps[J]. Mechanical Science and Technology for Aerospace Engineering, 2014, 33(9): 1377-1381. (in Chinese with English abstract)

[25] 李玉龍,袁影,吳柏強,等. 泵用齒輪副根切重合度的公式創(chuàng)建[J]. 機床與液壓,2017,45(1):84-88.

Li Yulong, Yuan Ying, Wu Boqiang, et al. A new contact ratio formula created for gear pairs with undercut in external gear pumps[J]. Machine Tool & Hydraulics, 2017, 45(1): 84-88. (in Chinese with English abstract)

[26] 李玉龍,孫付春,姚旗,等. 航天器用超低黏度齒輪泵輕量化設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(21):109-114.

Li Yulong, Sun Fuchun, Yao Qi, et al. Lightweight design of gear pumps with ultra low viscosity medium used in spacecraft[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(21): 109-114. (in Chinese with English abstract)

[27] 李玉龍. 齒輪泵最大困油壓力解析式的建立與驗證[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(11):71-77.

Li Yulong. Establishment and verification of analytic formula for maximum trapped-oil pressure in external gear pump[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(11): 71-77. (in Chinese with English abstract).

[28] 李玉龍. 外嚙合齒輪泵困油膨脹區(qū)的最小壓力[J]. 排灌機械工程學(xué)報,2013,31(12):1049-1055.

Li Yulong. The minimal trapped-oil pressure of expansion stage in external gear pump[J]. Journal of Drainage and Irrigation Machinery Engineering, 2013, 31(12): 1049-1055. (in Chinese with English abstract)

[29] 李玉龍,劉焜. 外嚙合齒輪泵動態(tài)困油模型及其參數(shù)影響分析[J]. 農(nóng)業(yè)機械學(xué)報,2009,40(9):214-219.

Li Yulong, Liu Ku. Dynamic model of trapped oil and effect of related variables on trapped oil pressure in external spur-gear pump[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(9): 214-219. (in Chinese with English abstract)

[30] 陳康,許同樂,王營博. 基于振動與流場耦合齒輪泵困油現(xiàn)象分析[J]. 機床與液壓,2016,44(19):133-137.

Chen Kang, Xu Tongle, Wang Yingbo. Analysis of gear pump oil trapping phenomenon based on vibration and flow field coupling[J]. Machine Tool & Hydraulics, 2016, 44(19): 133-137. (in Chinese with English abstract)

Demarcated standard and verification of backlash relief in external gear pumps

Sun Fuchun, Li Yulong, Wen Changming, Zhong Fei

(,,610106,)

The gear pumps are used for pumping the working fluid, and its key component is a pair of gear pairs. In the power transmission, the backlash of the gear pair is used to form the lubricating oil film to avoid sticking due to the friction and heat expansion of the gear teeth, but it also affects the stability of the oil film. The choice of backlash in the gear pump is also limited. The backlash of the gear has an influence on the trapped oil performance and volumetric efficiency of the gear pump, while the definition whether there is a backlash existed and the definition what is large backlash and what is small backlash is vague. Based on the common requirements of different backlash values to transmission performance and trapped oil performance, the special trapped-oil circulation and trapped-oil process were analyzed in this study, and the emphasis was on the double teeth meshing range and the single tooth meshing range. From the connection aspect of two different trapped-oil volumes in double teeth meshed range and the improvement aspect of trapped oil performance in single tooth meshed range, we used to separately calculate dynamic trapped-oil flow rate and its maximum value under the two different ranges of double teeth meshing and single tooth meshing, as well as the different formulas to separately calculate dynamic backlash values, its mean value, its lower limiting value used for the connection in double teeth meshed range, and the relief in single tooth meshed range. From such exercises, we derived the definition what was large backlash and what was small backlash. The backlash therefore was defined as, a small backlash was when the backlash value was less than the maximum peak of the backlash for connection, and when the backlash value was greater than the maximum peak of the backlash for connection and less than the maximum peak of the backlash for trapped oil relief, it was a large backlash, and when the backlash value was greater than the maximum peak of the backlash for trapped oil relief, it belonged to the large backlash. An instance of an external gear pump which backlash was 30, 50, 200m, was operated and its operation results were analyzed by the theory we developed. The results showed that when the trapped oil flow peak ratio of the unloading area and the connected area was 3, the unloading burden of the former was large. In fact, the really communicating to the communication area required up 2.41 mm backlash, which did not actually exist. So the gear pairs used in gear pumps was the gear pairs with backlash forever. The absolute connection of each other of two different trapped-oil volumes in double teeth meshed range and the absolute trapped-oil relief in single tooth meshed range were nonexistent, but only relatively existed under a certain permission pressure difference. As long as the trapped-oil relief requirement in single tooth meshed range was satisfied by an adopted backlash value, then the connection of two different trapped-oil volumes each other would naturally be met by the adopted backlash value. Backlash for trapped oil relief was larger than the backlash for connection, which can be used in definition what was large backlash and what was small backlash, and the backlash for trapped oil relief can be used as the upper limit. The error in the calculation and experiment was 7.5%, which was reasonable, and the upper limit of the safety margin was 20%, which was reliable. This research provided a reference for distinguishing large backlash between small backlash by Pump backlash defining, and which also provided a theoretical basis for the subsequent studies.

pumps; vibrations; gear pumps; backlash for connection; backlash for relief; demarcated size; trapped-oil flow rate

10.11975/j.issn.1002-6819.2017.20.008

TH325; TH137.3

A

1002-6819(2017)-20-0061-06

2017-04-18

2017-09-01

四川省自然科學(xué)重點資助項目(16ZA0382);北京衛(wèi)星制造廠資助項目(20804)。

孫付春,博士,副教授,主要從事農(nóng)業(yè)機械方面的基礎(chǔ)研究與應(yīng)用開發(fā)。Email:fch.sun@163.com

孫付春,李玉龍,文昌明,鐘 飛. 齒輪泵側(cè)隙卸荷的界定標準與驗證[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(20):61-66. doi:10.11975/j.issn.1002-6819.2017.20.008 http://www.tcsae.org

Sun Fuchun, Li Yulong, Wen Changming, Zhong Fei. Demarcated standard and verification of backlash relief in external gear pumps[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(20): 61-66. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.20.008 http://www.tcsae.org

猜你喜歡
齒輪泵卸荷玉龍
卸荷式擋墻結(jié)構(gòu)研究綜述
深部開采巖體圍壓卸荷-滲流致拉破裂機制
基于AK-IS法的航空齒輪泵滑動軸承可靠性分析
采煤機扭矩軸卸荷槽數(shù)值模擬分析
復(fù)合內(nèi)齒輪泵參數(shù)優(yōu)化設(shè)計及其性能分析
玉龍云巒
齒輪泵與重型自卸車的取力器直連型式淺析
紅山文化“玉龍”中的“猿”
高黏度齒輪泵徑向力的消除
循環(huán)球轉(zhuǎn)向器卸荷閥的改進設(shè)計
楚雄市| 大渡口区| 朝阳区| 建昌县| 漾濞| 万年县| 西藏| 来凤县| 甘泉县| 杭锦后旗| 老河口市| 格尔木市| 克什克腾旗| 犍为县| 商洛市| 黑山县| 通辽市| 霍林郭勒市| 郯城县| 济宁市| 虹口区| 巴青县| 老河口市| 绍兴市| 玉门市| 阳江市| 黑河市| 泾阳县| 濮阳县| 巍山| 汝州市| 新疆| 丽江市| 石门县| 阿克苏市| 乌兰浩特市| 临沧市| 九龙县| 明溪县| 侯马市| 台前县|