趙雷霖,范鑫,聶星,梁成真,張銳,孫國清,孟志剛,林敏,王遠(yuǎn),郭三堆
?
異源表達(dá)轉(zhuǎn)基因煙草的耐鹽耐旱性
趙雷霖,范鑫,聶星,梁成真,張銳,孫國清,孟志剛,林敏,王遠(yuǎn),郭三堆
(中國農(nóng)業(yè)科學(xué)院生物技術(shù)研究所,北京 100081)
IrrE是從耐輻射異常球菌中發(fā)現(xiàn)的全局調(diào)控蛋白,主要通過修復(fù)強(qiáng)輻射等逆境條件下DNA損傷,提高耐輻射異常球菌對(duì)極端逆境環(huán)境的抗性。研究按植物密碼子優(yōu)化的后導(dǎo)入煙草對(duì)轉(zhuǎn)基因煙草耐逆能力的提高,為棉花等作物耐逆育種研究打下基礎(chǔ)。按照植物密碼子優(yōu)化細(xì)菌并合成基因;通過酶切連接法構(gòu)建植物表達(dá)載體;通過葉盤法轉(zhuǎn)化煙草并PCR驗(yàn)證獲得陽性轉(zhuǎn)基因再生苗;通過實(shí)時(shí)熒光定量PCR(qRT-PCR)分析轉(zhuǎn)基因株系中的表達(dá)量;通過蛋白免疫印跡法(Western blot)檢測IrrE編碼蛋白;通過NaCl和甘露醇模擬鹽處理和干旱處理分析純和轉(zhuǎn)基因株系的耐鹽耐旱性,通過測定抗逆相關(guān)生理指標(biāo)鑒定其對(duì)植物耐逆的貢獻(xiàn)。按照植物密碼子對(duì)進(jìn)行改造,共優(yōu)化了241個(gè)密碼子;構(gòu)建了高效植物表達(dá)載體GBI-IE;利用除草劑草甘膦作為篩選劑獲得轉(zhuǎn)基因再生幼苗,并通過PCR驗(yàn)證共獲得15個(gè)獨(dú)立的轉(zhuǎn)基因株系;通過qRT-PCR分析從中選取兩個(gè)表達(dá)量最高的株系GO1和GO2進(jìn)行后續(xù)的抗逆性分析;Western blot驗(yàn)證IrrE編碼蛋白在GO1和GO2中能正確翻譯。轉(zhuǎn)基因煙草耐鹽耐旱性分析:種子萌發(fā)試驗(yàn)表明,正常1/2 MS培養(yǎng)基上,轉(zhuǎn)基因株系GO1和GO2發(fā)芽率和非轉(zhuǎn)基因野生型對(duì)照之間沒有明顯的差異。然而250 mmol·L-1NaCl培養(yǎng)基上GO1和GO2萌發(fā)率分別為78.8%和90.0%,野生型僅為10.3%,分別提高了68.5%和79.7%。類似地,300 mmol·L-1甘露醇條件下,野生型的萌發(fā)率為39.7%,轉(zhuǎn)基因株系GO1和GO2分別提高了42.9%和50.8%;正常萌發(fā)的種子移栽到250 mmol·L-1NaCl和300 mmol·L-1甘露醇條件12 d后,轉(zhuǎn)基因株系根長、側(cè)根數(shù)以及鮮重等生理指標(biāo)顯著高于野生型對(duì)照;溫室中正常生長30 d的苗期煙草在250 mmol·L-1NaCl處理下,轉(zhuǎn)基因煙草SOD、CAT活性比野生型對(duì)照分別提高了48.80%和88.55%,而MDA含量比野生型對(duì)照降低了61.61%,脅迫響應(yīng)基因、、、在GO1和GO2轉(zhuǎn)基因株系中表達(dá)量均顯著高于非轉(zhuǎn)基因野生型。和鹽處理結(jié)果類似,300 mmol·L-1甘露醇的處理下,轉(zhuǎn)基因煙草的耐旱生理生化指標(biāo)均優(yōu)于非轉(zhuǎn)基因?qū)φ?。煙草中異源表達(dá)耐輻射異常球菌可以顯著提高耐鹽耐旱性;其多效性耐非生物脅迫能力的提高表明其可作為植物耐逆基因工程的優(yōu)良基因源。
密碼子優(yōu)化;;轉(zhuǎn)基因煙草;耐旱耐鹽
【研究意義】干旱和鹽堿是制約作物發(fā)展的重要環(huán)境因素,非生物逆境脅迫下作物生長緩慢[1]、黃化早衰[2-3]、產(chǎn)量降低[4],對(duì)農(nóng)業(yè)生產(chǎn)造成嚴(yán)重的損害。植物自身可通過受體蛋白感知干旱、鹽、溫度等逆境信號(hào)[5],通過激素和信號(hào)轉(zhuǎn)導(dǎo)基因傳遞,從而激活抗逆信號(hào),實(shí)現(xiàn)對(duì)逆境的適應(yīng)。目前,盡管大量的逆境相關(guān)基因被克隆和報(bào)道,然而可用于極端環(huán)境下作物遺傳改良的報(bào)道仍然非常少。蘇云金芽孢桿菌基因在棉花抗棉鈴蟲中的成功應(yīng)用[6],為利用外源微生物基因改良作物抗蟲等農(nóng)藝性狀提供了重要的參考。然而,異源表達(dá)微生物基因提高植物抗非生物脅迫的報(bào)道仍然非常的少,是否存在類似Bt蛋白提高植物抗蟲效果的優(yōu)良基因有待深入研究?!厩叭搜芯窟M(jìn)展】耐輻射異常球菌()是一類可生存于極端環(huán)境的微生物,對(duì)電離輻射、紫外線、干旱、絲裂霉素C等均具有抗性[7-8]。Udupa等[9]從耐輻射異常球菌302菌株中分離得到了41株電離輻射敏感菌株,這些敏感菌株被劃分成irrA至irrP的16個(gè)亞群,每個(gè)亞群均含有與電離輻射抗性相關(guān)基因的差異突變;Earl等[10]鑒定出irrE亞群中的唯一菌株IRS24,此菌株不僅對(duì)電離輻射抗性低而且對(duì)紫外輻射及絲裂霉素C都敏感,研究發(fā)現(xiàn)導(dǎo)致這些抗性減弱是由于突變所致,位于耐輻射異常球菌的1號(hào)染色體,編號(hào)為DR_0167,全長987 bp,編碼328個(gè)氨基酸,大小為35 kD。IrrE蛋白是由3個(gè)結(jié)構(gòu)域構(gòu)成的獨(dú)特組合:一個(gè)類鋅肽結(jié)構(gòu)域,一個(gè)HTH(螺旋-轉(zhuǎn)角-螺旋)結(jié)構(gòu)域和一個(gè)類GAF結(jié)構(gòu)域[11]。Lu等[12-13]通過分析突變株與野生型菌株受到輻射前后的蛋白組差異,發(fā)現(xiàn)存在時(shí),31種蛋白表達(dá)量顯著上調(diào),除RecA與PprA參與DNA損傷修復(fù)[14-15],其他蛋白涉及了轉(zhuǎn)錄調(diào)控、能量代謝和應(yīng)激反應(yīng)等6個(gè)不同通路[12]。2014年,Ludanyi等[16]通過體內(nèi)和體外實(shí)驗(yàn)證明IrrE是一種金屬蛋白酶,可以與DdrO(DNA損傷誘導(dǎo)基因的負(fù)調(diào)節(jié)因子)相互作用[17],使其降解并促進(jìn)DNA損傷誘導(dǎo)基因的表達(dá),進(jìn)而提高耐輻射異常球菌的輻射、干旱等抗性。此外,樂東海等[18]將轉(zhuǎn)入大腸桿菌,轉(zhuǎn)化菌株的抗氧化性顯著提高;在枯草芽胞桿菌中表達(dá),也能增強(qiáng)細(xì)胞的抗氧化與紫外輻射能力[19],PAN等[20]將此基因轉(zhuǎn)入大腸桿菌,IrrE蛋白顯著提高大腸桿菌細(xì)胞對(duì)鹽、氧化、滲透和熱等多種非生物脅迫的耐受性,同時(shí)驗(yàn)證了該基因提高油菜耐鹽能力的作用。上述研究結(jié)果說明對(duì)生物耐逆性提高具有顯著的生物學(xué)功能?!颈狙芯壳腥朦c(diǎn)】IrrE對(duì)耐輻射異常球菌的干旱和輻射等抗性具有重要作用,且相關(guān)研究表明異源表達(dá)可顯著提高宿主的抗逆性[21]。然而,按照植物密碼子優(yōu)化后導(dǎo)入植物,對(duì)植物抗逆性的提高目前仍沒有報(bào)道。研究優(yōu)化的轉(zhuǎn)基因煙草的耐鹽耐旱性,進(jìn)一步了解在植物中的抗逆功能。【擬解決的關(guān)鍵問題】將優(yōu)化的轉(zhuǎn)入煙草,鑒定轉(zhuǎn)基因煙草的耐鹽耐旱性,并分析轉(zhuǎn)基因植物的生理生化變化,以期獲得改造后的耐輻射異常球菌可顯著提高轉(zhuǎn)基因植物耐旱耐鹽性,為植物耐逆基因工程提供優(yōu)良基因源。
試驗(yàn)于2016年在中國農(nóng)業(yè)科學(xué)院生物技術(shù)研究所完成。
序列來源于中國農(nóng)業(yè)科學(xué)院生物技術(shù)研究所林敏研究員課題組,基因合成由上海生工生物工程有限公司完成,中間載體pUC-19、植物表達(dá)載體pBI-121、農(nóng)桿菌GV3101感受態(tài)、煙草種子NC89均由生物技術(shù)研究所郭三堆研究員課題組保存。質(zhì)粒小提試劑盒購于GenStar公司,d Ⅲ、RⅠ等內(nèi)切酶購于NEB公司,膠回收試劑盒購于Omega公司,植物DNA提取試劑盒購于天根公司,植物RNA提取試劑盒購于原平皓公司,反轉(zhuǎn)錄試劑盒和實(shí)時(shí)熒光定量PCR(qRT-PCR)試劑盒均購于全式金公司,高保真DNA聚合酶、In-Fusion HD Cloning Kit購于TaKaRa公司,常規(guī)試劑購于拜爾迪公司,引物(表1)由上海生工生物工程公司合成。Western blot用一抗由中國農(nóng)業(yè)科學(xué)院生物技術(shù)研究所陸偉老師提供,其他試劑均購于康為試劑公司。
為了轉(zhuǎn)基因株系易于篩選,對(duì)pBI-121載體進(jìn)行改造,利用[22]替換抗性標(biāo)記基因,獲得植物表達(dá)載體GBI。編碼序列長987 bp,進(jìn)行密碼子優(yōu)化并將基因內(nèi)部的Ⅰ、Ⅰ、d Ⅲ、RⅠ和HⅠ酶切位點(diǎn)鈍化,在ORF兩端加上Ⅰ和Ⅰ酶切位點(diǎn),連接于中間載體上,獲得中間載體pUC-irrE,載體表達(dá)盒的一端用d Ⅲ酶切后,插入linker-02,鈍化d Ⅲ位點(diǎn),插入RⅠ位點(diǎn),用coRⅠ單酶切的方式切下表達(dá)盒片段,連接到GBI上,獲得植物高效表達(dá)載體GBI-IE。
將GBI-IE載體轉(zhuǎn)化農(nóng)桿菌GV3101感受態(tài),葉盤法轉(zhuǎn)化煙草,使用草甘膦篩選培養(yǎng)4—5周后,愈傷組織開始分化,待再生苗長至3—4片葉子時(shí)轉(zhuǎn)接到生根培養(yǎng)基,幼苗長至10 cm左右開蓋,PCR鑒定陽性轉(zhuǎn)基因植株后,煉苗1—2 d,移栽至培養(yǎng)盆于溫室培養(yǎng)。
取幼苗自頂部向下第3葉,利用植物RNA提取試劑盒(TIANGEN,DP432)提取材料總RNA,反轉(zhuǎn)錄獲得cDNA,利用KOD SYBR qPCR MIX(TOYOBO,QKD-201)進(jìn)行實(shí)時(shí)熒光定量PCR檢測,應(yīng)用BIO-RAD Mini Opticon熒光定量分析儀進(jìn)行qRT-PCR反應(yīng)和分析。煙草作為內(nèi)參基因。按照2-ΔΔCt法計(jì)算目的基因的相對(duì)表達(dá)量[23]。
利用RIPA裂解液提取煙草葉片總蛋白,煮沸變性后,稀釋5倍取30 μL進(jìn)行SDS-PAGE電泳,濃縮膠電壓為80 V,待溴酚藍(lán)指示劑遷移至分離膠、分子量標(biāo)準(zhǔn)各條帶略有分開后,換電壓至120 V,待溴酚藍(lán)遷移至距離凝膠底部0.5 cm時(shí)結(jié)束電泳;轉(zhuǎn)膜,100 mA(約40 V)穩(wěn)流轉(zhuǎn)100 min;5% BSA封閉1 h;一抗按照1﹕5 000倍稀釋,4℃孵育過夜,TBST洗膜3次;二抗按照1﹕5 000比例稀釋,孵育1 h,TBST洗膜4次,曝光[24]。
取適量野生型和轉(zhuǎn)基因煙草種子于無菌2 mL離心管中,75%酒精消毒30 s,無菌水洗一次,15% NaClO 25℃消毒30 min,無菌水洗5—6遍,點(diǎn)播于含有250 mmol·L-1NaCl和300 mmol·L-1甘露醇的1/2 MS培養(yǎng)基上,黑暗1 d后,28℃光照培養(yǎng),每隔24 h統(tǒng)計(jì)發(fā)芽率;正常萌發(fā)的種子移栽到250 mmol·L-1NaCl和300 mmol·L-1甘露醇條件12 d后,統(tǒng)計(jì)根長、側(cè)根數(shù)和鮮重,每個(gè)株系取10株;煙草于溫室培養(yǎng)30 d后,250 mmol·L-1NaCl和300 mmol·L-1甘露醇處理,24 h后取材料檢測和相關(guān)脅迫響應(yīng)因子的表達(dá)量,一周后采集照片并測定SOD、CAT活性和MDA含量,每個(gè)株系取6株。
表1 引物信息
來自于耐輻射異常球菌,基因全長987 bp,編碼329個(gè)氨基酸,在轉(zhuǎn)入植物之前,與植物基因組比對(duì),其中有241個(gè)氨基酸的密碼子使用的是非植物偏愛密碼子,占比達(dá)到73.25%。理論上來說,若不對(duì)其進(jìn)行密碼子優(yōu)化,直接導(dǎo)入植物,會(huì)造成基因表達(dá)量低甚至不表達(dá)[25]。因此,按植物密碼子對(duì)其進(jìn)行了優(yōu)化,旨在讓在植物中正確翻譯并高效表達(dá)。共優(yōu)化290個(gè)堿基,涉及241個(gè)密碼子,編碼蛋白氨基酸序列和改造前完全相同(圖1)。
棉花遺傳轉(zhuǎn)化費(fèi)時(shí)費(fèi)力,為提高轉(zhuǎn)基因苗陽性率,首先將載體pBI-121卡拉霉素抗性標(biāo)記基因替換成為草甘膦抗性基因。將與Cozk、Kozak和ployA等元件連接后克隆到GBI載體上,構(gòu)建植物表達(dá)載體GBI-IE(圖2-A)。葉盤法轉(zhuǎn)化煙草(圖2-B),使用100 mg·L-1草甘膦篩選和PCR檢測,共獲得15個(gè)獨(dú)立的轉(zhuǎn)基因陽性株系(圖2-C)。根據(jù)qRT-PCR檢測結(jié)果,選擇2個(gè)表達(dá)量最高的轉(zhuǎn)基因株系,并命名為GO1和GO2進(jìn)行耐鹽耐旱試驗(yàn)(圖2-D),為確定在轉(zhuǎn)基因煙草中蛋白正常翻譯,進(jìn)一步利用Western blot檢測轉(zhuǎn)基因煙草GO1和GO2中目標(biāo)蛋白的表達(dá)(圖2-E),轉(zhuǎn)基因煙草在35 kD處清晰地檢測到IrrE蛋白表達(dá),而野生型非轉(zhuǎn)基因?qū)φ胀耆珱]有條帶,說明GO1和GO2中IrrE編碼蛋白正確的翻譯。
在正常1/2 MS培養(yǎng)基上,轉(zhuǎn)基因株系GO1和GO2發(fā)芽率和野生型對(duì)照之間沒有明顯差異(圖3-A和圖3-B);而250 mmol·L-1NaCl培養(yǎng)基中,GO1和GO2萌發(fā)率分別為78.8%和90.0%,野生型僅為10.3%(圖3-C);300 mmol·L-1甘露醇條件下,與野生型對(duì)照相比,轉(zhuǎn)基因株系GO1和GO2萌發(fā)率分別提高了42.9%和50.8%(圖3-D)。
正常萌發(fā)的種子移栽到正常培養(yǎng)基12 d后,轉(zhuǎn)基因GO1和GO2與對(duì)照組生長基本一致,根長(圖4-A和圖4-B)、側(cè)根數(shù)(圖4-C)和鮮重(圖4-D)無顯著差異;而移栽到含250 mmol·L-1NaCl培養(yǎng)基上,與對(duì)照相比,轉(zhuǎn)基因GO1和GO2的平均根長提高46.9%和53.3%,平均側(cè)根數(shù)提高3和3.34倍,平均鮮重提高2.29和2.31倍;移栽到300 mmol·L-1甘露醇培養(yǎng)基上,轉(zhuǎn)基因GO1和GO2的平均根長增加46.1%和58.4%,平均側(cè)根數(shù)增加2.29和2倍,平均鮮重增加3和3.33倍。
將正常萌發(fā)的GO1、GO2和野生型煙草移栽至溫室中培養(yǎng)30 d后,進(jìn)行鹽和干旱處理。與野生型相比,轉(zhuǎn)基因煙草無論耐旱還是耐鹽害能力均明顯提高(圖5-A)。
正常生長條件下,GO1、GO2與野生型SOD(圖5-B)、CAT活性(圖5-C)和MDA含量(圖5-D)無明顯差異;250 mmol·L-1NaCl處理后,野生型煙草的SOD活性為79.08 U·g-1FW,轉(zhuǎn)基因GO1和GO2的SOD活性分別為122.07和175.84 U·g-1FW,野生型煙草的CAT活性為84.00 U·g-1FW,轉(zhuǎn)基因煙草GO1和GO2的CAT活性分別為123.74和127.81 U·g-1FW;野生型煙草的MDA含量為74.13 nmol·g-1FW,轉(zhuǎn)基因煙草GO1和GO2的MDA含量分別為28.70和28.16 nmol·g-1FW;干旱處理后,轉(zhuǎn)基因煙草GO1和GO2的SOD活性比野生型分別提升了56.27和74.58 U·g-1FW,CAT活性提升了26.65和41.55 U·g-1FW,MDA含量降低了24.73和27.83 nmol·g-1FW。
圖1 棉花偏好性密碼子優(yōu)化前后irrE編碼區(qū)核苷酸(A)和編碼蛋白氨基酸(B)序列比較
A:載體圖譜;B:轉(zhuǎn)基因再生株系的獲得;C:T0代陽性植株P(guān)CR鑒定,M:DNA Marker,CK:野生型對(duì)照,1—13:轉(zhuǎn)基因株系;D:GO1和GO2中irrE的表達(dá)量檢測;E:蛋白免疫印跡檢測IrrE蛋白
A:野生型和GO1、GO2在不同培養(yǎng)基上第8天的萌發(fā)情況;B:野生型和GO1、GO2在1/2 MS培養(yǎng)基上的萌發(fā)率;C:野生型和GO1、GO2在含有250 mmol·L-1 NaCl培養(yǎng)基上的萌發(fā)率;D:野生型和GO1、GO2在含有300 mmol·L-1甘露醇培養(yǎng)基上的萌發(fā)率
A:250 mmol·L-1NaCl和300 mmol·L-1甘露醇條件12 d后野生型和轉(zhuǎn)基因GO1和GO2的煙草;B:根長;C:側(cè)根數(shù);D:鮮重
A: After treatment of 250 mmol·L-1NaCl and 300 mmol·L-1mannitol for 12 days, WT and GO1, GO2; B: Root length; C: Lateral roots number; D: Fresh weight
“*”和“**”分別表示在<0.05 和<0.01水平上差異顯著。下同
“* ” and “**” indicate significant difference at<0.05 and<0.01 level, respectively. The same as below
圖4 轉(zhuǎn)基因株系和野生型根長、側(cè)根數(shù)和鮮重比較
Fig. 4 Comparison of root length, lateral roots number and fresh weight of transgenic lines and WT
A:正常生長條件和脅迫處理的表型(野生型和GO1株系),鹽處理:250 mmol·L-1 NaCl,干旱處理:300 mmol·L-1甘露醇;B:SOD活性;C:CAT活性;D:MDA含量
qRT-PCR分析表明,250 mmol·L-1NaCl和300 mmol·L-1甘露醇處理下,脅迫應(yīng)答因子NtABF2(ABRE binding factor)[26]、Ntzfp(osmotic stress-induced zinc-finger protein)[27]、NtCDPK2(calcium dependent protein kinase)[28]以及水通道蛋白NtLEA5[29]等編碼基因表達(dá)量均顯著上調(diào)(圖6)。在正常生長條件下,野生型和轉(zhuǎn)基因GO1、GO2表達(dá)量基本一致,然而鹽處理后轉(zhuǎn)基因煙草植株的表達(dá)量比野生型提高了2倍,干旱處理后提高了1倍;、、無論正常生長條件下還是鹽脅迫和甘露醇處理下,轉(zhuǎn)基因植株的表達(dá)量均顯著高于野生型。
圖6 鹽和干旱處理下WT和irrE轉(zhuǎn)基因煙草脅迫響應(yīng)相關(guān)基因的表達(dá)分析
植物對(duì)逆境的耐受性是一個(gè)復(fù)雜的性狀,目前已經(jīng)發(fā)現(xiàn)植物中有100多個(gè)基因參與逆境響應(yīng)[30],為了提高作物對(duì)干旱、鹽堿和低溫等的耐受性,很多研究者將與逆境響應(yīng)轉(zhuǎn)錄因子、滲透保護(hù)物質(zhì)生物合成相關(guān)的基因等轉(zhuǎn)入植物,一定程度上提高了植物的耐逆能力[31-33]。然而人為干預(yù)植物逆境響應(yīng)或調(diào)節(jié)基因表達(dá),往往對(duì)植物的生長發(fā)育產(chǎn)生不同程度的影響,進(jìn)而影響其產(chǎn)量和品質(zhì)。利用蘇云金芽孢桿菌提高棉花抗棉鈴蟲能力的成功,為植物耐逆基因工程提供了新的思路。利用改造的微生物耐逆關(guān)鍵基因改良植物耐逆性是否會(huì)取得同樣的成功?目前,僅有零星利用微生物基因改良植物耐逆性的報(bào)道[34-35]。本研究中來源于耐輻射異常球菌,其表達(dá)受到輻射和干旱的強(qiáng)烈誘導(dǎo)[13],推測其編碼蛋白與DNA修復(fù)密切相關(guān)。PAN等[20]在大腸桿菌和油菜中表達(dá),鹽耐受性均顯著提高,臨界鹽濃度350 mmol·L-1處理6周,轉(zhuǎn)基因油菜生長狀況良好,而野生型在鹽處理2周后死亡。本研究對(duì)進(jìn)行植物密碼子優(yōu)化,通過融合多個(gè)表達(dá)增強(qiáng)序列,利用葉盤法轉(zhuǎn)化煙草,轉(zhuǎn)錄水平和翻譯水平檢測均證明在轉(zhuǎn)基因煙草中表達(dá)。正常條件下,轉(zhuǎn)基因煙草與野生型長勢(shì)基本一致,說明導(dǎo)入不干擾轉(zhuǎn)基因植株的生長。然而,250 mmol·L-1NaCl和300 mmol·L-1甘露醇脅迫下,轉(zhuǎn)基因煙草對(duì)高鹽和干旱的耐受性均明顯高于野生型,說明可以提高植物耐鹽和耐旱能力。此外,前期預(yù)實(shí)驗(yàn)證明,野生型煙草在臨界鹽濃度200 mmol·L-1NaCl處理2周后即全部死亡,說明按照植物密碼子優(yōu)化的導(dǎo)入煙草后,可使轉(zhuǎn)基因煙草獲得比臨界鹽濃度更高的耐鹽性。
植物在逆境脅迫下,體內(nèi)會(huì)產(chǎn)生大量的超氧根陰離子和過氧化氫,SOD可以清除超氧根陰離子,CAT清除過氧化氫,減少對(duì)細(xì)胞的傷害;MDA是生物體內(nèi)膜脂過氧化的產(chǎn)物,反映了膜脂過氧化的程度,其值越高,細(xì)胞膜受傷害程度越深;這3個(gè)指標(biāo)是反應(yīng)植物細(xì)胞受傷害程度的重要指標(biāo)[36-37]。通過對(duì)轉(zhuǎn)基因煙草SOD、CAT酶活性和MDA含量進(jìn)行測定,發(fā)現(xiàn)正常生長條件三者含量(活性)水平和野生型之間沒有顯著差異,而干旱和鹽逆境下SOD、CAT酶活性顯著提高,MDA含量顯著降低,這一結(jié)果說明轉(zhuǎn)基因煙草的抗氧化能力顯著高于野生型,膜脂過氧化程度低于野生型,從而提高轉(zhuǎn)基因植物在逆境下的成活率,與奉斌等的研究結(jié)果一致[38]。其中,CAT活性比非轉(zhuǎn)基因煙草平均提高48.80%,SOD活性比非轉(zhuǎn)基因煙草平均提高88.55%,而轉(zhuǎn)細(xì)菌的油菜中CAT表達(dá)量比非轉(zhuǎn)基因油菜平均提高約40%,SOD表達(dá)量比非轉(zhuǎn)基因油菜平均提高約70%,說明轉(zhuǎn)優(yōu)化的植物中的SOD和CAT表達(dá)量均高于轉(zhuǎn)細(xì)菌植物,優(yōu)化的可使轉(zhuǎn)基因植物的清除活性氧能力更強(qiáng)。
耐逆基因的表達(dá)對(duì)植物耐逆性具有直接的指示作用。董仕波等[39]研究表明,可以通過提高Na+/H+轉(zhuǎn)運(yùn)蛋白AtNHX1的表達(dá),進(jìn)而提高轉(zhuǎn)基因擬南芥的鹽脅迫耐受性。而在本研究中,實(shí)時(shí)熒光定量PCR結(jié)果證明轉(zhuǎn)基因煙草中,ABRE結(jié)合因子NtABF2、逆境誘導(dǎo)鋅指蛋白Ntzfp、鈣依賴蛋白激酶NtCDPK2、水通道蛋白NtLEA5表達(dá)量在鹽和干旱脅迫的條件下均顯著高于野生型,這些不同類型逆境響應(yīng)基因的表達(dá)升高也暗示可能通過激活植物多種逆境響應(yīng)提高植物的抗旱和耐鹽性。另外,本研究發(fā)現(xiàn)異源表達(dá)轉(zhuǎn)基因煙草種子萌發(fā)率在甘露醇和鹽逆境下顯著高于非轉(zhuǎn)基因?qū)φ?。萌發(fā)率和成苗率往往存在直接的正相關(guān),對(duì)于很多作物而言,干旱和鹽堿條件下,尤其是東部沿海鹽堿地和西北次生鹽堿地,種子萌發(fā)和成苗對(duì)于后期的產(chǎn)量具有決定性的作用。轉(zhuǎn)基因煙草逆境下萌發(fā)率的提高暗示對(duì)于鹽堿地作物改良具有較好的應(yīng)用前景。
根據(jù)植物密碼子優(yōu)化耐輻射異常球菌并轉(zhuǎn)化模式植物煙草,轉(zhuǎn)基因煙草無論耐旱還是耐鹽能力均顯著提高,表現(xiàn)為在逆境條件下種子萌發(fā)率升高、苗期存活率提高、清除活性氧能力增強(qiáng)和多類逆境響應(yīng)基因表達(dá)激活。推測可通過多種脅迫響應(yīng)途徑正調(diào)控植物的耐鹽耐旱性。
中國農(nóng)業(yè)科學(xué)院生物技術(shù)研究所林敏研究員提供了;周正富老師提供了相關(guān)資料并在研究過程中給予了幫助;陸偉老師提供了IrrE蛋白一抗。在此一并表示感謝!
[1] Li Z G, Duan X Q, Xiong M, Zhou Z H. Methylglyoxal as a novel signal molecule induces the salt tolerance of wheat by regulating the glyoxalase system, the antioxidant system, and osmolytes., 2017, 254(5): 1995-2006.
[2] Nakashima K, Yamaguchishinozaki K, Shinozaki K. The transcriptional regulatory network in the drought response and its crosstalk in abiotic stress responses including drought, cold, and heat., 2014, 5: Article 170.
[3] Liang C, Meng Z, Meng Z, Malik W, Yan R, Lwin K M, Lin F, Wang Y, Sun G, Zhou T, ZHU T, LI J Y, JIN S X, GUO S D. GhABF2, a bZIP transcription factor, confers drought and salinity tolerance in cotton (L.)., 2016, 6: 35040.
[4] Yu L H, Wu S J, Peng Y S, Liu R N, Chen X, Zhao P, Xu P, Zhu J B, Jiao G L, Pei Y, Xiang C B.EDT1/HDG11 improves drought and salt tolerance in cotton and poplar and increases cotton yield in the field., 2015, 14(1): 72.
[5] Yu T F, Xu Z S, Guo J K, Wang Y X, Abernathy B, Fu J D, Chen X, Zhou Y B, Chen M, Ye X G, Ma Y Z. Improved drought tolerance in wheat plants overexpressing a synthetic bacterial cold shock protein gene SeCspA., 2017, 7: 44050.
[6] 張銳, 王遠(yuǎn), 孟志剛, 孫國清, 郭三堆. 國產(chǎn)轉(zhuǎn)基因抗蟲棉研究回顧與展望. 中國農(nóng)業(yè)科技導(dǎo)報(bào), 2007, 9(4): 32-42.
Zhang R, Wang Y, Meng Z G, Sun G Q, Guo S D. Review and prospect of domestic transgenic insect-resistant cotton research., 2007, 9(4): 32-42. (in Chinese)
[7] Agapov A A, Kulbachinskiy A V. Mechanisms of stress resistance and gene regulation in the radioresistant bacterium deinococcus radiodurans., 2015, 80(10): 1201.
[8] Mattimore V, Udupa K S, Berne G A, Battista J R. Genetic characterization of forty ionizing radiation-sensitive strains of: linkage information from transformation., 1995, 177(18): 5232-5237.
[9] Udupa K S, O’Cain P A, Mattimore V, Battista J R. Novel ionizing radiation-sensitive mutants of., 1994, 176(24): 7439.
[10] Earl A M, Mohundro M M, Mian I S, Battista J R. The IrrE protein ofR1 is a novel regulator of recA expression., 2002, 184(22): 6216.
[11] Vujici?-Zagar A, Dulermo R, Le Gorrec M, Vannier F, Servant P, Sommer S, de Groot A, Serre L. Crystal structure of the IrrE protein, a central regulator of DNA damage repair in deinococcaceae., 2009, 386(3): 704-716.
[12] Lu H, Gao G, Xu G, Fan L, Yin L, Shen B, Hua Y.PprI switches on DNA damage response and cellular survival networks after radiation damage., 2009, 8(3): 481.
[13] Bauermeister A, Bentchikou E, Moeller R, Rettberg P. Roles of PprA, IrrE, and RecA in the resistance of, to germicidal and environmentally relevant UV radiation., 2009, 191(12): 913-918.
[14] Randi L, Perrone A, Maturi M, Dal Piaz F, Camerani M, Hochkoeppler A. The DnaE polymerase fromfeatures RecA-dependent DNA polymerase activity., 2016, 36(6): e00419.
[15] Alice D, Philippe G, Johnny L, Sophie Q C, Jean A, Suzanne S, Claire B T, Pascale S. PprA protein is involved in chromosome segregation via its physical and functional interaction with DNA gyrase in irradiatedbacteria., 2016, 1(1): e00036-15.
[16] Ludanyi M, Blanchard L, Dulermo R, Brandelet G, Bellanger L, Pignol D, Lemaire D, Groot A. Radiation response in: IrrE is a metalloprotease that cleaves repressor protein DdrO., 2014, 94(2): 434-449.
[17] Devigne A, Ithurbide S, Bouthier T C, Passot F, Mathieu M, Sommer S, Servant P. DdrO is an essential protein that regulates the radiation desiccation response and the apoptotic-like cell death in the radioresistantbacterium., 2015, 96(5): 1069-1084.
[18] 樂東海, 高冠軍, 華躍進(jìn). 耐輻射球菌在大腸桿菌中表達(dá)增強(qiáng)細(xì)胞抗氧化能力的研究. 微生物學(xué)報(bào), 2004, 44(3): 324-327.
Le D H, Gao G J, Hua Y J.improved antioxidant capacity in., 2004, 44(3): 324-327. (in Chinese)
[19] 高加旺, 謝水波, 唐振平, 劉迎久, 劉金香, 唐東山. 奇球菌基因增強(qiáng)枯草芽孢桿菌細(xì)胞抗性的研究. 南華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2010, 24(1): 78-82.
Gao J W, Xie S B, Tang Z P, Liu Y J, Liu J X, Tang D S.improvedcell resistance, 2010, 24(1): 78-82. (in Chinese)
[20] Pan J, Wang J, Zhou Z F, Yan Y L, Zhang W, Lu W, Ping S W, Dai Q L, Yuan M L, Feng B, HOU X G, ZHANG Y, MA R Q, LIU T T, FENG L, WANG L, CHEN M, Lin M. IrrE, a global regulator of extreme radiation resistance in, enhances salt tolerance inand., 2009, 4(2): e4422.
[21] 陳震, 周正富, 張維, 陳明, 宋淵, 林敏. 耐輻射異常球菌全局調(diào)控蛋白IrrE的研究進(jìn)展. 生物技術(shù)進(jìn)展, 2013, 3(3): 179-184.
CHEN Z, ZHOU Z F, ZHANG W, CHEN M, SONG Y, LIN M. Research progress of the global regulator IrrE in., 2013, 3(3): 179-184. (in Chinese)
[22] Guo B F, Guo Y, Hong H L, Jin L G, Zhang L J, Chang R Z, Lu W, Lin M,Qiu L J. Co-expression ofand glyphosate acetyltransferasegenes conferring high tolerance to glyphosate in soybean., 2015, 6: 847.
[23] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method., 2001, 25(4): 402-408.
[24] Kang C C, Yamauchi K A, Vlassakis J, Sinkala E, Duncombe T A, Herr A E. Single cell-resolution western blotting., 2016, 11(8): 1508.
[25] Perlak F J, Fuchs R L, Dean D A, Mcpherson S L, Fischhoff D A. Modification of the coding sequence enhances plant expression of insect control protein genes., 1991, 88(8): 3324-3328.
[26] Kim S, Kang J Y, Cho D I, Park J H, Kim S Y. ABF2, an ABRE-binding bZIP factor, is an essential component of glucose signaling and its overexpression affects multiple stress tolerance., 2004, 40(1): 75.
[27] Str?her E, Wang X J, Roloff N, Klein P, Husemann A, Dietz K J. Redox-dependent regulation of the stress-induced zinc-finger protein SAP12 in., 2009, 2(2): 357-367.
[28] Estelle M H, Catherine W M C, Michael G, Jeffrey F H, Jung H C, Nigel H, J?rg K, Sheng L, Hugh G N, Michael R S, Martine T, Kay W S, Zhu J K, ALICE C H. TheCDPK-SnRK superfamily of protein kinases., 2003, 132(2): 666-680.
[29] Salleh F M, Evans K, Goodall B, Machin H, Mowla S B, Mur L A, Runions J, Theodoulou F L, Foyer C H, Rogers H J. A novel function for a redox-related LEA protein () in root development and biotic stress responses., 2012, 35(2): 418-429.
[30] Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi- Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray., 2001, 13(1): 61.
[31] Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor., 1999, 17(3): 287.
[32] Zheng X, Chen B, Lu G, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance., 2009, 379(4): 985-989.
[33] Yan H, Jia H, Chen X, Hao L, An H, Guo X. The cotton WRKY transcription factor GhWRKY17 functions in drought and salt stress in transgenicthrough ABA signalling and the modulation of reactive oxygen species production., 2014, 55(12): 2060.
[34] Holmstr?m K O, Somersalo S, Mandal A, Palva T E, Welin B. Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine., 2000, 51(343): 177-185.
[35] Castiglioni P, Warner D, Bensen R J, Anstrom D C, Harrison J, Stoecker M, Abad M, Kumar G, Salvador S, D'Ordine R, Navarro S, BACK S, FERNANDES M, TARGOLLI J, DASGUPTA S, BONIN C, LUETHY M H, HEARD J E. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions., 2008, 147(2): 446.
[36] 尹永強(qiáng), 胡建斌, 鄧明軍. 植物葉片抗氧化系統(tǒng)及其對(duì)逆境脅迫的響應(yīng)研究進(jìn)展. 中國農(nóng)學(xué)通報(bào), 2007, 23(1): 105-110.
Yin Y Q, Hu J B, Deng M J. Plant leaf antioxidant system and its response to stress response, 2007, 23(1): 105-110. (in chinese)
[37] Gill S S, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants., 2010, 48(12): 909.
[38] 奉斌, 代其林, 劉婷婷, 田霞, 龔元亞, 孫英坤, 王勁. NaCl脅迫對(duì)轉(zhuǎn)基因煙草抗氧化酶活性的影響. 吉林農(nóng)業(yè)(學(xué)術(shù)版), 2010(6): 63-64.
Feng B, Dai Q L, Liu T T, Tian X, Gong Y Y, Sun Y K, Wang J. The influence of antioxidant enzyme activity intransgenic tobacco under NaCl treatment., 2010(6): 63-64. (in chinese)
[39] 童仕波, 文國琴, 林敏, 楊毅, 李樹峰. 轉(zhuǎn)耐輻射球菌基因提高擬南芥鹽脅迫耐受性的表型分析. 中國農(nóng)業(yè)科技導(dǎo)報(bào), 2010, 12(4): 90-94.
Tong S B, Wen G Q, Lin M, Yang Y, Li S F. Expression of irrE incan enhance salt tolerance of., 2010, 12(4): 90-94. (in chinese)
(責(zé)任編輯 李莉,岳梅)
Salt and Drought Tolerance in Heterologous-expression ofTransgenic Tobacco
ZHAO leilin, FAN xin, NIE xing, LIANG chengzhen, ZHANG Rui, SUN guoqing, MENG zhigang, LIN Min, WANG Yuan, GUO sandui
(Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081)
IrrE is a protein found in, and it process the transcription regulating function mainly through repairing DNA damage in conditions of strong radiations and other adverse environments. It is of great significance to study the tolerance of optimizedagainst drought and salt in transgenic plants and to lay a theoretical basis of crops resistance breeding.The bacteriacodons were optimized with the plant preferences and the gene was synthesized. efficient plant expression vector was constructed by using the method of enzyme digestion and connection. Leaf disc method was used for transforming tobacco, and the positive regenerated seedlings were screened with PCR. the expression level ofin transgenic strain was analyzed. the IrrE protein was tested using Western blot. pure transgenic generations were recruited and treated with the mannitol and NaCl treatments, which simulated drought and salt conditions. physiological tests were conducted to determine drought and salt tolerance.Thewas modified according to plant codes, and 241 codes were optimized. the efficient plant expression vector GBI-IE was constructed. the regenerated seedlings were screened by herbicide glyphosate, and 15 independent transgenic strains were obtained using PCR, and two highest expression lines, GO1 and GO2, were used for subsequent analysis of tolerance under adverse environmental conditions. Western blot proved that protein IrrE encoded in GO1 and GO2 could be translated correctly. Salt and drought tolerance of transgenic tobacco was analyzed. Germinating experiments displayed that there was no obvious difference between transgenic lines (GO1 and GO2) and non-GMO wild type (WT) in terms of germination rate in 1/2 MS culture medium, however, in medium containing 250 mmol·L-1NaCl, germination rate of GO1 and GO2 was 78.8% and 90.0%, respectively, while the one of the WT was 10.3%, increased by 68.5% and 79.7%, respectively. Similarly, germination rate of WT was 39.7% in medium containing 300 mmol·L-1mannitol, the rate of GO1 and GO2 increased by 42.9% and 50.8%, respectively. Normally germinated seedlings were transplanted into 250 mmol·L-1NaCl and 300 mmol·L-1mannitol environment for 12 days, and root length, lateral roots number and fresh weight of those two transgenic lines were markedly higher than the ones of WT. Tobacco seedlings of 30 days normal growth in the greenhouse were treated with 250 mmol·L-1NaCl of which transgenic tobacco SOD and CAT activity was more 48.80% and 88.55% than WT, respectively, and the MDA content was less 61.61% than WT, In addition, the expression level of drought responsive gene in GO1 and GO2, like,,,, was significantly higher than WT. Similarly, the changes of physiological and biochemical indexes in transgenetic lines in 300 mmol·L-1mannitol treatment were higher than the ones in WT.Expression offromremarkably improved the tolerance of tobacco to drought and salt stresses in which the pleiotropy could be beneficial gene resource of gene engineering about resistance to stress in plant.
codon optimization;; transgenic tobacco; drought and salt tolerance
2017-03-30;接受日期:2017-05-03
國家轉(zhuǎn)基因生物新品種培育科技重大專項(xiàng)(2016ZX08005-004)、國家“863”計(jì)劃(2013AA102601-2)
趙雷霖,Tel:010-82106129;E-mail:happy_lin92@163.com。通信作者王遠(yuǎn),E-mail:wangyuan07@caas.cn。通信作者郭三堆,E-mail:guosandui@caas.cn