劉新倫,王超,牛麗華,劉志立,張錄德,陳春環(huán),張榮琦,張宏, 王長有,王亞娟,田增榮,吉萬全
?
普通小麥-十倍體長穗偃麥草衍生新品種抗赤霉病基因的分子鑒別
劉新倫1,王超1,牛麗華1,劉志立2,張錄德3,陳春環(huán)1,張榮琦1,張宏1, 王長有1,王亞娟1,田增榮1,吉萬全1
(1西北農(nóng)林科技大學農(nóng)學院/旱區(qū)作物逆境生物學國家重點實驗室,陜西楊凌712100;2陜西省城固縣種子管理站,陜西漢中 723200;3陜西省扶貧開發(fā)辦公室,西安 710006)
赤霉?。‵usarium head blight,F(xiàn)HB)是世界范圍內(nèi)嚴重危害小麥生產(chǎn)的病害之一。十倍體長穗偃麥草()具有優(yōu)良的赤霉病抗性,普通小麥-十倍體長穗偃麥草衍生新品種西農(nóng)509、西農(nóng)511和西農(nóng)529在田間展現(xiàn)出較強的赤霉病抗性。本文旨在對這3個品種的赤霉病抗性基因進行分子鑒別,為它們在小麥赤霉病抗性遺傳改良中的應用提供理論依據(jù)。通過赤霉病菌()人工接種鑒定,明確3個小麥新品種對赤霉病的抗性水平。利用偃麥草E組染色體(臂)第1—7同源群的特異引物對3個普通小麥-十倍體長穗偃麥草衍生新品種及其主要親本小偃693、小偃597和十倍體長穗偃麥草進行分子鑒定,確定其長穗偃麥草的遺傳區(qū)段。利用與長穗偃麥草7EL染色體上抗赤霉病基因緊密連鎖的標記對實驗材料進行分析,明確該抗性基因與的關系。鑒定結(jié)果表明,西農(nóng)509、西農(nóng)529和西農(nóng)511的赤霉病抗性與中抗對照品種揚麥158的抗性水平相當,表現(xiàn)為中抗。105個長穗偃麥草E基因組特異標記中有7個在3個新品種中均能擴增出長穗偃麥草的特異條帶,其中5個標記定位于7EL染色體臂上,2個標記定位于7ES染色體臂上。利用97個定位于7E染色體的特異標記進一步對小偃693、小偃597和3個新品種的遺傳片段進行鑒別,結(jié)果表明20個標記能在5個長穗偃麥草衍生品種(系)擴增出穩(wěn)定的十倍體長穗偃麥草的特異條帶,其中包括與緊密連鎖的和等6個標記(7EL 149.00—7EL 153.77),即表明該區(qū)段源自于十倍體長穗偃麥草,跨距約89 cM。然而,已報道的7EL染色體臂末端與兩側(cè)緊密連鎖的分子標記(7EL 153.77)(7EL 154.70)、(7EL 156.27)、(7EL 158.02)、(7EL 158.97)和(7EL 160.00)等在3個新品種及小偃597中均沒檢出長穗偃麥草的特異條帶。普通小麥-十倍體長穗偃麥草衍生新品種西農(nóng)509、西農(nóng)511和西農(nóng)529具有較好的赤霉病抗性,攜帶來自于十倍體長穗偃麥草7E染色體的遺傳區(qū)段,然而該抗赤霉病基因不同于。
普通小麥;十倍體長穗偃麥;赤霉??;;分子標記
【研究意義】小麥赤霉病(Fusarium head blight,F(xiàn)hb)是由禾谷鐮孢()引起的一種小麥重要穗部病害,主要發(fā)生于潮濕及半潮濕地區(qū)[1]。在小麥赤霉病大流行年份,可以造成70%,甚至是100%的產(chǎn)量損失[2]。小麥赤霉病的發(fā)生不僅造成嚴重的產(chǎn)量損失,而且感病的小麥籽粒還含有各種毒素(尤其是DON毒素),嚴重威脅人和動物[3-4]的食品安全。近年來,隨著全球氣候變暖以及耕作制度的變化,小麥赤霉病逐漸由偶發(fā)病害上升為常發(fā)病害,發(fā)生面積也不斷擴大。在中國,赤霉病已由常發(fā)的長江中下游麥區(qū)擴展到黃淮麥區(qū)和華北麥區(qū)[5-6]。目前還沒有徹底防治小麥赤霉病的化學藥劑,最為經(jīng)濟環(huán)保的控制小麥赤霉病危害的途徑就是培育和選用抗赤霉病品種。對普通小麥-長穗偃麥草()衍生小麥新品種進行赤霉病抗性鑒定和抗性基因的分子鑒別,可為深入研究和應用長穗偃麥草的赤霉病抗性基因提供理論依據(jù),對于小麥赤霉病抗性育種具有重要意義?!厩叭搜芯窟M展】赤霉病抗源相對較少,國內(nèi)外學者通過大量的基因資源研究,迄今從普通小麥及其近緣種屬中僅鑒定出7個赤霉病抗性主效基因,分別是來自蘇麥3號的[7]和[8]、大賴草的[9]、望水白的[10]和[11]、披堿草屬的[12]和十倍體長穗偃麥草的[13]。中國工作者經(jīng)多年努力,培育出了揚麥系列、寧麥系列和鄂麥系列等優(yōu)良抗性品種,但大面積生產(chǎn)中缺乏抗赤霉病的高產(chǎn)小麥品種[14]??v觀國內(nèi)數(shù)十年的小麥抗赤霉病育種,其抗源仍然主要局限于蘇麥3號、望水白和它們的衍生系。赤霉病抗源基礎狹窄是小麥育種工作取得突破性進展的瓶頸,發(fā)掘新的小麥赤霉病抗源成為提高小麥赤霉病抗性的關鍵[15]。由此可見,鑒定和利用小麥近緣種屬的赤霉病抗性基因尤為重要[16]。長穗偃麥草是小麥的近緣植物,其E基因組含有許多優(yōu)異的抗性基因,如抗旱、抗寒能力很強,對白粉病[17]和銹病完全免疫(7E染色體)[18],高抗條紋花葉病和小麥黃矮?。?E、7E染色體)[19-20],對赤霉病表現(xiàn)較強的耐病性(1E、7E染色體)[18,21-23],且又能與小麥進行遠緣雜交,實現(xiàn)抗病基因的遺傳轉(zhuǎn)移。因此,長穗偃麥草是小麥抗病育種的重要抗源親本之一[24]。八倍體小偃麥小偃693和小偃7430染色體總數(shù)均為56條,但是它們分別含有8對和6對長穗偃麥草染色體,還分別含有4條和2條小麥-長穗偃麥草易位染色體[25]。小偃7430與普通小麥雜交、回交選育而成了許多抗白粉病和條銹病、稈銹病的小偃麥衍生新品種(系)[26-28]。然而,目前關于小偃693衍生后代抗病性的研究鮮有報道。小偃597是利用小偃693與普通小麥雜交、回交選育成功的含有十倍體長穗偃麥草遺傳物質(zhì)的普通小麥品種,對赤霉病表現(xiàn)抗性[29]。研究表明,長穗偃麥草中已發(fā)現(xiàn)3個赤霉病抗性主效基因,分別定位于二倍體長穗偃麥草1E染色體[30-32]和7E染色體[22,32],十倍體長穗偃麥草7E染色體[13,18,23]。其中十倍體長穗偃麥草7E染色體長臂上赤霉病抗性基因被正式命名為[13],可解釋抗赤霉病表型變異的30.46%[18]。Guo等[13]將定位在7EL染色體末端1.7 cM范圍內(nèi),且兩側(cè)緊密連鎖的分子標記分別為和;該抗病區(qū)間對應于水稻、短柄草和高粱的基因組大小分別為18.8、37.1和27.0 kb,并開發(fā)出與緊密連鎖的特異分子標記,如等,這些分子標記可用于該基因的分子標記輔助選擇?!颈狙芯壳腥朦c】西農(nóng)509、西農(nóng)511和西農(nóng)529是由西北農(nóng)林科技大學農(nóng)學院培育出的含有十倍體長穗偃麥草遺傳物質(zhì)的高產(chǎn)、優(yōu)質(zhì)、抗病的普通小麥新品種[33-34],田間赤霉病表現(xiàn)輕[6,33-34]。這些品種已在黃淮冬麥區(qū)南片的河南?。喜康静琨渽^(qū)除外)、安徽省沿淮及淮北地區(qū)、江蘇省淮北地區(qū)和陜西省關中地區(qū)示范推廣種植。2014—2016年在河南南陽和駐馬店、江蘇省徐州和安徽淮北生態(tài)區(qū)域等赤霉病重發(fā)區(qū),這些品種赤霉病輕度發(fā)生,發(fā)病率僅為1%—3%,屬于中抗或中感抗性水平[6,35-37]。然而,目前它們赤霉病的抗性遺傳基礎并不清楚?!緮M解決的關鍵問題】對3個衍生新品種進行赤霉病抗性進行人工接種鑒定,然后用偃麥草E組染色體特異標記對西農(nóng)509、西農(nóng)511和西農(nóng)529及其主要親本小偃693、小偃597和十倍體長穗偃麥草進行分子鑒定,初步確定其赤霉病抗性基因的來源,在此基礎上利用長穗偃麥草7EL染色體上的特異分子標記及與抗性基因緊密連鎖的分子標記對實驗材料進一步進行分子鑒別,為這些抗赤霉病的長穗偃麥草衍生新品種的推廣和利用提供理論依據(jù)。
普通小麥中國春(),十倍體長穗偃麥草;普通小麥-十倍體長穗偃麥草遠緣雜交后代材料和品種:八倍體小偃麥小偃693(染色體組成為AABBDDEE)和普通小麥品種小偃597;新培育的普通小麥-十倍體長穗偃麥草衍生品種西農(nóng)509、西農(nóng)511和西農(nóng)529。赤霉病抗性鑒定的對照品種蘇麥3號、揚麥158、寧麥9號和安農(nóng)8455。小偃693是本研究中3個普通小麥-長穗偃麥草衍生新品種的間接親本,普通小麥品種小偃597是西農(nóng)529和陜麥159的直接親本,是西農(nóng)511的間接親本(圖1)。
圖1 普通小麥-長穗偃麥草衍生小麥新品種長穗偃麥草遺傳基因溯源
抗赤霉病人工接種鑒定由江蘇省農(nóng)業(yè)科學院植物保護研究所在南京鑒定完成,赤霉菌菌株為F0301、F0609、F0980和F1126,鑒定方法和調(diào)查記載標準參見“小麥抗病蟲性評價技術規(guī)范”系列標準(NY/T 1443—2007)[38]。蘇麥3號、揚麥158和寧麥9號為抗病對照品種,安農(nóng)8455為感病對照品種??剐苑旨墭藴剩嚎梗≧),平均嚴重度<1.5(蘇麥3號的平均反應級+標準差);中抗(MR),1.5≤平均嚴重度<2.5(揚麥158的平均反應級+標準差);中感(MS),2.5≤平均嚴重度<3.5,感(S),平均嚴重度≥3.5。
小麥幼葉基因組DNA采用微量CTAB法 提取,干燥后溶于TE緩沖液。由于長穗偃麥草中已發(fā)現(xiàn)的赤霉病抗性主效基因均被定位于E基因組[13,18,21-23,30-32],本研究選用長穗偃麥草E組染色體特異分子標記[22,39-47]及7EL上連鎖的分子標記[13,18,48-49]對參試材料進行長穗偃麥草遺傳物質(zhì)和的檢測(附表1)。引物由生物工程(上海)有限公司合成。PCR擴增反應在GeneAmp 9700型熱循環(huán)儀(ABI,USA)上進行,反應混合液總體積為10 μL,其中包括0.25 U酶、1.0 μL 10×Buffer、1.5 mmol·L-1MgCl2、0.2 mmol·L-1dNTPs、0.5 μmol·L-1primer(上下游引物)、50—100 ng模板DNA。擴增程序:94℃ 2 min;94℃ 1 min,50—60℃ 1 min,72℃ 1 min,35個循環(huán);72℃ 5 min。PCR產(chǎn)物用8.0%的非變性聚丙烯酰胺凝膠上電泳檢測,銀染后照相觀察并記錄。
江蘇省農(nóng)業(yè)科學院植物保護研究所先后對西農(nóng)509(陜麥509)(2008—2010)、西農(nóng)529(2013—2015)和西農(nóng)511(2015—2016)進行了赤霉病抗性人工接種鑒定。由表1調(diào)查結(jié)果可以看出,西農(nóng)509、西農(nóng)529和西農(nóng)511的赤霉病鑒定結(jié)果均與中抗對照品種揚麥158的抗性水平相當,表現(xiàn)為中抗。
用105個長穗偃麥草E基因組的特異標記(其中1E、2E、3E、4E、5E、6E和7E染色體上特異標記分別有29、12、10、5、14、10和25個)分別對中國春、十倍體長穗偃麥草、西農(nóng)509、西農(nóng)511和西農(nóng)529進行分子檢測。結(jié)果顯示,71個標記在中國春和十倍體長穗偃麥草間有多態(tài)性,但只有(圖2-A)、、、、(圖2-B)和等7個標記在3個普通小麥-十倍體長穗偃麥草衍生新品種中均擴增出長穗草的特異產(chǎn)物,其中前5個標記都位于7E長臂,和則位于7E短臂。E基因組分子標記分析結(jié)果表明,西農(nóng)509、西農(nóng)511和西農(nóng)529攜帶來自于十倍體長穗偃麥草7E染色體的遺傳物質(zhì)。
用定位于7E染色體長、短臂上的75和22個分子標記(包括DArT標記、SSR標記、EST標記)[13,36,43,45,48-49]分別對中國春、十倍體長穗偃麥草、3個普通小麥-長穗偃麥草衍生新品種及它們重要的親本小偃693和小偃597進行分子標記分析。結(jié)果表明,7ES 64.63到7EL 153.27長約89 cM之間共有20對引物在小偃693、小偃597和3個新品種中均能擴增出穩(wěn)定的長穗偃麥草的特異條帶,其中12個引物定位于7E長臂,8個定位于7E短臂(表2)。由此進一步推斷西農(nóng)509、西農(nóng)511和西農(nóng)529這3個普通小麥-長穗偃麥草衍生新品種含有十倍體長穗偃麥草7E染色體跨著絲粒區(qū)域的中段遺傳物質(zhì)。
用定位于7EL 140.03到160.00處的與緊密連鎖的40個系列標記、7個系列標記、4個SSR標記(和)[13,36,43,45]分別對中國春、十倍體長穗偃麥草、3個普通小麥-長穗偃麥草衍生新品種以及赤霉病抗性基因的供體親本小偃693和小偃597進行基因標記分型分析。結(jié)果表明(表2),(圖2-C)(7EL 149.51)、(圖2-D)、(圖2-E)、和(7EL 153.27)(圖2-A)等6個標記在3個新品種及小偃693和小偃597兩親本中具有十倍體長穗偃麥草的特異性條帶;(7EL 153.77)、(7EL 154.70)、(7EL 156.27)(圖2-F)和(7EL 158.02)(圖2-G)4個標記能在八倍體小偃麥小偃693中擴增產(chǎn)生十倍體長穗偃麥草的特異性條帶,而在小偃597和3個小麥新品種中沒有十倍體長穗偃麥草的特異條帶;(7EL 158.97)和(7EL 160.00)(圖2-H)在小偃693、小偃597和3個小麥新品種中均沒有十倍體穗偃麥草的特異條帶。
表1 3個普通小麥-長穗偃麥草衍生小麥新品種的赤霉病病情指數(shù)和抗性評價
*本試驗數(shù)據(jù)來源于小麥國家區(qū)域試驗赤霉病抗性鑒定結(jié)果 The data of this table were derived from the results of wheat regional resistance test for Fusarium head blight。R:抗病resistant;MR:中抗moderately resistant;S:感病Susceptible;HS:高感Highly susceptible
表2 7E染色體上部分分子標記對3個小麥新品種及其主要親本的擴增片段大小
M:DEL2000;1:中國春Chinese Spring (CS);2:十倍體長穗偃麥草Th. ponticum;3:小偃693 Xiaoyan 693;4:小偃597 Xiaoyan 597;5:西農(nóng)509 Xinong 509;6:西農(nóng)511 Xinong 511;7:西農(nóng)529 Xinong 529。左側(cè)為分子量標記條帯大?。╞p)。箭頭所示為偃麥草染色體的特異條帶The numbers at the top of the gels are lane numbers. The numbers on each photo is the marker bands size in bp. Arrows indicated the Thinopyrum specific bands linked toFhb7
在抗赤霉病育種方面,自20世紀70年代,中國研究者從普通小麥及其近緣物種3萬多份材料中篩選出蘇麥3號和望水白兩個抗性強而穩(wěn)定的普通小麥品種,但其農(nóng)藝性狀較差[50],應用過程中赤霉病抗性很難和豐產(chǎn)性結(jié)合起來,生產(chǎn)上亟需高產(chǎn)抗赤霉病的小麥品種。然而,自揚麥158后,大面積推廣的品種均未解決好赤霉病抗性與豐產(chǎn)性負相關的問題[14]。因而開拓新的抗源以及如何高效利用小麥近緣種的抗病基因已成為小麥抗赤霉病育種亟待解決的重要問題[51]。
長穗偃麥草是小麥遠緣雜交育種的重要親本材料之一,研究表明其1E和7EL染色體上攜帶有抗赤霉病基因[13,18,21-23,26]。Jauhar等[31]將抗赤霉病的長穗偃麥草與硬粒小麥雜交,獲得了赤霉病抗性提高顯著的衍生系。張璐璐等[52]利用偃麥草7E染色體特異分子標記篩選結(jié)合GISH驗證培育了小麥-長穗偃麥草7EL異位系和7ES附加系,赤霉病抗性鑒定表明7EL易位系的赤霉病抗性明顯較好。西北農(nóng)林科技大學培育的普通小麥-十倍體長穗偃麥草衍生新品種西農(nóng)509、西農(nóng)511和西農(nóng)529目前已成為黃淮冬麥區(qū)南片和陜西省關中地區(qū)示范推廣的高產(chǎn)優(yōu)質(zhì)的小麥新品種。據(jù)報道,上述3個小麥新品種在河南、安徽、江蘇等赤霉病重發(fā)地田間表現(xiàn)赤霉病很輕[6,31-33]。本研究中,通過人工抗性鑒定,這3個品種的赤霉病抗性與揚麥158相當,屬于中抗水平,且抗性穩(wěn)定。西農(nóng)509、西農(nóng)511和西農(nóng)529赤霉病輕且綜合性狀和豐產(chǎn)性好,有望在黃淮冬麥區(qū)南片赤霉病常發(fā)區(qū)和重發(fā)區(qū)大面積推廣種植。
本研究利用長穗偃麥草E基因組特異的引物初步確定3個小麥新品種的長穗偃麥草的遺傳物質(zhì)來自7E染色體跨著絲粒區(qū)域的中段,說明其抗赤霉病基因來源于7E染色體,研究結(jié)果與前人的研究一致[13,18,22-23,52]。來自十倍體長穗偃麥草的抗赤霉病基因已定位于7EL染色體上,(7EL 156.27)和(7EL 158.02)分別與其緊鄰[13]。為了探究上述3個小麥新品種中赤霉病抗性基因與的關系,選用偃麥草7EL染色體(7EL 140.03—7EL 160.00)上與連鎖的分子標記對這3個新品種及其主要親本小偃693、小偃597和十倍體長穗偃麥草進一步進行分子標記分析。結(jié)果發(fā)現(xiàn),7EL上6個與緊密連鎖的分子標記在3個新品種中擴增產(chǎn)生長穗偃麥草的特異產(chǎn)物,其中,和(7EL 153.27)3個標記與的遺傳距離僅3.0—4.0 cM。Guo等[13]利用與抗赤霉病基因緊密連鎖的分子標記(和)進行分子輔助選擇,從濟麥22與小麥-長穗偃麥草抗赤霉病短片段易位系SDAUl881雜交、回交后代中成功獲得2個新的改良系SDAU2003和SDAU2028。然在本研究中,與緊鄰的4個標記(7EL 153.27)、(7EL 154.70)、(7EL 156.27)和(7EL 158.02),在小偃597和3個長穗偃麥草衍生小麥新品種中均沒有擴增出長穗偃麥草的特異性條帶,只在八倍體小偃麥小偃693中有長穗偃麥草的特異性條帶。同時,7EL末端的標記(7EL 158.97)和(7EL 160.00)不僅在3個小麥新品種中沒有偃麥草特異條帶,而且在小偃693和小偃597中也沒有。何方[25]以十倍體長穗偃麥草總基因組DNA為探針對小偃693根尖細胞染色體進行GISH分析,發(fā)現(xiàn)小偃693中不僅含有4對Ee組染色體和4對Eb組染色體,同時還含有4條小麥-長穗偃麥草異位染色體。本研究中,西農(nóng)509、西農(nóng)511和西農(nóng)529 這3個普通小麥-十倍體長穗偃麥草衍生新品種中含有長穗偃麥草7E染色體跨著絲粒區(qū)域的中段的遺傳物質(zhì),但缺失了相關聯(lián)的7EL末端片段,究其原因,也許是在八倍體小偃麥小偃693與普通小麥雜交、回交選育過程中,7E染色體與普通小麥染色體發(fā)生了異位,導致7EL末端片段丟失,這個推測有待借助GISH和FISH等技術進一步驗證。
西農(nóng)509、西農(nóng)511和西農(nóng)529等3個普通小麥-十倍體長穗偃麥草衍生新品種在黃淮南片麥區(qū)赤霉病重發(fā)地區(qū)表現(xiàn)赤霉病很輕,同時人工接種鑒定表現(xiàn)為中抗赤霉病。赤霉病抗性基因分子鑒定表明,長穗偃麥草7ES 64.63—7EL 153.27之間有20對引物在3個新品種和它們的主要親本小偃693和小偃597中均擴增出穩(wěn)定清晰的長穗偃麥草特異條帶,然而在這3個普通小麥-長穗偃麥草衍生新品種及小偃597中沒有檢測到7EL末端抗赤霉病主效QTL的分子標記產(chǎn)物。推測這3個普通小麥-長穗偃麥草衍生新品種含有來自于十倍體長穗偃麥草的不同于的抗赤霉病基因。
[1] GOSWAMI R S, KISTLER H C. Heading for disaster:on cereal crops., 2004, 5(6): 515-525.
[2] MATTHIES A, BUCHENAUER H. Effect of tebuconazole (Folicur?) and prochloraz (Sportak?) treatments on Fusarium head scab development, yield and deoxynivalenol (DON) content in grains of wheat following artificial inoculation with., 2000, 107(1): 33-52.
[3] PLACINTA C, DMELLO J P F, MACDONALD A M C. A review of worldwide contamination of cereal grains and animal feed withmycotoxins., 1999, 78(2): 21-37.
[4] GOSMAN N, SRINIVASACHARY A, STEED A, CHANDLER E, THOMSETT M, NICHOLSON P. Evaluation of type I Fusarium head blight resistance of wheat using non-deoxynivalenol-producing fungi., 2010, 59(1): 147-157.
[5] 曾娟, 姜玉英. 2012年我國小麥赤霉病暴發(fā)原因分析及持續(xù)監(jiān)控與治理對策. 中國植保導刊, 2013, 33(4): 38-41.
ZEND J, JIANG Y Y. Outbreak reasons and control strategies of fusarium head blight in China during 2012., 2013, 33(4): 38-41. (in Chinese)
[6] 趙虹, 王西成, 胡衛(wèi)國, 曹廷杰, 劉釗, 陳渝. 黃淮南片麥區(qū)小麥品種利用現(xiàn)狀及建議. 河南農(nóng)業(yè)科學, 2016, 45(8): 18-24, 38.
ZHAO H, WANG X C, HU W G, CAO T J, LIU Z, CHEN Y. Status and suggestion of wheat variety utilization in Southern Huang-Huai wheat region., 2016, 45(8): 18-24, 38. (in Chinese)
[7] CUTHERT P A, SOMERS D J, THOMAS J, CLOUTIER S, BRULE-BABEL A. Fine mapping, a major gene controlling fusarium head blight resistance in bread wheat (L.)., 2006, 112(8): 1465-1472.
[8] CUTHER P A, SOMERS D J, BRULE-BABEL A. Mapping ofon chromosome 6BS: a gene controlling fusarium head blight field resistance in bread wheat (L.)., 2007, 114(3): 429-437.
[9] QI L L, PUMPHREY M O, FRIEBE B, CHEN P D, GILL B S. Molecular cytogenetic characterization of alien introgressions with genefor resistance to fusarium head blight disease of wheat., 2008, 117(7): 1155-1166.
[10] XUE S L, LI G Q, JIA H Y, XU F, LIN F, TANG M Z, WANG Y, AN X, XU H B, ZHANG L X, KONG Z X, MA Z Q. Fine mapping, a major QTL conditioning resistance to Fusarium infection in bread wheat (L.)., 2010, 121(1): 147-156.
[11] XUE S L, XU F, TANG M Z, ZHOU Y, LI G Q, AN X, LIN F, XU H B, JIA H Y, ZHANG L X, KONG Z X, MA Z Q. Precise mapping, a major QTL conditioning resistance toinfection in bread wheat (L.)., 2011, 123(6): 1055-1063.
[12] CAINONG J C, BOCKUS W W, FEND Y G, CHEN P D, QI L L, SEHGAL S K, DANILOVA T V, KOO D H, FRIEBE B, GILL B S. Chromosome engineering, mapping, and transferring of resistance to Fusarium head blight disease frominto wheat., 2015, 128(6): 1019-1027.
[13] GUO J, ZHANG X L,HOU Y L, CAI J J, SHEN X R, ZHOU T T, XU H H, OHM H W, WANG H W, LI A F, HAN F P, WANG H G, KONG L R. High-density mapping of the major FHB resistance genederived fromand its pyramiding withby marker-assisted selection., 2015, 128(11): 2301-2316.
[14] 程順和, 張勇, 別同德, 高德榮, 張伯橋. 中國小麥赤霉病的危害及抗性遺傳改良. 江蘇農(nóng)業(yè)學報, 2012, 28(5): 938-942.
CHENG S H, ZHANG Y, BIE T D, GAO D R, ZHANG B Q. Damage of wheat Fusarium head blight (FHB) epidemics and genetic improvement of wheat for scab resistance in China., 2012, 28(5): 938-942. (in Chinese)
[15] GILBERT J, HABER S. Overview of some recent research developments in fusarium head blight of wheat,, 2013, 35(2): 149-174.
[16] GILL B S, FRIEBE B R, WHITE F F. Alien introgressions represent a rich source of genes for crop improvement., 2011, 108(19): 7657-7658.
[17] LIU S B, WANG H G. Characterization of a wheat-intermedium substitution line with resistance to powdery mildew., 2005, 143: 229-233.
[18] ZHANG X L, SHEN X R, HAO Y F, CAI J J, OHM H W, KONG L R. A genetic map ofchromosome 7E, haroring resistance genes to Fusarium head blight and leaf rust., 2011, 122(2): 263-270.
[19] ZHANG Z Y, XU J S, XU Q J, LARKIN P, XIN Z Y. Development of novel PCR markers linked to the BYDV resistance geneuseful in wheat for marker-assisted selection., 2004, 109(2): 433-439.
[20] AYALA-NAVARRETE L, THOMPSON N, OHM H, ANDERSON J. Molecular markers show a complex mosaic pattern of wheat-intermedium translocations carrying resistance to YDV., 2010, 121(5): 961-970.
[21] 英加, 陳佩度, 劉大鈞. 將和的種質(zhì)導入普通小麥的研究. 西北植物學報, 2000, 20(3): 321-326.
YING J, CHEN P D, LIU D J. Studies on transfer germplasm fromandinto common wheat., 2000, 20(3): 321-326. (in Chinese)
[22] SHEN X R, KONG L R, OHM H. Fusarium head blight resistance in hexaploid wheat ()-genetic lines and tagging of the alien chromatin by PCR markers., 2004, 108(5): 808-813.
[23] SHEN X R, OHM H. Molecular mapping ofderived Fusarium head blight resistance in common wheat., 2007, 20(2): 131-140.
[24] 李振聲, 陳漱陽, 張楷. 普通小麥與長穗偃麥草的雜交育種及其遺傳分析. 遺傳學報, 1977, 4(4): 283-293.
LI Z S, CHEN S Y, ZHANG K. The cross breeding and its genetic analysis betweenand., 1977, 4(4): 283-293. (in Chinese)
[25] 何方. 小麥—長穗偃麥草雜種后代的分子細胞遺傳學分析及種質(zhì)材料的篩選鑒定[D]. 泰安: 山東農(nóng)業(yè)大學, 2014.
HE F. Molecular cytogenetic analysis of wheat-hybrids and identification ofgermplasms [D]. Taian: Shandong Agricultural University, 2014. (in Chinese)
[26] 賀潤麗, 暢志堅, 劉建霞, 詹海仙, 張曉軍, 董春林. 源于長穗偃麥草的小麥新品系CH7034抗白粉病基因的染色體定位. 分子植物育種, 2008, 6(2): 251-256.
HE R L, CHANG Z J, LIU J X, ZHAN H X, ZHANG X J, DONG C L. Chromosomal location of powdery mildew resistance gene in-derived wheat germplasm line CH7034., 2008, 6(2): 251-256. (in Chinese)
[27] 白云, 李欣, 張叢卓, 張曉軍, 詹海仙, 暢志堅. 小麥新抗源CH7103抗條銹基因的遺傳及其與已知基因的關系. 麥類作物學報, 2011, 31(2): 364-369.
BAI Y, LI X, ZHANG C Z, ZHANG X J, ZHAN H X, CHANG Z J. Inheritance of stripe rust resistance gene in wheat line CH7103 introgressed fromand its allelism with known genes., 2011, 31(2): 364-369. (in Chinese)
[28] ZHENG Q, LV Z L, NIU Z X, LI B, LI H W, XU S S, HAN F P, LI Z S. Molecular cytogenetic characterization and stem rust resistance of five wheat-ponticum partial amphiploids., 2014, 41(11): 591-599.
[29] 張榮琦, 陳春環(huán), 趙曉農(nóng), 鐘冠昌. 利用遠緣雜交技術選育小麥新品種之研究. 中國農(nóng)學通報, 2006, 22(6): 186-188.
ZHANG R Q, CHEN C H, ZHAO X N, ZHONG G C. The study on selection of wheat varieties with distant hybrid technique., 2006, 22(6): 186-188. (in Chinese)
[30] 劉登才, 鄭有良, 王志容, 侯永翠, 蘭秀錦, 魏育明. 影響小麥赤霉病抗性的染色體定位. 四川農(nóng)業(yè)大學學報, 2001, 19(3): 200-205.
LIU D C, ZHENG Y L, WANG Z R, HOU Y C, LAN X J, WEI Y M. Distribution of chromosomes in diploid(Host) A. L?ve that influences resistance to head scab of common wheat., 2001, 19(3): 200-205. (in Chinese)
[31] JAUHAR P P, PETERSON T S, XU S S. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight., 2009, 52(5): 467-483.
[32] 陳士強, 黃澤峰, 張勇, 葛江燕, 朱雪, 高勇, 陳建民. 中國春背景下長穗偃麥草抗赤霉病相關基因的染色體定位. 麥類作物學報, 2012, 32(5): 839-845.
CHEN S Q, HUANG Z F, ZHANG Y, GE J Y, ZHU X, GAO Y, CHEN J M. Chromosomal location of the genes associated with FHB resistance ofin Chinese Spring background., 2012, 32(5): 839-845. (in Chinese)
[33] 張榮琦, 陳春環(huán), 吉萬全. 高產(chǎn)抗病優(yōu)質(zhì)小麥新品種西農(nóng)509的選育及穩(wěn)定性分析. 種子, 2014, 33(10): 100-101.
ZHANG R Q, CHEN C H, JI W Q. The selective breeding and stability analysis of high-yield, disease-resistant and good-quality wheat cultivar Xinong 509., 2014, 33(10): 100-101. (in Chinese)
[34] 吉萬全, 張榮琦, 陳春環(huán), 王長有, 張宏, 朱建峰, 王亞娟, 劉新倫, 田增榮, 蔡東明. 優(yōu)質(zhì)高產(chǎn)小麥新品種—西農(nóng)529. 麥類作物學報, 2014, 34(7): 1019.
JI W Q, ZHANG R Q, CHEN C H, WANG C Y, ZHANG H, ZHU J F, WANG Y J, LIU X L, TIAN Z R, CAI D M. Good quality and high yield wheat cultivar Xinong 529., 2014, 34(7): 1019. (in Chinese)
[35] 嚴虎, 唐懷坡, 王瑞永. 2015-2016年度西農(nóng)大新馬橋點小麥新品種示范及產(chǎn)量分析. 安徽農(nóng)學通報, 2016, 22(24): 148-149.
YAN H, TANG H P, wang R Y. New wheat varieties demonstration and yield analysis in Xinmaqiaodian Northwest A&F University during 2015 and 2016., 2016, 22(24): 148-149. (in Chinese)
[36] 孫道杰, 張玲麗, 馮毅, 陳春環(huán), 張榮琦, 奚亞軍, 何心堯, 王輝, 宋哲明. 西農(nóng)系列小麥骨干新品種赤霉病抗源淺析. 麥類作物學報, 2016, 36(6): 822-823.
SUN D J, ZHANG L L, FENG Y, CHEN C H, ZHANG R Q, XI Y J, HE X Y, WANG H, SONG Z M. Analysis of FHB resistance sources for newly released Xinong varieties., 2016, 36(6): 822-823. (in Chinese)
[37] 蔡誠, 何流, 徐超艷, 單府, 陶珂, 楊磊, 汪文彥, 劉萍. 2015-2016年度12個小麥新品系在淮北地區(qū)的生態(tài)適應性試驗. 安徽農(nóng)學通報, 2016, 22(19): 48-49, 84.
CAI C, HE L, XU C Y, SHAN F, TAO K, YANG L, WANG W Y, LIU P. The experiment in the ecological adaptability of 12 new wheat varieties in Huaibei area during 2015 and 2016., 2016, 22(19): 48-49, 84. (in Chinese)
[38] 中國人民共和國農(nóng)業(yè)部. 小麥抗病蟲性評價技術規(guī)范. 第4部分:小麥抗赤霉病評價技術規(guī)范: NY/T 1443.4-2007[S]. 2007-01-14 [2017-05-17].
Ministry of Agriculture of the People’s Republic of China. Rules for resistance evaluation of wheat to diseases and insect pests part 4: Rules for resistance evaluation of wheat to wheat scab {Schwabe [Teleomorph(Schwein) Petch]}: NY/T 1443.4-2007[S]. 2007-01-14[2017-05-17]. (in Chinese)
[39] MULLAN D J, PLATTETER A, TEAKLE N L, APPELS R, COLMER, ANDERSON J M, FRANCKI M G. EST-derived SSR markers from defined regions of the wheat genome to identifyspecific loci., 2005, 48(5): 811-822.
[40] 秦樹文, 戴毅, 陳士強, 張璐璐, 劉慧萍, 曹文廣, FEDAK George, 高勇, 陳建民. 基于TRAP的長穗偃麥草SCAR標記的開發(fā)及應用. 麥類作物學報, 2014, 34(12): 1595-1602.
QIN S W, DAI Y, CHEN S Q, ZHANG L L, LIU H P, CAO W G, FEDAK G, GAO Y, CHEN J M. Development and applications of SCAR markers specific toby TRAP technology., 2014, 34(12): 1595-1602. (in Chinese)
[41] 張麗, 顏澤洪, 鄭有良, 劉登才, 代壽芬, 張連全, 魏育明. 小麥中國春背景下長穗偃麥草Ee染色體組特異AFLP及STS標記的建立. 農(nóng)業(yè)生物技術學報, 2008, 16(3): 465-473.
ZHANG L, YAN Z H, ZHENG Y L, LIU D C, DAI S F, ZHANG L Q, WEI Y M. Development of Ee-chromosome specific AFLP and STS molecular marker forin Chinese Spring wheat background., 2008, 16(3): 465-473. (in Chinese)
[42] 陳士強, 秦樹文, 黃澤峰, 戴毅, 張璐璐, 高營營, 高勇, 陳建民. 基于SLAF-seq技術開發(fā)長穗偃麥草染色體特異分子標記. 作物學報, 2013, 39(4): 727-734.
CHEN S Q, QIN S W, HUANG Z F, DAI Y, ZHANG L L, GAO Y Y, GAO Y, CHEN J M. Development of specific molecular markers forchromosome using SLAF-seq technique., 2013, 39(4): 727-734. (in Chinese)
[43] HU L J, LIU C, ZENG Z X, LI G R, SONG X J, YANG Z J. Genomic rearrangement between wheat andrevealed by mapped functional molecular markers., 2012, 34: 67-75.
[44] XUE S, ZHANG Z, LIN F, KONG Z, CAO Y, LI C, YI H, MEI M, ZHU H, WU J, XU H, ZHAO D, TIAN D, ZHANG C, MA Z. A high-density intervarietal map of the wheat genome enriched with markers derived from expressed sequence tags., 117: 181-189.
[45] Ishikawa G, Yonemaru J, Saito M, Nakamura T. PCR-based landmark unique gene (PLUG) markers effectively assign homoeologous wheat genes to A, B and D genomes., 2007, 8: 135.
[46] 黃澤峰. 長穗偃麥草分子標記開發(fā)及硬粒小麥-長穗偃麥草附加系創(chuàng)建[D]. 揚州: 揚州大學, 2013.
HUANG Z F. Development of molecular markers forand establishment of-alien disomic addition lines[D]. Yangzhou: Yangzhou University, 2013. (in Chinese)
[47] 朱雪. 小麥中國春背景中長穗偃麥草E染色體組SCAR標記發(fā)展[D]. 揚州: 揚州大學, 2011.
ZHU X. Development of E-chromosome specific SCAR markers forin Chinese spring wheat background[D]. Yangzhou: Yangzhou University, 2011. (in Chinese)
[48] 郭軍. 長穗偃麥草抗赤霉病基因遺傳圖譜的加密及其標記輔助轉(zhuǎn)移[D]. 泰安: 山東農(nóng)業(yè)大學, 2015.
GUO J. Saturation mapping of FHB resistance genederived fromand its marker assisted selection[D]. Taian: Shandong Agricultural University, 2015. (in Chinese)
[49] ZHANG X L, SHEN X R, HAO Y F, CAI J J, OHM H W, KONG L R. A genetic map ofchromosome 7E, harboring resistance genes to Fusarium head blight and leaf rust., 2011, 122: 263-270.
[50] 陸維忠, 程順和, 王裕中. 小麥赤霉病研究. 北京: 科學出版社, 2001: 78-170.
LU W Z, CHENG S H, WANG Y Z.. Beijing: Science Press, 2001: 78-170. (in Chinese)
[51] 姚金保, 陸維忠. 中國小麥抗赤霉病育種研究進展. 江蘇農(nóng)業(yè)學報, 2000, 16(4): 242-248.
Yao J B, Lu W Z. Research advances in wheat breeding for scab resistance in China., 2000, 16(4): 242-248. (in Chinese)
[52] 張璐璐, 陳士強, 李海鳳, 劉慧萍, 戴毅, 高勇, 陳建民. 小麥-長穗偃麥草7E抗赤霉病易位系. 中國農(nóng)業(yè)科學, 2016, 49(18): 3477-3488.
ZHANG L L, CHEN S Q, LI H F, LIU H P, DAI Y, GAO Y, CHEN J M. Development of wheat -translocation lines resistant to Fusarium head blight., 2016, 49(18): 3477-3488. (in Chinese)
(責任編輯 岳梅)
附表1 所利用的長穗偃麥特異分子標記
Table s1 Specific molecular markers ofand their sequences used in this study
標記名稱Marker name引物序列Nucleotides sequence of markers所在染色體genome location擴增片段大小Fragment size (bp)參考文獻Reference左引物Left primer (5′-3′)右引物Right primer (5′-3′) 1Ee STS241TAACTAGCACACCAAATCGTTTTTGCAAACAATTCATTGGGGTGGGTAAAGGAAGTGG1E250[41] 1Ee STS318GAATTCATCATAAAAACAGATCAAAGGTAACGTAAACTTCCCGTCTGCTAC1E280[41] SP1E_No.1 TATCAAATAATATGTGCATG CATGACAGAGATATGAAAAG 1E276[42] SP1E_No.21 CATCATATAAGAATGCAGGA TCAACAGCACGCCAAC 1E230[42] SP1E_No.23 TAGGAAAGAAATCTGAAATA TGAGACAGCAGCAAAA 1E220[42] SP1E_No.27 GGCTGATGCACTGACGT TCCGAAATCTGAAAAGGAG 1E273[42] SP1E_No.29 ACTGTTTTTTTTTTCGAG AGCGCACAAGATGAGAC 1E151[42] SP1E_No.30 TTAGAAAAATTCAACCCG AATCTTGAAACATGGGAG 1E80[42] SP1E_No.31 CCGGTTTGAAAGAAGAGA CAACAAGCAAATGAGGGA 1E158[42] SP1E_No.33 TCACCTATGAGATCGCT TATCCGAAGAACCTGTAC 1E285, 175[42] SP1E_No.34 TGTTCCTTGCATCATCT AACTCACCTATCGGTCTAT 1E158[42] SP1E_No.35 TTGACAACCCAATCTG TCACTGATAAATAACAAGAG 1E162[42] SP1E_No.36 TGACGGCAACGGAGTG TCTGCCGAACATGGAATC 1E150[42] SP1E_No.37 AGCACTTGGGTTTTCAT GGATTGGAGGGTCACTA 1E260[42] SP1E_No.38 TTCAAGAAGTATAGCTCGTT AACCATAAAGTCCCAACA 1E300[42] SP1E_No.41 GGAAAGGGCACTCCAACC GCGTCACATCCTGGTTCG 1E210[42] SP1E_No.42 CTCCATCCCTCCACTT AACATCAGCAGTTGGG 1E190[42] SP1E_No.44 TTGACTTCTCCCAAGTTG AATGGAAAGGAAAATCTG 1E203[42] SP1E_No.45 TCTATTTTGCTATTTGCC TTTTGTCTTCATCACCAT 1E568[42] SP1E_No.47 TACTCGCTACTTACAATCT GAACATTATTGTGAAGCA 1E255[42] SP1E_No.48 CGGAATGTCCTCACA ATTGGCTAATGCTATGA 1E280[42] SP1E_No.8 AATATTTATGGCGCACGCAG TCATCAGGGGAGTGAGGAGC 1E400, 200[42] Xedm17TAGCTGCATCTCTGGTTTGGCTAGTTGTTGTTGCTGCGAAA1E396[39] Xedm74GTAAGTCGACCGAGGAGACGCCTTCTTGCTTGGCATTCTC1EL360[39] Xedm92ATCCGCGACGACAATGTAAGCTGGTGTGGATCTTGACGTG1EL185[39] Xmag2137 GAGTTCGATGACATGGCTGACCGATAACAAAGTGCGTGAA1E580, 250[43-44] Xmag3489CGATGTAAAGACTGTAGCCTGTAGGCGTCCATTTGGTTCGGTGAG1E330[43-44] Xmag834 ACGCCCTCAAACAAGAAAGACTTCCTCTCCTTCCCCAGAG1E500[43-44] Z34-1E200GATGTCACCAAGCCCTACTCCTACGAAACACCCAAG1E225[47] 2Ee STS116TTAACCAGGGATACAAAAACACCATAATGAATTCAATTACCTTGTGGATGCAAACAC2E150[41] 2Ee STS182AATTCATTTCTAATAGATACTCGAATGAATTAACTGAGGAGAGGCTACAACATCC2E182[41] SM2E-1CAGGTCCAAAAAACCAGCC GAATTCGAGGTTCCGCAG 2E480, 210[40] SM2E-3GTGTGTGCGCATGAACTACTT GGAGTCGTTGGTTGGACATG 2E225[40] SM2E-5ATGCTTTTCCCTTCCAACAG CAAACGAAAAGCTGACCAAAC 2E173[40] Xmag2090 AAAGGTGTAAGCGTGGCATCACACGCATAATGCACTCCAG2E300, 255[43-44] Xedm28GCTCACTCACGCATCATAGCGTTGGCGGAATCCTTCTTC2ES & 3EL150[39] Xedm8GACCCCCACTTCCTGCTCGGGCAAAACTGTGGCTATTG2ES & 3EL145[39] Xedm96TCCAAGACTGTGCCTCAAGAGCGTTGAACTCCTGTTCCAT2ES & 3ESL175[39] Xmag3253 CTGCTGCTTGGGATCATTCTGCTGGTGAGAGTTGGAAACC2E600, 310[43-44] Xmag3616 GTCCGTGCCATTCAACTTCTTCTATCCACTCCATTCCAAGC2E&3E260, 200[43-44] Xmag4137 CTCGTGTGGCTCATCAATGTTGACATCTGGTTGGTGGTCA2E&3E490[43-44] iPBS8TGCAGGTCGACGAGCGGGTATGCTTTG3E428[46] SM3E-1CACACGCAATTCAACAACTCAAG ACGAATTGACCGTCGATCAGA 3E195[40] SM3E-2GCAGCAGAGAACGTACACTTGTATGGCAAAAGTATTCTGAACCGT3E154[40] TNAC1248ATGATGCAGCAGCAAATTACACTGAGGAGCCTCTCCAACTCT3E700[43,45] Xmag905 ATGTGAATGGAAGGTCGGAGAGCACTTGCAGGCTCTTCAT3E260[43-44] SM4E-1ATTCCTAATGGTCCTACAGC ATCACGCACGAACAAGTC 4E580[40] Xmag1682 CGAATGCCAAGCTGTTCCCTACATGCCCCTTGAGAGTGTGG4E855[43-44] Xmag2055 TTCCCAGCAAAGTAGCACAATGTGGGATCGCCTAGAAATC4E550[43-44] Xmag3733 CACACAACTCCACGGAACAGCATAAACCAGCAGCCCAACT4E&6E300[43-44] Z8-4E374TGTTGCCAGTGGAGGAAGTTGAACTACTGAACCGAAT4E368[47] TNAC1503TGAGGTTGGTTCTCATCTGGACGTTGGAAACAATCTGAATGG5E700.00[43,45] TNAC1559AAACAAGGCCCTGAAACACTTCATTGTCAGGCTATGGGACAT5E1180[43,45] Xmag1293 GATTGTTCTTGGGGAGATGCTTGGCCTTTTGGACCGTCAGAGAC5E260, 300[43-44] Xmag1426 GCGAGTTTTCGTAGCAAAGGTCACAGGAGTGGAGGCTCAC5E650, 280[43-44] Xmag1579 AAGGCATTTTTCTCGGTCTCCACACTTCTTGAGGATTTGAGC5E550[43-44] Xmag4013 TCGACTCCCATCCTCAAGACCACCACCATTCCTTTGGAG5E650, 400[43-44] Xmag532 CGACGATCCAACCAGCTAATTAGCCAGCCTATGGTAACGG5E250[43-44] Xmag620 TAGTTGCATGGTCGCTTCTGCGTAGCTTTTCGTTGATCCC5E295[43-44] Xedm54CGTCCTTGTTCTTGCTTCAATGAGCAGGCCATAAGGAAAC5ES150[39] Xedm205AGTCGCCGTTGTATAGTGCCCGACCCGGTTCACTTCAG5ES240[39,49] Xgwm205CGACCCGGTTCACTTCAGAGTCGCCGTTGTATAGTGCC5ES180[39] Xedm46CCGCCGTCCGTCCTGCAGGAGGCCTCGTTGTAG5EL & 7EL215[39] Xedm335CGGTCCAAGTGCTACCTTTCCGTACTCCACTCCACACGG5EL & 7EL150[39,44] Xgwm335CGTACTCCACTCCACACGGCGGTCCAAGTGCTACCTTTC5EL & 7EL150[39] TNAC1674CCACCACAGAAGCAGATGAATGCTAGATGGCACACCAAGTG6E700[43,45] Xedm140CCTCCGACGAGATCTGCTACGCTTTGGCTTCCGGTACG6E271[39] Xgwm179AAGTTGAGTTGATGCGGGAGCCATGACCAGCATCCACTC6E162[39] Xmag2276 CCGCCCCGATACAGTTTATTTCTACCGCTCCGTCGTCAACTACTG6E320[43-44] Xmag3017 GGTGAGGGAGTGCGAGAATAGGCTTCCTGTTGCTGTGG6E260, 170[43-44] Xmag3113 TCATGCACCCATCTGGACTAAGCTATTCGTGGCAAACACA6E210[43-44] Xedm149ATCCACGCCAAGCAGAAGCTGTGGGAAGAAGTGCCTTG6EL186[39] Xedm80ATGCTCAAGCCGAGGAAGTATTGATGGAGCGACTGAAATG6ES126, 150[39] Xgwm149CATTGTTTTCTGCCTCTAGCCCTAGCATCGAACCTGAACAAG6ES85[39] Xgwm292TCACCGTGGTCACCGACCCACCGAGCCGATAATGTAC6ES163[39] Xedm158CTACGTCGTCTACCGCTGCTCTTGGGCATCATCGATCTTC7E120[39] Xbarc76ATTCGTTGCTGCCACTTGCTGGCGCGACACGGAGTAAGGACACC7EL210[49] TNAC1825GAAGCGGTTCAGGGTGACACCCATCACGTTGCTGTAGTC7EL750[43,45] TNAC1826CACATATGATGATGACGGCAATGGCAGGGAGGAAACTCTACTG7EL152.00[43,45] TNAC1829GCCACTTCCTCCCTCCTCGTCGGTCCTCCAGTATCAGC7EL210[43,45] TNAC1834CCGAGTGTCATCGTTAGGAAACCAGCAATCCTACCTGTTGAA7EL1900[43,45] TNAC1845AATGAACAGCTTGCTTTCTGCCAGATGCTCTGGATTTCATGG7EL120, 90[43,45] TNAC1956ACGAAGGACAATTGCTGCTAAGTGCACTTCTTGCCCTACTTG7EL1074[43,45] TNAC1957TCAACATTTGCAGGATTGTCATTTCACAGGAACCTCTGCATC7EL170[43,45] XBE399084CCTACCTACGACGCAAGTCCAGCGAGCAGAAAGCATCAAG7EL132[13] Xcfa2040TCAAATGATTTCAGGTAACCACTATTCCTGATCCCACCAAACAT7EL280, 240[49] Xcfa2106GCTGCTAAGTGCTCATGGTGTGAAACAGGGGAATCAGAGG7EL240[49] Xcfa2240TGCAGCATGCATTTTAGCTTTGCCGCACTTATTTGTTCAC7EL250[49] Xedm105ACCGCCAGGGAGCTCTGCGATGTCCTTCTGGCCGTACT7EL240[39] Xedm154GGAGAGGCCACTGTTTTTGAGGCACATCACTCCCTTCTTC7EL230[39] Xgwm130AGCTCTGCTTCACGAGGAAGCTCCTCTTTATATCGCGTCCC7EL250[49] Xgwm295CGTACTCCACTCCACACGGCGGTCCAAGTGCTACCTTTC7EL288[49] Xgwm333GCCCGGTCATGTAAAACGTTTCAGTTTGCGTTAAGCTTTG7EL300[49] Xgwm344CAAGGAAATAGGCGGTAACTATTTGAGTCTGAAGTTTGCA7EL130[49] Xgwm573AAGAGATAACATGCAAGAAATTCAAATATGTGGGAACTAC7EL182[49] Xgwm635TTCCTCACTGTAAGGGCGTTCAGCCTTAGCCTTGGCG7EL130[49] Xksum052 GTCGCTGAGTGCGAACTCCG CAGAGGAAGCCGTCTACTGG 7EL240[49] Xmag1759GTACGAGTATGGCAACAGCCCAACTCTAGGGGCAGATG7EL620, 250[13,43-44] Xmag1932TGGCGTCCTGCTGAAAACCCGAGCACAAACCCTTGG7EL285,235[13,43-44] Xmag2931GGGGGCAGAACTTGTATGAATCTTGAGGGACGTGAGGAAC7EL300[13,43-44] Xmag3283TGCCTGACCTACTGCAACACGAATAGCCATCAACCGCAAG7EL1820[13,43-44] Xpsp3003GATCGACAAGGCTCTAATGCCAGGAGGAGAGCCTCTTGG7EL200[13] Xpsp3123AGATTAGATGGCATAAGCAAAGAGCGATTAATCACCGCCCTTGGTCC7EL120[49] Xpsr680 GCTCCACTACTTCATCATCC TGTTTCCTCTATCACTGACTTG 7EL246[49] XsdauK107AAGACGCAGTGTCTCGAGGTTGCATCCTCAACATTCTCCA7EL100[13,48] XsdauK116TCTGCGCCTTGTATCCTTCTGGAGTTCCTGGATGTCGTGT7EL230[13,48] XsdauK118GTTCAGTTCCACGCCCAATAATTATGCGCCGGGCTTCT7EL170[13,48] XsdauK124CAGTGCTGCAGGAGCTACAAAGAACCCTTCGGTGGAAACT7EL500[13,48] XsdauK13GCCCTGTTACAGTCCACGATGAGCTCCTTGCTCTGATTGG7EL300[13,48] XsdauK130TCACACAACCTGCATTGGATATGCCATACGCATTTCCAG7EL900, 800[13,48] XsdauK138GCAACCCAGTACGCCTAGTTCAAATTCGAAAGCCCACATT7EL400[13,48] XsdauK140AGGGTCTGTTTGGTTGGATGAGGCGTGAGAAGTCAATGCT7EL390[13,48] XsdauK142GTCTCGTTGCAATTGAGGTGGAGGCGAGCTGGAAATACAA7EL375[13,48] XsdauK144GGGCAGGAAAGACAACACTTTTCCCAGCTTTGCTCTTCAT7EL440[13,48] XsdauK159GTCTCGTTGCAATTGAGGTGGAGGCGAGCTGGAAATACAA7EL370[13,48] XsdauK165ACTGCGTCAGATCCGAAGTTTGCAGCAATGAAGTCAGGAA7EL1600[13,48] XsdauK176AGGAGGCCTTCATGCAGATATCGCCATGACTTCCTCTTCT7EL775[13,48] XsdauK27TAAGGTGGCTCCGTTGTCTCCCTCCAGAGCCTCTTTCTCC7EL465[13,48] XsdauK32AGGCCGGAGTCGATTCTATTATCACAGTGCGCTCATCAAA7EL250[13,48] XsdauK336TCATGTATTTGGACAATGTTAAACGAGACAGCTCCATCGGAAAAA7EL400[13,48] XsdauK339CAATTTGCTTCAAGGGGCTATTGGGCTCTTCTTCCCCTAT7EL425[13,48] XsdauK340ACACTCATGGGAGGACGAAGGCTACTAGCAATGGCGGAAC7EL357[13,48] XsdauK341TCAGTCCCGTCACTGTCAACGTCGCCTGCAGGTAGGAGTA7EL250[13,48] XsdauK342TTTACCAAGTGGGTGGAAGCTCCATAAAACGGAAGGCAAC7EL325[13,48] XsdauK343ACGAGGGTGGGAAGAAAGATAGCCAATTTCGCTGCTTAAA7EL324[13,48] XsdauK345GAAACTAGGGGGTCGGGTAGTCAATTTACCAGGGGCATTC7EL500, 410[13,48] XsdauK348GCCAGATAAGAACCCCGTTTGTGGTAATTTTTAGGGAGTGC7EL280, 145[13,48] XsdauK350GAAAGGCAACGAAAATGGAAGGTACATGATTTCCCCATGC7EL240[13,48] XsdauK351AGTCACCCACAAGGACCAACTGGTGCCCATCTTCTGGTAT7EL775[13,48] XsdauK352CTTTCCAACGCCGTATCATTATTGCGCTGACTGTTGTTTG7EL440[13,48] XsdauK353GGCAGGCACCATATTGAAGTTTGCCAACCACGTAGTGAAA7EL272[13,48] XsdauK355GCGAGAACAATAGCCTGATTTTTTTAATGCATGTTCAGCATTTTT7EL400[13,48] XsdauK356ATAGGTTTCTCCCGGCTTTGAAATCTTCACGAATTCAAAACA7EL140[13,48] XsdauK36CCCTGCATGAGTTGTCAATGCATCCTCCAAGGTCATCACA7EL286[13,48] XsdauK38GAAGATGGCGAAGGTGTAGCTTACACTGTCATCGCCGTCT7EL345[13,48] XsdauK4CATCAAGTACGGCGTCGAGATCGGTCACAAGGCTATTCG7EL745, 640[13,48] XsdauK45GGGTTCCTGCTCAAGTTCCTGGCCTCCTTATGACCACAAA7EL860[13,48] XsdauK6CGCGCTCTTCTACTGGTTCTGTAGAAATCGTGGCCCTTGA7EL555[13,48] XsdauK60TGGCGAAGATTTCTTCAAGTCCTGATCGCACGCTATCATGG7EL430[13,48] XsdauK66ATTTGGCTGCGATCGATAAGCCATCTTGTTGTTGCCCTCT7EL330[13,48] XsdauK71GGAGCCAAATCATCCTTGAATGTGCTTCAGTTTCGACAGG7EL440[13,48] XsdauK75TCTGCACCCTAGTGTTGTGGGATCAGGATCCAATGCAGGT7EL520[13,48] XsdauK8CGAAGCAGAAGCACCTGAAGCGCTGAATCGATTACGGAAC7EL985[13,48] XsdauK99GTGATGGGCAACATGTTCTGCCGGTAATGGAAACCAAGAA7EL700, 660[13,48] Xsews19 AAGGCAATGGAGATGTTCG CCCGTTGATGACCGTGTT 7EL275, 195[49] Xwmc273AGTTATGTATTCTCTCGAGCCTGGGTAACCACTAGAGTATGTCCTT7EL200, 150[49] Xwmc702GAATCACATCGAATGGATCTCAGAGGCCTTTTTCGATATTCTGC7EL194[49] Xwmc606CCGATGAACAGACTCGACAAGGGGCTTCGGCCAGTAGTACAGGA7EL/7ES175[49] Xbarc154GTAATTCCGGTTCCACTTGACATTGGATGGGCAGCTTCAAGGTATGTT7ES520[49] Xbarc70GCGAAAAACGATGCGACTCAAAGGCGCCATATAATTCAGACCCACAAAA7ES100[49] Xcfa2049TAATTTGATTGGGTCGGAGCCGTGTCGATGGTCTCCTTG7ES257[49] Xcfa2174ACGGCATCACAGGTTAAAGGGGTCTTTGCACTGCTAGCCT7ES240[49] Xcfd14CCACCGGCCAGAGTAGTATTTCCTGGTCTAACAACGAGAAGA7ES103[49] Xcfd21CCTCCATGTAGGCGGAAATATGTGTCCCATTCACTAACCG7ES260[49] Xcfd31GCACCAACCTTGATAGGGAAGTGCCTGATGATTTTACCCG7ES340[49] Xcfd66AGGTCTTGGTGGTTTTGGTGTTTTCACATGCCCACAGTTG7ES119[49] Xedm109ATGAGGCACAAGTGGATGGTCTCCTGAAGGGAAAAGCTCA7ES446[39] Xedm16TCACCTAACAGCACCACGAGGCCGAGTACCAGCAGTACCA7ES195[39] Xedm34TTGTTTCTTGGCTGGGTTTCGATCTGCCAAAGCCTTCATAA7ES150[39] Xgwm154TCACAGAGAGAGAGGGAGGGATGTGTACATGTTGCCTGCA7ES325[49] Xgwm156CCAACCGTGCTATTAGTCATTCCAATGCAGGCCCTCCTAAC7ES158[39] Xgwm350ACCTCATCCACATGTTCTACGGCATGGATAGGACGCCC7ES160[49] Xgwm44GTTGAGCTTTTCAGTTCGGCACTGGCATCCACTGAGCTG7ES140[49] Xgwm471CGGCCCTATCATGGCTGGCTTGCAAGTTCCATTTTGC7ES141[15] Xgwm473TCATACGGGTATGGTTGGACCACCCCCTTGTTGGTCAC7ES230, 200[49] Xmag2934TGTTCACAAGCGATTCAAGGAATGCAAGATGGTGGCTTCT7ES280[13,43-44] Xwmc83TGGAGGAAACACAATGGATGCCGAGTATCGCCGACGAAAGGGAA7ES153[49] Xwmc653AGTGTTTTAGGGGTGGAAGGGACGGAACCCTAAACCCTAGTCG7ES190[49] Xwmc809CAGGTCGTAGTTGGTACCCTGAATGAACACGGCTGGATGTGA7ES360[49]
Molecular identification of FHB resistance gene in varieties derivedfrom common wheat-partial amphiploid
LIU XinLun1, WANG Chao1, NIU LiHua1, LIU ZhiLi2, ZHANG LuDe3, CHEN ChunHuan1, ZHANG RongQi1, ZHANG Hong1, WANG ChangYou1, WANG YaJuan1, TIAN ZengRong1, JI WanQuan1
(1College of Agronomy, Northwest A&F University/State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling 712100, Shaanxi;2Seed Administration Station of Chenggu County, Hanzhong 723200, Shaanxi;3Shaanxi provincial Office of Poverty Alleviation and Development, Xi’an 710006)
Fusarium head blight (FHB) is one of the most devastating diseases of wheat.is one of the important source resistance cultivars of wheat disease resistance breeding, with high tolerance to FHB. Three derived varieties of common wheat-Xinong 509, Xinong 511 and Xinong 529 showed moderate resistance to FHB in field. The objective of this study is to clarify the genetic constitution of resistance gene in three varieties.Single drop injection withwas performed to detect the reaction of the three derived varieties of common wheat-to FHB. Specific molecular markers located on homologous group 1 to 7 ofE chromosome were employed to detect the sources of resistance to FHB, screening the three derived varieties of common wheat-, and their major donor parents Xiaoyan 693, Xiaoyan 597 andSpecific molecular markers closely linked with ?ankingwere used to analyze the relationship between the gene conferring resistance to FHB andThree derived varieties were moderately resistant to FHB in the field experiment, and had no much difference compared with the medium-resistant control variety. Seven of the 105 chromosome E specific molecular markers ofcould be amplified polymorphism bands in the three derived varieties and, which located on the chromosome 7E. A total of 97 specific markers located on the chromosome 7E,20 showed specific bands ofin the three derived varieties of common wheat-and their major donor parents Xiaoyan 693, Xiaoyan 597The results indicate that the 89 cM genetic fragment derived from7E chromosome. Of them, six molecular markers (,,,,and), which were located on 7EL 149.00-7EL 153.77, tightly linked to. However,(7EL 153.77),(7EL 154.70),(7EL 156.27),(7EL 158.02),(7EL 158.97) and(7EL 160.00),which are next to, showed no specific bands ofamong the three derived varieties of common wheat-and Xiaoyan 597.Xinong 509, Xinong 511 and Xinong 529, derived fromwith good FHB resistance, possess a novel FHB resistance gene, which derived fromand was different from.
common wheat;;Fusarium head blight;; molecular marker
2017-05-17;接受日期:2017-07-23
國家重點研發(fā)計劃(2016YFD0102000)、陜西省科技統(tǒng)籌創(chuàng)新工程計劃(2015KTZDNY01-01-02)
劉新倫,E-mail:liuxxlun@126.com。王超,E-mail:1240026878@qq.com。劉新倫和王超為同等貢獻作者。通信作者吉萬全,E-mail:jiwanquan2008@126.com