陳露露,陳 沛,王彥波,陳丹云,付記亞,朱俊彥
(河南大學(xué) 化學(xué)化工學(xué)院,河南 開封 475004)
自由基催化炔酸酯環(huán)化制備香豆素類化合物的研究進(jìn)展
陳露露,陳 沛,王彥波*,陳丹云,付記亞,朱俊彥
(河南大學(xué) 化學(xué)化工學(xué)院,河南 開封 475004)
香豆素及其衍生物是一類重要的含氧雜環(huán)化合物,在香料、食品、醫(yī)藥、農(nóng)藥、光電材料及超分子識(shí)別等諸多領(lǐng)域應(yīng)用廣泛,因此香豆素類化合物的合成研究已引起人們的極大關(guān)注,本文基于近幾年報(bào)道的自由基促進(jìn)炔酸酯環(huán)化合成香豆素類化合物的研究進(jìn)展進(jìn)行了簡(jiǎn)要綜述.
香豆素;自由基;炔酸酯;環(huán)化反應(yīng)
苯并吡喃酮構(gòu)建的香豆素類化合物是一類重要芳香氧雜環(huán)化合物,該類化合物因其獨(dú)特的結(jié)構(gòu)而廣泛應(yīng)用于食品、醫(yī)藥、農(nóng)藥、材料科學(xué)、香料及超分子識(shí)別等領(lǐng)域[1],特別是在抗癌、抗菌、抗炎、抗HIV及抗凝血等方面具有重要作用(圖1). 目前香豆素類化合物的合成方法集中于鄰羥基苯醛類化合物的環(huán)化反應(yīng)[2-3]、苯酚類化合物的環(huán)化反應(yīng)[4]、炔酸酯類化合物的環(huán)化反應(yīng)[5]以及香豆素母體與活性分子偶聯(lián)反應(yīng)[6]. 值得注意的是,近幾年不同課題組分別報(bào)道了通過(guò)自由基引發(fā)合成香豆素類化合物的研究,該類方法具有操作簡(jiǎn)單、高活性、高適用性和區(qū)域選擇性等諸多優(yōu)勢(shì),為目標(biāo)分子的制備提供了一種高效實(shí)用的方法,已成為目前制備該類化合物的研究熱點(diǎn). 本文依據(jù)自由基引發(fā)該反應(yīng)的類型不同,以碳自由基、硫自由基及其他自由基(膦自由基、鹵素自由基和硒基自由基等)作為自由基來(lái)源,簡(jiǎn)要綜述與討論以上自由基促進(jìn)炔酸酯環(huán)化制備香豆素類化合物的研究進(jìn)展,并對(duì)反應(yīng)機(jī)理進(jìn)行了歸納與總結(jié).
眾所周知,引發(fā)產(chǎn)生自由基方法眾多:如可見光誘導(dǎo)法、過(guò)氧化物誘導(dǎo)法,熱誘導(dǎo)法和輻射誘導(dǎo)法等,本文主要討論前兩種誘導(dǎo)產(chǎn)生自由基的方法. 此外,由于自由基參與的反應(yīng)具有較高反應(yīng)活性,常被人們用于有機(jī)合成中. 自由基對(duì)底物炔酸酯的三鍵進(jìn)行加成而產(chǎn)生相應(yīng)的烯基自由基,該烯基自由基能和苯環(huán)的π電子體系發(fā)生環(huán)化反應(yīng)以制備不同功能化香豆素類化合物.
1.1 可見光引發(fā)碳自由基
由二氟亞甲基結(jié)構(gòu)單元構(gòu)建的化合物廣泛應(yīng)用于醫(yī)藥和材料科學(xué)領(lǐng)域,如何有效地向分子中引人-CF2-結(jié)構(gòu)單元成為科研工作者重要研究課題之一[7]. 2015年,F(xiàn)U課題組[8]報(bào)道了一種向香豆素類化合物3位引入二氟亞甲基的新方法:在過(guò)渡金屬配合物fac-Ir(ppy)3、可見光和無(wú)機(jī)堿碳酸鉀作用下二氟溴乙酸乙酯轉(zhuǎn)化為二氟乙酸乙酯自由基,該自由基能夠催化不同功能化炔酸酯環(huán)化以制備相應(yīng)的香豆素類化合物(圖2). 此外,作者嘗試使用一氟溴乙酸乙酯和二氟溴磷酸酯作為底物時(shí),該環(huán)化反應(yīng)不能進(jìn)行.
圖1 幾種含有香豆素結(jié)構(gòu)片段具有生理活性的藥物代表Fig.1 Some representative bioactive agents containing the coumarin motif
圖2 可見光引發(fā)二氟溴乙酸乙酯與炔酸酯反應(yīng)制備3-二氟乙酸乙酯功能化香豆素類化合物Fig.2 Visible-light-mediated cyclization of alkynoates with ethyl bromodifluoroacetate for the synthesis of 3-difluoroacetylated coumarins
氧鄰位sp3雜化的C-H鍵通常需要過(guò)渡金屬在高溫(110~120 ℃)條件下才能產(chǎn)生相應(yīng)的碳自由基[9-10],然而2016年XIE課題組報(bào)道了在溫和條件下得到鄰氧碳自由基:通過(guò)金屬配合物Ru(bpy)3Cl2、t-BuOOH和可見光作用,使醚類產(chǎn)生鄰氧碳自由基,該自由基可以中到高產(chǎn)率引發(fā)不同炔酸酯轉(zhuǎn)化為相應(yīng)的香豆素類化合物[11](圖3). 研究表明:當(dāng)醚類氧原子鄰位含有兩個(gè)化學(xué)環(huán)境不同sp3雜化的C-H鍵時(shí),該產(chǎn)物的選擇性較差.
圖3 可見光促進(jìn)醚與炔酸酯的環(huán)化反應(yīng)Fig.3 Cyclization reaction of ether with alkynoates promoted by visible-light
1.2 過(guò)氧化物引發(fā)碳自由基
將三氟甲基官能團(tuán)引入有機(jī)分子中通常可以改善該分子的物理、化學(xué)和生物性能[12],特別是三氟甲基功能化的香豆素類化合物可以用于抗癌劑,熒光標(biāo)記物,光學(xué)分子傳感器和聚合物波長(zhǎng)調(diào)節(jié)劑等方面[13]. 之前文獻(xiàn)報(bào)道的三氟甲基功能化香豆素類化合物主要集中在4位,而3位三氟甲基功能化還未有報(bào)道. 基于此,2014年,DING課題組[14]考察了銅鹽在溫和條件下催化不同三氟甲基試劑與炔酸酯的環(huán)化反應(yīng). 研究結(jié)果表明:一代Togni試劑的活性高于二代Togni試劑和Umemoto試劑,在一代Togni試劑作用下可以順利制備3-三氟甲基功能化香豆素類化合物(圖 4).
圖4 銅催化炔酸酯的三氟甲基化以構(gòu)建三氟甲基功能化的香豆素類化合物Fig.4 Copper-catalyzed trifluoromethylation of alkynoates for construction of trifluoromethylated coumarins
3-酰基香豆素類化合物具有重要的生物活性[15-16],如:抗氧化劑、單胺氧化酶(MAO)抑制劑,抗瘧藥,抗腫瘤藥和抗炎藥. 基于該類化合物的重要性,通過(guò)?;杂苫l(fā)炔酸酯環(huán)化反應(yīng)以制備3-?;愣顾仡惢衔锏玫搅溯^大應(yīng)用. WU課題組[17]在2014年使用四丁基溴化銨和過(guò)硫酸鉀引發(fā)芳香醛或脂肪醛產(chǎn)生酰基自由基,該酰基自由基可以催化不同功能化炔酸酯的環(huán)化以制備3-?;愣顾仡惢衔?圖5). 隨后,2015年YANG和DING課題組[18-19]分別報(bào)道了銀鹽在過(guò)硫酸鉀作用下催化α-酮酸與炔酸酯的脫羧與環(huán)化串聯(lián)反應(yīng)制備3-?;δ芑愣顾仡惢衔?(圖6).
圖5 無(wú)金屬催化炔酸酯與醛的?;c環(huán)化串聯(lián)氧化反應(yīng)Fig.5 Metal-free-catalyzed tandem oxidative acylation/cyclization between alkynoates with aldehydes
圖6 銀催化α-酮酸與炔酸酯的脫酸環(huán)化反應(yīng)制備3-?;愣顾仡惢衔颋ig.6 Silver-promoted decarboxylative annulation of alkynoates with α-ketoacid
氰基是一類重要的官能團(tuán),一方面廣泛存在于天然產(chǎn)物和醫(yī)藥分子[20];另一方面可以進(jìn)一步功能化轉(zhuǎn)化制備羧酸及其衍生物,胺和醛酮類化合物等[21-22]. 通過(guò)廉價(jià)易得的乙腈作為氰基來(lái)源已引起人們的廣泛關(guān)注[23-24],2016年,SUN課題組[25]報(bào)道了過(guò)苯甲酸特丁酯(TBPB)和碳酸鈉催化乙腈與炔酸酯反應(yīng)制備相應(yīng)的3-乙腈基功能化香豆素類化合物. 研究表明:3-乙腈基功能化香豆素類化合物可以進(jìn)一步高效地轉(zhuǎn)化為酯基和酰胺基修飾的香豆素類化合物. 此外,作者考察丙酮與炔酸酯的環(huán)化反應(yīng),可以順利得到相應(yīng)的2-氧丙基香豆素類化合物(圖7).
圖7 無(wú)金屬催化炔酸酯與乙腈或丙酮的環(huán)化反應(yīng)Fig.7 Metal-free-catalyzed cyclization of various alkynoates with acetonitrile or acetone
2016年,DING課題組[26]使用1,2-二氯乙烷和水作為混合溶劑,在四丁基溴化銨和過(guò)硫酸鉀作用下使得2,4-二酮化合物轉(zhuǎn)化為相應(yīng)的碳自由基,該自由基促使炔酸酯的環(huán)化以制備3-功能化香豆素類化合物,其最高分離產(chǎn)率為73%(圖8).
圖8 無(wú)金屬催化炔酸酯與2,4-二酮氧化環(huán)化串聯(lián)反應(yīng)Fig.8 Metal-free catalyzed tandem oxidative cyclization of alkynoates with 2,4-diones
2.1 磺酰基自由基
砜類化合物作為一類具有較強(qiáng)活性的抗菌劑廣泛應(yīng)用于醫(yī)藥和農(nóng)藥領(lǐng)域[27-29],如何有效合成砜類修飾的香豆素化合物已引起人們廣泛關(guān)注. 不同課題組相繼報(bào)道了磺?;杂苫呋菜狨サ沫h(huán)化反應(yīng)以制備3-砜基香豆素類化合物. 2015年,WANG課題組[30]報(bào)道了四丁基碘化銨(TBAI)和叔丁基過(guò)氧化氫(TBHP)誘導(dǎo)磺酰肼脫氫而釋放氮?dú)庖援a(chǎn)生相應(yīng)的磺?;杂苫?,該自由基進(jìn)一步催化炔酸酯的環(huán)化而得到3-磺酰基香豆素類化合物(圖9a),該反應(yīng)具有無(wú)過(guò)渡金屬參與和良好的官能團(tuán)容忍性等優(yōu)勢(shì). 隨后, WANG課題組[31]報(bào)道了在室溫條件下可見光誘導(dǎo)有機(jī)染料伊紅Y和叔丁基過(guò)氧化氫參與的炔酸酯與亞磺酸的氧化環(huán)化反應(yīng)(圖9b). 反應(yīng)過(guò)程同樣是通過(guò)多步自由基引發(fā)產(chǎn)生關(guān)鍵的磺酰基自由基中間體. 該反應(yīng)具有反應(yīng)條件溫和,無(wú)金屬參與、高活性高區(qū)域選擇性和較好的底物適用性等諸多優(yōu)點(diǎn). 此外,2016年,WU課題組[32]報(bào)道了一種新穎磺?;杂苫苽浞椒? 在無(wú)金屬和氧化劑作用下,使用DABCO固定二氧化硫作為磺?;鶃?lái)源,與苯基重氮四氟硼酸鹽反應(yīng)而生成相應(yīng)的磺?;杂苫? 該催化體系在溫和反應(yīng)條件下可以高活性實(shí)現(xiàn)不同炔酸酯的環(huán)化反應(yīng)(圖9c).
2.2 三氟甲硫基和硫氰基自由基
2015年,WANG課題組[33]在溫和條件下分別以三氟甲烷硫醇銀(AgSCF3)和硫氰化銀(AgSCN)作為三氟硫甲基化和硫氰基化的來(lái)源,研究了在過(guò)硫酸鉀作用下炔酸酯的三氟硫甲基化和硫氰基化反應(yīng)(圖10). 該反應(yīng)具有反應(yīng)條件溫和及良好的底物適用性等優(yōu)點(diǎn).
圖9 磺?;杂苫l(fā)炔酸酯的環(huán)化反應(yīng)Fig.9 Sulfonyl radical-initiated annulation of alkynoates
圖10 炔酸酯的三氟硫甲基化和硫氰基化反應(yīng)Fig.10 Trifluoromethylthiolation and thiocyanation of alkynoate
3.1 膦自由基
芳基膦化合物廣泛存在于天然產(chǎn)物,藥品,材料科學(xué)和合成中間體中[34-35],基于有機(jī)磷化合物的重要性,HUANG課題組[36]在2014年報(bào)道了碳酸銀與硝酸鎂促使亞磷酸二酯脫氫產(chǎn)生有機(jī)磷自由基,該自由基與不同炔酸酯反應(yīng),中到高產(chǎn)率得到相應(yīng)的3-亞磷酸酯修飾的香豆素類化合物(圖11).
圖11 銀鹽催化亞磷酸酯與炔酸酯的環(huán)化反應(yīng)Fig.11 Silver-catalyzed phosphorus carbocyclization of alkynoates
3.2 溴自由基
含溴基化合物是一類重要的有機(jī)合成原料,通過(guò)對(duì)其親核取代和金屬催化偶聯(lián)反應(yīng)可以進(jìn)一步構(gòu)建各種功能化有機(jī)化合物. 2016年,DING課題組[37]開發(fā)了四丁基溴化銨(TBAB)與炔酸酯的溴代氧化偶聯(lián)以構(gòu)建3-溴香豆素類化合物,該方法具有易于操作,溴源廉價(jià)易得等優(yōu)點(diǎn). 此外, 3-溴香豆素類化合物在金屬鈀催化下可以分別與端炔和亞磷酸酯進(jìn)行偶聯(lián)反應(yīng)(圖12).
3.3 硒自由基
硒是人類身體必需的微量元素,而有機(jī)硒化合物廣泛用于抗腫瘤、抗病毒、心血管保護(hù)、免疫調(diào)節(jié)、抗菌及神經(jīng)保護(hù)藥物[38-40],因此如何將有機(jī)硒基團(tuán)引入具有生物活性藥物分子中已成為一個(gè)重要的研究課題. 2014年,ZENI課題組[41]報(bào)道了三氯化鐵與二硒化合物催化炔酸酯的環(huán)化反應(yīng)以制備3-硒基香豆素類化合物(圖13). 在此基礎(chǔ)上研究表明:該催化體系同樣適用于炔酰胺與二硒化合物的環(huán)化反應(yīng).
圖12 無(wú)金屬催化炔酸酯與四丁基溴化銨的環(huán)化反應(yīng)Fig.12 Metal free-catalyzed cyclization of alkynoates and tetrabutylammonium bromide (TBAB)
圖13 三氯化鐵催化炔酸酯與二硒化合物的環(huán)化反應(yīng)Fig.13 Iron(III) chloride-mediated cyclization of alkynoates and diorganyl diselenides
基于同位素標(biāo)記和產(chǎn)物區(qū)域選擇性不同,目前引發(fā)自由基催化炔酸酯環(huán)化反應(yīng)的機(jī)理主要有兩種:一種自由基引發(fā)5-exo環(huán)化;另一種是自由基引發(fā)6-endo 環(huán)化. 前者反應(yīng)機(jī)理如Path a所示:在外界條件(光引發(fā)或氧化劑)作用下,促使一個(gè)反應(yīng)底物產(chǎn)生自由基R·(碳自由基、硫自由基、膦自由基、溴自由基和硒自由基等),然后該自由基與炔酸酯三鍵加成生成中間體A,中間體A經(jīng)過(guò)5-exo 環(huán)化得到中間體B. 在氧化劑作用下,中間體B失去一個(gè)電子而轉(zhuǎn)化相應(yīng)的陽(yáng)離子中間體C,緊接著中間體C經(jīng)過(guò)酯基氧遷移而生成中間體D,該中間體失去一分子質(zhì)子而得到目標(biāo)產(chǎn)物香豆素類化合物. 后者反應(yīng)機(jī)理如Path b所示:第一步產(chǎn)生中間體A與Path a第一步相似,接著中間體A經(jīng)過(guò)6-endo 環(huán)化產(chǎn)生中間體E,在氧化劑存在下,中間體E失去一個(gè)電子而得到中間體F,然后該中間體失去一分子質(zhì)子而轉(zhuǎn)化為目標(biāo)產(chǎn)物香豆素類化合物. 當(dāng)?shù)孜锶菜狨ブ信c酯基相連苯環(huán)上有取代基R1(R1≠H)時(shí),兩種機(jī)理最大的區(qū)別在于產(chǎn)物存在區(qū)域選擇性,也即是取代基R1在產(chǎn)物苯環(huán)的位置不同,如圖14所示.
圖14 通過(guò)炔酸酯環(huán)化反應(yīng)合成香豆素類化合物的可能反應(yīng)機(jī)理Fig.14 Proposed mechanism for the synthesis of coumarins vis cyclization of alkynoates
本文簡(jiǎn)要地介紹了不同類型自由基參與催化炔酸酯的環(huán)化反應(yīng)以制備功能化香豆素類化合物的研究. 與傳統(tǒng)構(gòu)建香豆素類化合物方法相比,該自由基引發(fā)方法具有易于操作、反應(yīng)活性和區(qū)域選擇性較高等眾多優(yōu)點(diǎn). 如何在溫和反應(yīng)條件下開發(fā)新型自由基催化體系高效催化炔酸酯制備香豆素類化合物以及進(jìn)一步探索自由基引發(fā)炔酸酯環(huán)化反應(yīng)機(jī)理將是該領(lǐng)域的重點(diǎn)研究方向.
[1] PENG X M, DAMU G, ZHOU C H, et al. Current deve-lopments of coumarin compounds in medicinal chemistry [J]. Current Pharmaceutical Design, 2013, 19(21): 3884-3930.
[2] SURYA P R H, SIVAKUMAR S. Condensation ofα-aroylketene dithioacetals and 2-hydroxyarylaldehydes results in facile synthesis of a combinatorial library of 3-aroylcoumarins [J]. Journal of Organic Chemistry, 2006, 71(23): 8715-8723
[3] YUAN H, WANG M, LIU Y, et al. Unexpected hydrobromic acid-catalyzed C-C bond-forming reactions and facile synthesis of coumarins and benzofurans based on ketene dithioacetals [J]. Chemistry-A European Journal, 2010, 16(45): 13450-13457.
[4] FAUSTA U, MARCHETTI M, PICCOLO O. Enantioselective synthesis of (S)- and (R)-tolterodine by asymmetric hydrogenation of a coumarin derivative obtained by a heck reaction [J]. Journal of Organic Chemistry, 2007, 72 (16): 6056-6059.
[5] MANTOVANI A C, GOULART T A C, BACK D F, et al. Iron(III) chloride and diorganyl diselenides-mediated 6-endo-dig cyclization of arylpropiolates and arylpropiolamides leading to 3-organoselenyl-2H-coumarins and 3-organoselenyl-quinolinones [J]. Journal of Organic Chemistry, 2014, 79(21): 10526-10536.
[6] LI Y, QI Z, WANG H, et al. Palladium-catalyzed oxidative heck coupling reaction for direct synthesis of 4-arylcoumarins using coumarins and rrylboronic acids [J]. Journal of Organic Chemistry, 2012, 77 (4): 2053-2057.
[7] ROMANENKO V D, KUKHAR V P. Fluorinated phosphonates: synthesis and biomedical application [J]. Chemical Reviews, 2006, 106(9): 3868-3935.
[8] PENG J J, DENG Y Q, FU W, et al. Visible-light-mediated radical aryldifluoroacetylation of alkynes with ethyl bromodifluoroacetate for the synthesis of 3-difluoroacetylated coumarins [J]. Journal of Organic Chemistry, 2015, 80(9): 4766-4770.
[9] WEI W, SONG R, OUYANG X, et al. Copper-catalyzed oxidativeipso-carboalkylation of activated alkynes with ethers leading to 3-etherified azaspiro[4,5]trienonescarbo-nate [J]. Organic Chemistry Frontiers, 2014, 1(5): 484-489.
[10] PAN C, ZHANG H, ZHU C. Oxidative difunctionalization of alkynoates via cascade radical addition, aryl migration, and decarboxylation [J]. Tetrahedron Letters, 2016, 57(5): 595-598.
[11] FENG S, XIE X, ZHANG W. et al. Visible-light-promoted dual C-C bond formations of alkynoates via a domino radical addition/cyclization reaction: a synthesis of coumarins [J]. Organic Letters, 2016, 18(15): 3846-3849.
[12] SCHLOSSER M. CF3-Bearing aromatic and heterocyclic building blocks [J]. Angewandte Chemie International Edition, 2006, 45(33): 5432-5446.
[13] SCHILL H, NIZAMOV S, BOTTANELLI F. 4-Trifluoromethyl-substituted coumarins with large stokes shifts: synthesis, bioconjugates, and their use in super-resolution fluorescence microscopy [J]. Chemistry-A European Journal, 2013, 19(49): 16556-16565.
[14] LI Y, LU Y, DING Q, et al. Copper-catalyzed direct tri-fluoromethylation of propiolates: construction of trifluoromethylated coumarinsbene [J]. Organic Letters, 2014, 16(16): 4240-4243.
[15] SANDHU S, BANSAL Y, SILAKARI O, et al. Coumarin hybrids as novel therapeutic agents [J]. Bioorganic & Medicinal Chemistry, 2014, 22(15): 3806-3814.
[16] BORGES F, ROLEIRA F, MILHAZES N, et al. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity [J]. Current Medicinal Chemistry, 2005, 12(8): 887-916.
[17] MI X, WANG C, HUANG M, et al. Preparation of 3-acyl-4-arylcoumarins via metal-free tandem oxidative acylation/cyclization between alkynoates with aldehydeslic [J]. Journal of Organic Chemistry, 2015, 80(1): 148-155.
[18] YAN K, YANG D, WEI W, et al. Silver-mediated radical cyclization of alkynoates andα-keto acids leading to coumarins via cascade double C-C bond formation [J]. Journal of Organic Chemistry, 2015, 80(3): 1550-1556
[19] LIU T, DING Q, ZONG Q, et al. Radical 5-exo cyclization of alkynoates with 2-oxoacetic acids for synthesis of 3-acylcoumarins [J]. Organic Chemistry Frontiers, 2015, 2(6): 670-673.
[20] FLEMING F F, YAO L, RAVIKUMAR P C, et al. Nitrile-containing pharmaceuticals: efficacious roles of the nitrile pharmacophore [J]. Journal of Medicinal Chemistry, 2010, 53(22): 7902-7917.
[21] ANBARASAN P, SCHAREINA T, BELLER M. Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles [J]. Chemical Society Reviews, 2011, 40(10): 5049-5067.
[22] WANG M X. Enantioselective biotransformations of nitriles in organic synthesis [J]. Accounts of Chemical Research, 2015, 48(3): 602-611.
[23] BUNESCU A, WANG Q, ZHU J. Copper-catalyzed cyanomethylation of allylic alcohols with concomitant 1,2-aryl migration: efficient synthesis of functionalized ketones containing anα-quaternary center [J]. Angewandte Chemie International Edition, 2015, 54(10): 3132-3135.
[24] CHATALOVA-SAZEPIN C, WANG Q, SAMMIS G M, et al. Copper-catalyzed intermolecular carboetherification of unactivated alkenes by alkyl nitriles and alcohols [J]. Angewandte Chemie International Edition, 2015, 54(18): 5443-5446.
[25] YU Y, ZHUANG S, SUN P, et al. Cyanomethylation and cyclization of aryl alkynoates with acetonitrile under transition-metal-free conditions: synthesis of 3-cyanomethylated coumarins [J]. Journal of Organic Chemistry, 2016, 81 (22): 11489-11495.
[26] LIU T, DING Q, QIU G, et al. Tandem metal-free oxidative radical 5-exo dearomative spirocyclization and ester migration: generation of 3-functionalized coumarins from alkynoates [J]. Tetrahedron, 2016, 72(2): 279-284.
[27] HARRAK Y, CASULA G, BASSET J, et al. Synthesis, anti-inflammatory activity, and in vitro antitumor effect of a novel class of cyclooxygenase inhibitors: 4-(aryloyl)phenyl methyl sulfones [J]. Journal of Medicinal Chemistry, 2010, 53(18): 6560-6571.
[28] AZIZ J, MESSAOUDI S, ALAMI M, et al. Sulfinate derivatives: dual and versatile partners in organic synthesis [J]. Organic & Biomolecular Chemistry, 2014, 12(48): 9743-9759.
[29] LIU N W, LIANG S, MANOLIKAKES G, et al. Recent advances in the synthesis of sulfones [J]. Synthesis, 2016, 48(13): 1939-1973.
[30] WEI W, WEN J, WANG H, et al. Direct and metal-free arylsulfonylation of alkynes with sulfonylhydrazides for the construction of 3-sulfonated coumarins [J]. Chemical Communications, 2015, 51(4): 768-771.
[31] YANG W, YANG S, WANG L, et al. Visible-light initiated oxidative cyclization of phenyl propiolates with sulfinic acids to coumarin derivatives under metal-free conditions [J]. Chemical Communications, 2015, 51(35): 7520-7523.
[32] ZHENG D, YU J, WU J. Generation of sulfonyl radicals from aryldiazonium tetrafluoroborates and sulfur dioxide: the synthesis of 3-sulfonated coumarins [J]. Angewandte Chemie International Edition, 2016, 55(39): 11925-11929
[33] ZENG Y F, TAN D H, WANG H, et al. Direct radical trifluoromethylthiolation and thiocyanation of aryl alkynoate esters: mild and facile synthesis of 3-trifluoromethylthiolated and 3-thiocyanated coumarins [J]. Organic Chemistry Frontiers, 2015, 2(11): 1511-1515.
[34] GEORGE A, VEIS A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition [J]. Chemical Reviews, 2008, 108 (11): 4670-4693.
[35] QUEFFELEC C, PETIT M, BUJOLI B, et al. Surface modification using phosphonic acids and esters [J]. Chemical Reviews, 2012, 112 (7): 3777-3807.
[36] MI X, WANG C, HUANG M, et al. Silver-catalyzed synthesis of 3-phosphorated coumarins via radical cyclization of alkynoates and dialkyl H-phosphonates [J]. Organic Letters, 2014, 16 (12): 3356-3359.
[37] QIU G, LIU T, DING Q. Tandem oxidative radical brominative addition of activated alkynes and spirocyclization: switchable synthesis of 3-bromocoumarins and 3-bromo spiro-[4,5] trienone [J]. Organic Chemistry Frontiers, 2016, 3(4): 510-515.
[38] PERIN G, LENARDAO E J, JACOB R G, et al. Synthesis of vinyl selenides [J]. Chemical Reviews, 2009, 109(3): 1277-1301.
[39] SANTI C, SANTORO S, BATTISTELLI B. Organoselenium compounds as catalysts in nature and laboratory [J]. Current Organic Chemistry, 2010, 14(20): 2442-2462.
[40] NOGUEIRA C W, ZENI G, ROCHA J B T. Organoselenium and organotellurium compounds: toxicology and pharmacology [J]. Chemical Reviews, 2004, 104 (12): 6255-6286.
[41] MANTOVANI A C, GOULART T A C, ZENI G, et al. Iron(III) chloride and diorganyl diselenides-mediated 6-endo-dig cyclization of arylpropiolates and arylpropiolamides leading to 3-organoselenyl-2H-coumarins and 3-organoselenyl-quinolinones [J]. Journal of Organic Che-mistry, 2014, 79(21): 10526-10536.
Researchprogressinthesynthesisofcoumarinsviaradical-catalyzedcyclizationofalkynoates
CHEN Lulu, CHEN Pei, WANG Yanbo*, CHEN Danyun, FU Jiya, ZHU Junyan
(CollegeofChemistryandChemicalEngineering,HenanUniversity,Kaifeng475004,Henan,China)
As a class of important aromatous oxygen-containing heterocyclic compounds coumarin and its derivatives are widely used in spice, food, medicine, pesticide, photolectric materials and supramolecular recognition. Therefore, the synthesis of coumarin derivatives has attracted much interest. In this paper, the recent research progress in synthesis of coumarin derivatives promoted by radical has been briefly reviewed.
coumarin; radical; alkynoates; cyclization reaction
O626
A
1008-1011(2017)05-0645-08
2017-07-05.
國(guó)家自然科學(xué)基金(U1504205);河南省高等學(xué)校重點(diǎn)科研項(xiàng)目計(jì)劃(17A150002).
陳露露(1996-), 女, 碩士生, 研究方向?yàn)橛袡C(jī)合成.*
, E-mail:wangyanbokf@henu.edu.cn.
[責(zé)任編輯:張普玉]