朱 凱 武 劍 楊艷芳 陳發(fā)棣 喻德躍
(1.南京農(nóng)業(yè)大學(xué)大豆研究所,國家大豆改良中心,作物遺傳與種質(zhì)創(chuàng)新國家重點(diǎn)實(shí)驗(yàn)室,南京 210095; 2.中國林業(yè)科學(xué)研究院林業(yè)研究所,林木遺傳育種國家重點(diǎn)實(shí)驗(yàn)室,國家林業(yè)局林木培育重點(diǎn)實(shí)驗(yàn)室,北京 100091; 3.南京農(nóng)業(yè)大學(xué)園藝學(xué)院觀賞園藝系,南京 210095)
甘菊DlNAC1轉(zhuǎn)錄因子基因提高煙草耐高溫能力
朱 凱1武 劍1楊艷芳2*陳發(fā)棣3喻德躍1
(1.南京農(nóng)業(yè)大學(xué)大豆研究所,國家大豆改良中心,作物遺傳與種質(zhì)創(chuàng)新國家重點(diǎn)實(shí)驗(yàn)室,南京 210095;2.中國林業(yè)科學(xué)研究院林業(yè)研究所,林木遺傳育種國家重點(diǎn)實(shí)驗(yàn)室,國家林業(yè)局林木培育重點(diǎn)實(shí)驗(yàn)室,北京 100091;3.南京農(nóng)業(yè)大學(xué)園藝學(xué)院觀賞園藝系,南京 210095)
研究針對從甘菊中克隆獲得的DlNAC1基因(GenBank登錄號為EF602305)進(jìn)行生物信息學(xué)分析,并利用根癌農(nóng)桿菌介導(dǎo)的葉盤轉(zhuǎn)化法將該基因在煙草中進(jìn)行過表達(dá)研究。結(jié)果發(fā)現(xiàn)DlNAC1蛋白具有較高親水性,二級結(jié)構(gòu)中占比最高的為無規(guī)則卷曲,并具有N糖基化位點(diǎn)等6類潛在的模體結(jié)構(gòu)和典型的由一個扭曲的反平行β片層和α螺旋組成的NAC結(jié)構(gòu)域。將DlNAC1基因在煙草中過表達(dá)后,通過PCR方法從55株轉(zhuǎn)化植株中鑒定出36株為陽性植株,并且轉(zhuǎn)基因煙草T0代植株在45℃高溫脅迫后,轉(zhuǎn)35S:DlNAC1基因陽性植株生長狀況良好,而對照植株發(fā)生萎蔫,并且轉(zhuǎn)基因植株葉片含水量顯著高于對照植株。然而,在4℃低溫脅迫后,發(fā)現(xiàn)轉(zhuǎn)基因煙草T1代植株沒有提高耐低溫能力。甘菊DlNAC1基因能夠提高煙草植株耐高溫能力,為今后菊花抗逆育種提供了科學(xué)依據(jù)。
菊花;NAC轉(zhuǎn)錄因子;生物信息學(xué);高溫脅迫;轉(zhuǎn)基因煙草
轉(zhuǎn)錄因子(Transcription factor,TF)通常是由基因編碼的一類蛋白質(zhì),能夠與位于基因啟動子區(qū)域的順式作用元件發(fā)生特異性結(jié)合,通過和某些輔助調(diào)控因子發(fā)生作用而影響轉(zhuǎn)錄復(fù)合體的形成,從而調(diào)節(jié)植物基因的特異性表達(dá)[1]。目前研究證明,AP2/ERF、MYB、bHLH、WRKY、bZIP和NAC等多種轉(zhuǎn)錄因子,在植物生長發(fā)育、病原威脅以及低溫、干旱等的逆境脅迫中起到非常重要的作用[2~6]。
NAC轉(zhuǎn)錄因子廣泛分布于陸生植物中,并且數(shù)量眾多。自首先從矮牽牛中發(fā)現(xiàn)NAC基因以來[7],還從擬南芥等多種植物中發(fā)現(xiàn)了NAC轉(zhuǎn)錄因子[8~10]。例如,通過全基因組分析發(fā)現(xiàn),在模式植物擬南芥和水稻中分別存在117個和151個NAC基因[11~12]。研究表明NAC基因家族在植物生長發(fā)育、激素調(diào)控和信號轉(zhuǎn)導(dǎo)等過程中發(fā)揮作用,還與光反應(yīng)、細(xì)胞的程序性凋亡以及衰老有關(guān)[13~20]。此外,研究還發(fā)現(xiàn)多個NAC轉(zhuǎn)錄因子與植物的非生物脅迫相關(guān)。例如,Hong等[21]將水稻來源的ONAC022過量表達(dá),提高了轉(zhuǎn)基因水稻的耐干旱和耐鹽能力。
甘菊(Dendranthemalavandulifolium(Fisch. ex Trautv.) Makino)為菊科(Asteraceae)多年生植物,不僅具有較高的觀賞價(jià)值,還擁有良好的抗逆性。目前,也有一些有關(guān)菊花NAC轉(zhuǎn)錄因子基因的相關(guān)研究報(bào)道。Huang等[22]利用RNA-Seq技術(shù),在菊花(Chrysanthemumlavandulifolium)中發(fā)現(xiàn)了44個NAC同源基因的表達(dá)在高鹽脅迫下表達(dá)量升高,并且其中的15個NAC基因受到ABA誘導(dǎo)調(diào)控。本研究組前期工作中從甘菊中克隆得到一個NAC轉(zhuǎn)錄因子同源基因——DlNAC1,并初步確定這個基因與菊花的干旱和高鹽等非生物脅迫的耐受性相關(guān)[23]。本研究通過生物信息學(xué)方法,對DlNAC1基因所編碼的蛋白序列進(jìn)行了分析,并利用根癌農(nóng)桿菌介導(dǎo)法將DlNAC1基因轉(zhuǎn)入煙草,分析了轉(zhuǎn)基因植株在高溫脅迫下的含水量和低溫脅迫下的存活率,為今后深入研究DlNAC1基因功能和利用其改良植物抗逆性提供理論基礎(chǔ)。
1.1 實(shí)驗(yàn)材料
煙草品種為‘三生煙’(Nicotianatabacum‘Xantbine’),用培養(yǎng)45 d的煙草的幼嫩葉片作轉(zhuǎn)化的外植體。
1.2 實(shí)驗(yàn)方法
1.2.1 生物信息學(xué)分析
分別利用ExPaSy網(wǎng)站的Protparam(http://web.expasy.org/protparam/)進(jìn)行基本理化性質(zhì)分析,利用ProtScale(http://web.expasy.org/protscale/)進(jìn)行蛋白質(zhì)疏水性的計(jì)算,利用SOPMA(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_sopma.html)進(jìn)行二級結(jié)構(gòu)分析,利用ProScan(http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_proscan.html)進(jìn)行模體分析,利用Phyre2(http://www.sbg.bio.ic.ac.uk/phyre2/)進(jìn)行三維結(jié)構(gòu)模擬分析。
1.2.2 煙草轉(zhuǎn)化及再生
研究中植物表達(dá)載體35S:DlNAC1為研究組前期構(gòu)建并保存,利用液氮速凍法將植物表達(dá)載體35S:DlNAC1導(dǎo)入根癌農(nóng)桿菌菌株EHA105中。以培養(yǎng)45 d的煙草倒數(shù)第4、5片葉作為轉(zhuǎn)化受體,采用葉盤法[24]轉(zhuǎn)化煙草并再生獲得轉(zhuǎn)基因煙草。
1.2.3T0代轉(zhuǎn)基因陽性植株的鑒定
CTAB法提取移栽至營養(yǎng)缽中抗卡那霉素轉(zhuǎn)基因煙草的基因組DNA,以此作為模板,利用擴(kuò)增DlNAC1 cDNA全長序列為模板分別設(shè)計(jì)特異性引物:NAC-P1,5′-GCTCTAGAATGGAGGATACTCGGTTA-3′;NAC-P2,5′-CGGGATCCGTTTAAGAAATTAAGCAT-3′,進(jìn)行PCR擴(kuò)增鑒定。反應(yīng)體系為25 μL,反應(yīng)條件為95℃預(yù)變性5 min,95℃ 30 s,58℃ 40 s,72℃ 60 s,32個循環(huán)。野生型煙草作為陰性對照。
1.2.4熱脅迫處理下轉(zhuǎn)35S:DlNAC1煙草T0代葉片相對含水量的測定
選取從生根培養(yǎng)基中移栽到含營養(yǎng)土∶蛭石(1∶1)的花盆中繼續(xù)生長2個月的轉(zhuǎn)35S:DlNAC1煙草T0代陽性植株為研究對象,以野生型煙草為對照,45℃條件下高溫脅迫處理6 h,分別在處理的第0、2、4、6 h將葉片從植株上取下,立即稱鮮重(Wf),然后將葉片浸入去離子水中4℃過夜,取出后用濾紙吸去表面水分,稱飽和鮮重(Wt),然后將葉片放入烘箱于70℃烘干至恒重,稱干重(Wd),3次重復(fù)。相對含水量計(jì)算公式如下:
相對含水量(Relative water content,RWC)(%)=(Wf-Wd)/(Wt-Wd)×100%
(1)
1.2.5轉(zhuǎn)35S:DlNAC1煙草T1代陽性植株篩選及遺傳分析
為了鑒定轉(zhuǎn)35S:DlNAC1煙草的耐逆性,選擇經(jīng)PCR檢測為轉(zhuǎn)35S:DlNAC1陽性株系(L-31、L-32和L-33)的T0代種子和野生型煙草種子,用70%酒精(乙醇)和10%H2O2進(jìn)行表面消毒,無菌水沖洗5~6次后播種于1/2MS培養(yǎng)基上。轉(zhuǎn)基因煙草種子中加100 mg·L-1卡那霉素,非轉(zhuǎn)基因?qū)φ詹患?。置于光?6 h/黑暗8 h交替的25℃溫室中篩選培養(yǎng)30 d,統(tǒng)計(jì)卡那霉素抗性的分離比。
用卡方檢測進(jìn)行顯著性分析,以此來判斷基因后代卡那霉素抗性苗和敏感苗的比例是否符合孟德爾遺傳規(guī)律。
1.2.6轉(zhuǎn)35S:DlNAC1煙草T1代低溫脅迫下存活率分析
將在1/2MS培養(yǎng)基上經(jīng)卡那霉素抗性篩選后正常生長30 d的轉(zhuǎn)35S:DlNAC1煙草T1代植株移栽到裝有營養(yǎng)土∶蛭石(1∶1)的花盆中,于25℃的環(huán)境下繼續(xù)生長20 d。將煙草植株在(-4±1)℃條件脅迫處理8 h,然后置于室溫下恢復(fù)7 d。3次重復(fù),每個重復(fù)10株煙草。以上處理,以同等生長期的野生型煙草作為對照。
1.2.7 數(shù)據(jù)統(tǒng)計(jì)分析
利用SAS(ver.9.0,SAS Institute,Inc)軟件統(tǒng)計(jì),采用Duncan(P<0.05)多重比較法對數(shù)據(jù)進(jìn)行分析。
2.1 DlNAC1蛋白理化性質(zhì)分析
研究組前期工作中,從甘菊中克隆獲得一個NAC-like基因——DlNAC1,其cDNA序列長度為934 bp,編碼一個262個氨基酸的開放閱讀框(Open read frame,ORF)。其編碼的蛋白DlNAC1分子量為29.9 kD,等電點(diǎn)pI為~9.24,運(yùn)用ExPaSy-Protparam工具對該蛋白其他理化性質(zhì)進(jìn)行了預(yù)測分析,結(jié)果如表1所示:DlNAC1負(fù)電荷殘基數(shù)為30,正電荷殘基數(shù)均為35,不穩(wěn)定指數(shù)為45.63,脂肪指數(shù)為70.30,親水性為-0.585,表明此蛋白為親水性蛋白。
2.2 蛋白親水性/疏水性預(yù)測
本研究利用ExPaSy-ProtScale對DlNAC1蛋白進(jìn)行了親水性/疏水性分析(圖1),根據(jù)氨基酸親水性越強(qiáng)分值越低,疏水性越強(qiáng)分值越高的規(guī)律,從整體結(jié)果看,DlNAC1蛋白編碼的氨基酸序列中,親水性氨基酸分布多于疏水性氨基酸,表明這個蛋白屬于親水性蛋白。
表1DlNAC1蛋白理化性質(zhì)分析
Table1ThebasicphysicochemicalpropertiesofDlNAC1
分析內(nèi)容ItemsDlNAC1編碼氨基酸數(shù)目Numberofaminoacids262負(fù)電荷殘基數(shù)Totalnumberofnegativelychargedresidues(Asp+Glu)30正電荷殘基數(shù)Totalnumberofpositivelychargedresidues(Arg+Lys)35不穩(wěn)定指數(shù)Instabilityindex(Ⅱ)45.63脂肪指數(shù)Aliphaticindex73.70親水性平均系數(shù)Grandaverageofhydropathicity(GRAVY)-0.585
圖1 DlNAC1蛋白親水性/疏水性分析Fig.1 Hydrophobic analysis of DlNAC1
2.3 DlNAC1二級結(jié)構(gòu)分析
利用ExPaSy-SOPMA對DlNAC1蛋白的二級結(jié)構(gòu)進(jìn)行分析,發(fā)現(xiàn)其主要由4種形式組成,并且以無規(guī)則卷曲(R.coil)占比最高,為53.44%,其次為α-螺旋(21.37%)和延伸鏈(19.47%);而β-轉(zhuǎn)角的占比最低,為5.73%。同時,DlNAC1蛋白的N端主要分布為α-螺旋和延伸鏈,C端主要分布為α-螺旋和無規(guī)則卷曲,N末端和C末端都是以α-螺旋的形式存在(圖2)。
2.4 模體分析
利用NPS提供的Proscan對DlNAC1蛋白進(jìn)行模體掃描,表1顯示,DlNAC1蛋白具有6類模體結(jié)構(gòu),其中包含3個潛在的N糖基化位點(diǎn)、1個潛在的cAMP-和cGMP依賴的蛋白激酶磷酸化位點(diǎn)、5個潛在的蛋白激酶C磷酸化位點(diǎn)、7個潛在的酪蛋白激酶II磷酸化位點(diǎn)、1個潛在的酪氨酸激酶磷酸化位點(diǎn)和3個N-豆蔻?;稽c(diǎn)(表2)。
圖2 DlNAC1蛋白二級結(jié)構(gòu)預(yù)測分析 藍(lán)色:α螺旋;紅色:延伸鏈;紫色:無規(guī)則卷曲;綠色:β-轉(zhuǎn)角Fig.2 The predicated secondary structure of DlNAC1 protein Blue:Alpha helix; Red:Extended strand; Purple:Random coil; Green:Beta turn
Table2ScanningofDlNAC1proteinforsite/signatureswithProScansoftware
名稱Formatname模體序列號和類型PrositeaccessnumberandmotifmodelDlNAC1蛋白模體氨基酸序列信息N糖基化位點(diǎn)N?glycosylationsitePS00001N?{P}?[ST]?{P}34to37NNTR82to85NRTT204to207NDTDcAMP?和cGMP依賴的蛋白激酶磷酸化位點(diǎn)cAMP?andcGMP?dependentproteinkinasephosphorylationsitePS00004[RK](2)?x?[ST]154to157RKAT蛋白激酶C磷酸化位點(diǎn)ProteinkinaseCphosphorylationsitePS00005[ST]?x?[RK]84to86TTK95to97SDR105to108TSK158to160SIK206to208TDK酪蛋白激酶Ⅱ磷酸化位點(diǎn)CaseinkinaseⅡphosphorylationsitePS00006[ST]?x(2)?[DE]4to7TRLE18to21TEEE36to39TRVE93to96TGSD101to104SLSD178to181SSID202to205STND酪氨酸激酶磷酸化位點(diǎn)TyrosinekinasephosphorylationsitePS00007[RK]?x(2,3)?[DE]?x(2,3)?Y59to66KIGEREWYN?豆蔻酰化位點(diǎn)N?myristoylationsitePS00008G?{EDRKHPFYW}?x(2)?[STAGCN]?{P}78to83GGRPNR110to115GLKKTL124to129GGHKTD
2.5 DlNAC1轉(zhuǎn)錄因子三維結(jié)構(gòu)分析
利用ExPaSy-phyre2在線預(yù)測DlNAC1轉(zhuǎn)錄因子的三維結(jié)構(gòu),可以看出DlNAC1蛋白具有NAC轉(zhuǎn)錄因子家族的典型特征(圖3),具有由一個扭曲的反平行β片層和α螺旋組成的NAC結(jié)構(gòu)域。
圖3 DlNAC1蛋白三維結(jié)構(gòu)分析Fig.3 Tertiary structure of DlNAC1 protein
圖4 轉(zhuǎn)35S:DlNAC1煙草植株P(guān)CR檢測(部分結(jié)果)M.DL2000;1.野生型野草(陰性對照);2. 35S:DlNAC1質(zhì)粒(陽性對照);3~6.轉(zhuǎn)基因植株Fig.4 The PCR identification of 35S:DlNAC1 transgenic plants(part results) M. DL2000; 1. Wild type(negative control); 2. 35S:DlNAC1 plasmid(positive control); 3-6. Transgenic plants
2.6 轉(zhuǎn)35S:DlNAC1基因煙草陽性檢測
選取55株經(jīng)卡那霉素鑒定為陽性的煙草植株,提取其基因組DNA,并以野生型煙草和35S:DlNAC1質(zhì)粒分別作為陰性對照和陽性對照,進(jìn)行PCR鑒定。結(jié)果發(fā)現(xiàn)36株轉(zhuǎn)35S:DlNAC1植株中擴(kuò)增出與陽性質(zhì)粒PCR產(chǎn)物相同的條帶,而作為陰性對照的非轉(zhuǎn)基因煙草樣品未擴(kuò)增出任何條帶(圖4)。
2.7轉(zhuǎn)35S:DlNAC1煙草T0代耐高溫能力分析
將轉(zhuǎn)35S:DlNAC1煙草T0代植株和對照植株進(jìn)行45℃高溫處理,由圖5A所示,高溫脅迫處理6 h后,對照植株葉片明顯萎蔫,植株倒伏,轉(zhuǎn)35S:DlNAC1煙草T0代L-6和L-11植株則能保持一定的含水量,葉片沒有發(fā)生明顯萎蔫現(xiàn)象,L-15植株下部部分葉片出現(xiàn)萎蔫,而頂部葉片未發(fā)生萎蔫現(xiàn)象。葉片相對含水量分析表明,轉(zhuǎn)DlNAC1基因植株與對照植株在45℃處理前兩者葉片相對含水量無明顯差異,但在高溫脅迫處理后,轉(zhuǎn)35S:DlNAC1植株葉片相對含水量與對照相比下降較慢,在脅迫處理6 h時,轉(zhuǎn)35S:DlNAC1植株葉片相對含水量顯著高于對照(圖5B)。以上結(jié)果均表明,轉(zhuǎn)35S:DlNAC1植株對高溫脅迫的抵抗能力與對照相比有所增強(qiáng)。
圖5 高溫脅迫對轉(zhuǎn)35S:DlNAC1植株相對含水量的影響Fig.5 Relative water content of 35S:DlNAC1 plants exposed to heat stress
2.8轉(zhuǎn)35S:DlNAC1煙草T1代陽性植株篩選及遺傳分析
利用PCR方法檢測的轉(zhuǎn)35S:DlNAC1煙草陽性植株當(dāng)代(T0)自交后所得的T1代種子(L-31、L-32、L-33)為研究材料,進(jìn)行卡那霉素抗性分離比測定。結(jié)果表明:轉(zhuǎn)基因種子播種于含有100 mg·L-1卡那霉素的1/2MS培養(yǎng)基上,15 d長成約0.8 cm高的小苗,根長可達(dá)到2~3 cm,30 d長成約高3 cm的小苗;而未轉(zhuǎn)基因種子和卡那霉素抗性陰性的種子雖能萌發(fā),但不長根,最后黃化死亡。根據(jù)種子萌發(fā)總數(shù)、長根并能生長與不長根不生長的總數(shù)計(jì)算比值(表3)。由表3可知,轉(zhuǎn)35S:DlNAC1陽性株系L-31、L-32和L-33的分離比基本符合孟德爾3∶1的遺傳規(guī)律。
2.9 轉(zhuǎn)35S:DlNAC1煙草低溫脅迫下存活率分析
為了研究轉(zhuǎn)35S:DlNAC1煙草的耐冷性,選取生長了50 d的轉(zhuǎn)35S:DlNAC1陽性株系L-31、L-32和L-33為研究對象,以野生型煙草為對照,進(jìn)行了(-4±1)℃脅迫處理。如圖6A所示,轉(zhuǎn)35S:DlNAC1煙草L-31和L-33株系和對照在低溫脅迫處理后存活率沒有明顯差異,而L-32株系的存活率與前三者相比較低。由圖6B也可以看出,低溫處理后,L-31和L-33株系存活植株數(shù)目與長勢與對照無明顯差異,而L-32株系存活植株和長勢則明顯不如對照和L-31和L-33株系。該結(jié)果表明將DlNAC1基因轉(zhuǎn)入煙草沒有提高轉(zhuǎn)基因植株耐低溫的能力。
表3T1代種子萌發(fā)率及卡那霉素抗性檢測
Table3T1seeds’germinationrateandkanarmycinselection
植株P(guān)lants萌發(fā)種子總數(shù)Totalseeds卡那霉素抗性/敏感Kanr/Kans分離比Rateofsegregation結(jié)論(卡方檢測)ConclusionL?31254191/633.03∶13R:1S(P>0.05)L?32174134/403.35∶13R:1S(P>0.05)L?33217166/513.26∶13R:1S(P>0.05)
圖6 低溫脅迫對轉(zhuǎn)35S:DlNAC1植株存活率的影響Fig.6 Survival rates of 35S:DlNAC1 plants exposed to freezing stress
蛋白質(zhì)的序列信息是預(yù)測其結(jié)構(gòu)的基礎(chǔ),并且蛋白質(zhì)的低級結(jié)構(gòu)決定了高級結(jié)構(gòu)和功能。因此,分析蛋白質(zhì)的氨基酸序列具有重要意義。本文中通過生物信息手段針對研究組前期從甘菊中所獲得的DlNAC1基因編碼的氨基酸序列進(jìn)行了分析,發(fā)現(xiàn)該基因編碼一個親水蛋白,該蛋白二級結(jié)構(gòu)主要為無規(guī)則卷曲,占比高達(dá)53.44%,三維結(jié)構(gòu)分析發(fā)現(xiàn)該蛋白具有一個典型的NAC家族結(jié)構(gòu)域。這與前人研究結(jié)果較為一致[25~26]。黎幫勇等[25]報(bào)道毛竹中NAC基因家族的125氨基酸序列大部分為親水蛋白,其中有65條親疏水性值小于-0.5,并且這125條毛竹NAC家族蛋白質(zhì)二級結(jié)構(gòu)也幾乎都以無規(guī)則卷曲占比最高。
NAC轉(zhuǎn)錄因子的一個重要的生物學(xué)功能就是參與植物對非生物脅迫應(yīng)答反應(yīng)。高溫是植物生長發(fā)育過程中的主要逆境之一,目前,研究報(bào)道已經(jīng)有多個NAC轉(zhuǎn)錄因子參與調(diào)控植物的高溫脅迫[8,27~31]。例如,在擬南芥中,NAC078轉(zhuǎn)錄因子就與熱激反應(yīng)有關(guān)[8]。此外,水稻中的SNAC3基因強(qiáng)烈被高溫誘導(dǎo),過表達(dá)該基因后,對轉(zhuǎn)基因水稻植株進(jìn)行42℃高溫脅迫,發(fā)現(xiàn)40%轉(zhuǎn)基因植株存活下來,而野生型只有20%存活[28]。研究發(fā)現(xiàn)NAC轉(zhuǎn)錄因子調(diào)控AP2/ERF家族的DREB2A轉(zhuǎn)錄因子,進(jìn)而調(diào)控了包含熱激蛋白HSP(heat stress protein)基因在內(nèi)的眾多下游基因的表達(dá)[27,31]。在本研究中,高溫脅迫下過表達(dá)DlNAC1煙草T0代植株長勢明顯好于野生型,且轉(zhuǎn)基因煙草葉片較野生型煙草葉片能夠維持較好的相對含水量,表明過表達(dá)DlNAC1煙草提高了抵抗高溫脅迫的能力。然而,有關(guān)DlNAC1是否調(diào)控DREB2A而提高耐高溫能力的分子機(jī)理,尚需要進(jìn)一步研究去揭示。
菊花是我國十大名花之一,栽培范圍廣泛,具有較強(qiáng)的抗寒和抗旱能力。目前,已經(jīng)從菊花中分離克隆了多個與逆境相關(guān)的轉(zhuǎn)錄因子基因,如,DREB、鋅指蛋白基因、WRKY和NAC等,研究也證實(shí)這些轉(zhuǎn)錄因子基因確實(shí)能夠提高轉(zhuǎn)基因植株的耐逆能力[22,32~36]。例如,在擬南芥中過表達(dá)菊花來源的ChiMYB基因,提高了轉(zhuǎn)基因植株的耐旱性和耐鹽能力[37]。本研究組前期研究發(fā)現(xiàn),在煙草中過量表達(dá)菊花來源的DmDREBa基因能夠提高煙草的耐低溫和耐干旱能力[38~39],而DmDREBb基因則更積極響應(yīng)高鹽脅迫[39]。此外,我們還發(fā)現(xiàn)過表達(dá)DlNAC1能夠增加煙草的耐鹽和耐旱能力[23]。然而在本文中,卻發(fā)現(xiàn)過表達(dá)DlNAC1基因的煙草植株并沒有提高抗低溫能力。推測原因,可能是受到寄主基因的影響,也有可能與基因插入位置、拷貝數(shù)等有關(guān)。由此可見,轉(zhuǎn)錄因子調(diào)控下游耐逆基因的表達(dá)是一個非常復(fù)雜的過程。這些針對菊花轉(zhuǎn)錄因子基因展開的耐逆性研究,都為今后利用NAC等轉(zhuǎn)錄因子基因,改良提高菊花的耐逆性提供了基因資源和理論基礎(chǔ)。
1.Yamaguchi-shinozaki K,Shinozaki K.Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses[J].Annual Review of Plant Biology,2006,57(1):781-803.
2.Du M M,Zhai Q Z,Deng L,et al.Closely related NAC transcription factors of tomato differentially regulate stomatal closure and reopening during pathogen attack[J].The Plant Cell,2014,26(7):3167-3184.
3.Ko S S,Li M J,Ku M S B,et al.The bHLH142 transcription factor coordinates with TDR1 to modulate the expression ofEAT1 and regulate pollen development in rice[J].The Plant Cell,2014,26(6):2486-2504.
4.Vermeirssen V,De Clercq I,Van Parys T,et al.Arabidopsisensemble reverse-engineered gene regulatory network discloses interconnected transcription factors in oxidative stress[J].The Plant Cell,2014,26(12):4656-4679.
5.Xu Z Y,Kim S Y,Hyeon D Y,et al.TheArabidopsisNAC transcription factor ANAC096 cooperates with bZIP-Type transcription factors in dehydration and osmotic stress responses[J].The Plant Cell,2013,25(11):4708-4724.
6.Pautler M,Eveland A L,Larue T,et al.FASCIATEDEAR4 encodes a bZIP transcription factor that regulates shoot meristem size in maize[J].The Plant Cell,2015,27(1):104-120.
7.Souer E,Vanhouwelingen A,Kloos D,et al.The no apical meristem gene ofPetuniais required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries[J].Cell,1996,85(2):159-170.
8.Morishita T,Kojima Y,Maruta T,et al.ArabidopsisNAC transcription factor,ANAC078,regulates flavonoid biosynthesis under high-light[J].Plant and Cell Physiology,2009,50(12):2210-2222.
9.申玉華,徐振軍,唐立紅,等.紫花苜蓿NAC類轉(zhuǎn)錄因子基因MsNAC2的克隆及其功能分析[J].中國農(nóng)業(yè)科學(xué),2015,48(15):2925-2938.
Shen Y H,Xu Z J,Tang L H,et al.Cloning and function analysis of theMsNAC2 gene with NAC transcription factor from Alfalfa[J].Scientia Agricultura Sinica,2015,48(15):2925-2938.
10.姜秀明,牛義嶺,許向陽.番茄NAC基因家族的系統(tǒng)進(jìn)化及表達(dá)分析[J].分子植物育種,2016,14(8):1948-1964.
Jiang X M,Niu Y L,Xu X Y.Phylogenetic evolution and expression analysis ofNACgene family in tomato(Solanumlycopersicum)[J].Molecular Plant Breeding,2016,14(8):1948-1964.
11.Nuruzzaman M,Manimekalair,Sharoni A M,et al.Genome-wide analysis of NAC transcription factor family in rice[J].Gene,2010,465(1-2):30-44.
12.Le D T,Nishiyama R,Watanabe Y,et al.Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress[J].DNA Research,2011,18(4):263-276.
13.Duval I,Lachance D,Giguère I,et al.Large-scale screening of transcription factor-promoter interactions in spruce reveals a transcriptional network involved in vascular development[J].Journal of Experimental Botany,2014,65(9):2319-2333.
14.Shibuya K,Shimizu K,Niki T,et al.Identification of a NAC transcription factor,EPHEMERAL1,that controls petal senescence in Japanese morning glory[J].The Plant Journal,2014,79(6):1044-1051.
15.Xu B,Ohtani M,Yamaguchi M,et al.Contribution of NAC transcription factors to plant adaptation to land[J].Science,2014,343(6178):1505-1508.
16.Jensen M K,Hagedorn P H,De Torres-zabala M,et al.Transcriptional regulation by an NAC(NAM-ATAF1,2-CUC2) transcription factor attenuates ABA signalling for efficient basal defence towardsBlumeriagraminisf.sp.hordeiinArabidopsis[J].The Plant Journal,2008,56(6):867-880.
17.楊曉娜,田云,盧向陽.NAC轉(zhuǎn)錄因子在植物生長發(fā)育中的調(diào)控作用[J].化學(xué)與生物工程,2014,31(1):1-5,25.
Yang X N,Tian Y,Lu X Y.The regulation role of NAC transcription factors in plant growth and development[J].Chemistry & Bioengineering,2014,31(1):1-5,25.
18.Peng H,Zhao J F,Neff M M.ATAF2 integratesArabidopsisbrassinosteroid inactivation and seedling photomorphogenesis[J].Development,2015,142(23):4129-4138.
19.Pimenta M R,Silva P A,Mendes G C,et al.The stress-induced soybean NAC transcription factor gmNAC81 plays a positive role in developmentally programmed leaf senescence[J].Plant and Cell Physiology,2016,57(5):1098-1114.
20.Takasaki H,Maruyama K,Takahashi F,et al.SNAC-As,stress-responsive NAC transcription factors,mediate ABA-inducible leaf senescence[J].The Plant Journal,2015,84(6):1114-1123.
21.Hong Y B,Zhang H J,Huang L,et al.Overexpression of a stress-responsive NAC transcription factor geneONAC022 improves drought and salt tolerance in rice[J].Frontiers in Plant Science,2016,7:4.
22.Huang H,Wang Y,Wang S L,et al.Transcriptome-wide survey and expression analysis of stress-responsiveNACgenes inChrysanthemumlavandulifolium[J].Plant Science,2012,193-194:18-27.
23.Yang Y F,Zhu K,Wu J,et al.Identification and characterization of a novelNAC-like gene in chrysanthemum(Dendranthemalavandulifolium)[J].Plant Cell Reports,2016,35(8):1783-1798.
24.高越峰,朱禎,肖桂芳,等.大豆Kunitz型胰蛋白酶抑制劑基因的分離及其在抗蟲植物基因工程中的應(yīng)用[J].植物學(xué)報(bào),1998,40(5):405-411.
Gao Y F,Zhu Z,Xiao G F,et al.Isolation of soybean Kunitz trypsin inhibitor gene and its application in plant insect-resistant genetic engineering[J].Acta Botinica Sinica,1998,40(5):405-411.
25.黎幫勇,胡尚連,曹穎,等.毛竹NAC轉(zhuǎn)錄因子家族生物信息學(xué)分析[J].基因組學(xué)與應(yīng)用生物學(xué),2015,34(8):1769-1777.
Li B Y,Hu S L,Cao Y,et al.Bioinformatics analysis ofNACgene family in moso bamboo[J].Genomics and Applied Biology,2015,34(8):1769-1777.
26.岳俊燕,岳文冉,楊杞,等.中間錦雞兒轉(zhuǎn)錄因子基因CiNAC1的克隆及功能分析[J].西北植物學(xué)報(bào),2016,36(7):1285-1293.
Yue J Y,Yue W R,Yang Q,et al.Cloning and functional analysis ofCiNAC1 fromCaraganaintermedia[J].Acta Botanica Boreali-Occidentalia Sinica,2016,36(7):1285-1293.
27.Wu A H,Allu A D,Garapati P,et al.JUNGBRUNNEN1,a reactive oxygen species-responsive NAC transcription factor,regulates longevity inArabidopsis[J].The Plant Cell,2012,24(2):482-506.
28.Fang Y J,Liao K F,Du H,et al.A stress-responsive NAC transcription factor SNAC3 confers heat and drought tolerance through modulation of reactive oxygen species in rice[J].Journal of Experimental Botany,2015,66(21):6803-6817.
29.Niu F F,Wang C,Yan J L,et al.Functional characterization of NAC55 transcription factor from oilseed rape(BrassicanapusL.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death[J].Plant Molecular Biology,2016,92(1-2):89-104.
30.Wang A H,Hu J H,Huang X X,et al.Comparative transcriptome analysis reveals heat-responsive genes in Chinese Cabbage(Brassicarapassp.chinensis)[J].Frontiers in Plant Science,2016,7:939.
31.Sakuma Y,Maruyama K,Qin F,et al.Dual function of anArabidopsistranscription factor DREB2A in water-stress-responsive and heat-stress-responsive gene expression[J].Proceedings of the National Academy of Sciences of the United States of America,2006,103(49):18822-18827.
32.Liu L Q,Zhu K,Yang Y F,et al.Molecular cloning,expression profiling and trans-activation property studies of aDREB2-like gene from chrysanthemum(Dendranthemavestitum)[J].Journal of Plant Research,2008,121(2):215-226.
33.Yang Y F,Wu J,Zhu K,et al.Identification and characterization of two chrysanthemum(Dendronthema×moriforlium)DREBgenes,belonging to the AP2/EREBP family[J].Molecular Biology Reports,2009,36(1):71-81.
34.Yang Y J,Ma C,Xu Y J,et al.A zinc finger protein regulates flowering time and abiotic stress tolerance in chrysanthemum by modulating gibberellin biosynthesis[J].The Plant Cell,2014,26(5):2038-2054.
35.Liu Q L,Xu K D,Zhao L J,et al.Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco[J].Biotechnology Letters,2011,33(10):2073-2082.
36.Liu Q L,Zhong M,Li S,et al.Overexpression of a chrysanthemum transcription factor gene,DgWRKY3,in tobacco enhances tolerance to salt stress[J].Plant Physiology and Biochemistry,2013,69:27-33.
37.He M,Wang H,Liu Y Z,et al.Cloning and characterization ofChiMYBinChrysanthemumindicumwith an emphasis on salinity stress tolerance[J].Geneticsand Molecular Research,2016,15(3):gmr.15038985.
38.楊艷芳,武劍,朱凱,等.過量表達(dá)菊花DmDREBa基因提高轉(zhuǎn)化煙草耐低溫能力[J].植物研究,2016,36(5):721-729.
Yang Y F,Wu J,Zhu K,et al.Overexpression ofDmDREBagene significantly enhances low temperature tolerance in transgenic tobacco[J].Bulletin of Botanical Research,2016,36(5):721-729.
39.武劍,楊艷芳,王慧,等.菊花DmDREBa/b基因提高轉(zhuǎn)基因煙草耐逆性研究[J].分子植物育種,2016,14(11):3063-3072.
Wu J,Yang Y F,Wang H,et al.Study ofDmDREBa/bgene enhanced stress tolerance in transgenic tobacco[J].Molecular Plant Breeding,2016,14(11):3063-3072.
Partly supported by National Natural Science Foundation of China(31570675);National non-profit Research Institutions of Chinese Academy of Forestry(CAFYBB2014QB001)
introduction:ZHU Kai(1982—),male,M.Agr.,major in plant molecular biology.
date:2017-01-03
OverexpressionofDlNAC1GeneIsolatedfromDendranthemalavandulifoliuminEnhancingHeatStressToleranceinTransgenicTobacco
ZHU Kai1WU Jian1YANG Yan-Fang2*CHEN Fa-Di3YU De-Yue1
(1.National Center for Soybean Improvement,National Key Laboratory of Crop Genetics and Germplasm Enhancement,Nanjing Agricultural University,Nanjing 210095;2.Research Institute of Forestry,Chinese Academy of Forestry,State Key Laboratory of Tree Genetics and Breeding,Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration,Beijing 100091;3.College of Horticulture,Nanjing Agricultural University,Nanjing 210095)
We studied the amino sequenceofDlNAC1 gene(GenBank accession number EF602304) cloned fromDendranthemalavandulifoliumby bioinformatics methods, and theDlNAC1 gene was transformed tobacco plants byAgrobacteriumtumefaciensmediation method. Thepredicted DlNAC1 proteinhad hydrophilicity, and the second structure of this protein was mainly random coil. The NAC protein had six motif models and one NAC domain. The 36 of 55 transgenic tobacco plants were positive by PCR analysis. The heat stress tolerance of PCR positive tobacco plants was increased comparing with the wild plants. With 45℃ treatment for 6 h, the transgenic plants looked much stronger, whereas the wild type looked very weak with wilting leaves. The water content of transgenic plants was more than wild plants. However, the low temperature tolerance of the transgenic plants was not improvedafter 4℃ stress. All these results indicated thatDlNAC1 gene improved the tolerance ability to the high temperature stress of transgenic tobacco plants.
chrysanthemum;NAC transcription factor;bioinformatics;heat stress;transgenic tobacco
國家自然科學(xué)基金項(xiàng)目(31570675);中央級公益性科研院所基本科研業(yè)務(wù)費(fèi)專項(xiàng)(CAFYBB2014QB001)
朱凱(1982—),男,碩士,主要從事植物分子生物學(xué)研究。
* 通信作者:E-mail:echoyyf@caf.ac.cn
2017-01-03
* Corresponding author:E-mail:echoyyf@caf.ac.cn
Q943.2
A
10.7525/j.issn.1673-5102.2017.03.014