李晰妍 趙 凱 張雪梅 周博如
(東北林業(yè)大學(xué)林木遺傳育種國家重點(diǎn)實(shí)驗(yàn)室,哈爾濱 150040)
楊樹MYB轉(zhuǎn)錄因子家族基因應(yīng)答鹽脅迫表達(dá)特性分析
李晰妍 趙 凱 張雪梅 周博如*
(東北林業(yè)大學(xué)林木遺傳育種國家重點(diǎn)實(shí)驗(yàn)室,哈爾濱 150040)
MYB轉(zhuǎn)錄因子家族是植物中數(shù)量最多的轉(zhuǎn)錄因子家族之一,在植物次生代謝調(diào)節(jié)、信號(hào)轉(zhuǎn)導(dǎo)和抗逆等生物過程起重要作用。根據(jù)MYB轉(zhuǎn)錄因子結(jié)構(gòu)域組成差異可分4個(gè)亞家族:即1R-MYB(MYB-relaed)、R2R3-MYB、3R-MYB和4R-MYB。其中,R2R3-MYB亞家族數(shù)量最多,可進(jìn)一步分為22個(gè)亞組;利用生物信息學(xué)分析楊樹MYB轉(zhuǎn)錄因子蛋白序列的保守結(jié)構(gòu)域、系統(tǒng)發(fā)生、基因組定位、氨基酸組成和理化性質(zhì)等;參照擬南芥MYB轉(zhuǎn)錄因子功能,預(yù)測(cè)楊樹MYB轉(zhuǎn)錄因子功能;基于84K楊轉(zhuǎn)錄組測(cè)序和RT-qPCR分析,從301個(gè)楊樹MYB轉(zhuǎn)錄因子基因中篩選出69個(gè)應(yīng)答鹽脅迫基因(P≤0.05)。其中,上調(diào)表達(dá)基因32個(gè),下調(diào)表達(dá)基因37個(gè)。該研究可為進(jìn)一步研究楊樹MYB家族基因功能提供參考依據(jù)。
楊樹;MYB轉(zhuǎn)錄因子;生物信息學(xué);RT-qPCR
轉(zhuǎn)錄因子(Transcription factor)也稱為反式作用因子,能夠與真核生物基因上游啟動(dòng)子序列中順式作用元件特異性結(jié)合,通過轉(zhuǎn)錄激活或抑制調(diào)控下游基因的表達(dá),對(duì)其下游基因的表達(dá)充當(dāng)開關(guān)的角色。不同轉(zhuǎn)錄因子一般具有不同的功能區(qū)域,植物轉(zhuǎn)錄因子按照其結(jié)構(gòu)域的差異可分為WRKY、bZIP、EIL、MYB、NAC、GATA、AP2/ERF、SBP等轉(zhuǎn)錄因子家族[1]。
MYB轉(zhuǎn)錄因子家族作為植物中最大的轉(zhuǎn)錄因子家族之一[2]。MYB轉(zhuǎn)錄因子蛋白C端含有轉(zhuǎn)錄激活域可與DNA或其他轉(zhuǎn)錄因子相互作用,N端具有由51-52個(gè)高度保守的氨基酸組成的MYB-DNA結(jié)合域。MYB-DNA結(jié)合域包含3個(gè)α螺旋,第二個(gè)和第三個(gè)螺旋組成helix-turn-helix(HTH)結(jié)構(gòu),形成一個(gè)疏水核心,對(duì)DNA序列的識(shí)別具有重要影響。MYB轉(zhuǎn)錄因子的MYB-DNA結(jié)合域通常由1~4個(gè)重復(fù)組成,依據(jù)其特點(diǎn)可分為4個(gè)亞族,即1R-MYB(MYB-related),R2R3-MYB,3R-MYB和4R-MYB[3~5]。其中1R-MYB亞族類僅含有單一的MYB結(jié)構(gòu)域,在不同植物中功能有所差異。如同屬于MYB家族的擬南芥LHY,CCA1基因與擬南芥生物鐘與激素合成調(diào)節(jié)有關(guān)[6],蠟梅EU11603基因與植物抗逆相關(guān),參與植物的抗逆代謝途徑中ABA傳導(dǎo)[7];馬鈴薯過表達(dá)StMYB1R-1基因可加快氣孔關(guān)閉速度,增強(qiáng)植株抗干旱能力[8]。R2R3-MYB亞族蛋白質(zhì)是MYB轉(zhuǎn)錄因子家族中數(shù)量最多的一類,在調(diào)控次生代謝[9~10]、響應(yīng)赤霉素(GA)信號(hào)調(diào)節(jié)[11]、器官形成過程中發(fā)揮作用[12~13]。玉米ZmC1基因調(diào)控查耳酮合成及類黃酮生物合成途徑[14],彩艷龍頭RCP1基因在成花過程中調(diào)控類胡蘿卜素生物合成[15],金魚草MIXTA基因影響金魚草花瓣形態(tài)建成和花青素合成[16]。3R-MYB基因在動(dòng)物MYB家族數(shù)量較大,在植物中數(shù)量較少,1941年從禽急性成髓細(xì)胞白血病病毒AMV和E26分離出第一個(gè)MYB基因v-MYB即是3R-MYB基因[17]。植物中的也有類似基因,如煙草NtMYB-A1,NtMYB-A2,NtMYB-B基因在細(xì)胞分裂G2期與M期發(fā)揮重要作用[18];水稻OsMYB3R-2基因應(yīng)答冷、干旱和鹽脅迫,過表達(dá)OsMYB3R-2基因?qū)е轮仓暧薪z分裂指數(shù)增加[19~20]。4R-MYB亞家族基因數(shù)量最少,擬南芥中雖然有該類基因,但研究較少[21]。
楊樹分布廣、適應(yīng)性強(qiáng)、生長速度快,是我國重要的造林和用材樹種,也是研究林木生理和基因工程的模式植物。84K楊(Populusalba×Populusglandulosa)來自銀白楊和腺毛楊雜交,遺傳轉(zhuǎn)化率較高,是楊樹基因工程的重要受體樹種之一。為探明楊樹MYB轉(zhuǎn)錄因子的結(jié)構(gòu)特征和應(yīng)答鹽脅迫情況,通過植物轉(zhuǎn)錄因子數(shù)據(jù)庫(http://planttfdb.cbi.pku.edu.cn/index.php)篩選出楊樹301個(gè)MYB轉(zhuǎn)錄因子,利用生物信息學(xué)分析其結(jié)構(gòu)特點(diǎn);通過轉(zhuǎn)錄組測(cè)序分析84K楊中MYB轉(zhuǎn)錄因子基因應(yīng)答鹽脅迫情況,利用RT-qPCR對(duì)候選基因應(yīng)答鹽脅迫情況進(jìn)行驗(yàn)證,為篩選楊樹耐鹽關(guān)鍵基因和改良楊樹抗逆性提供參考依據(jù)。
從植物轉(zhuǎn)錄因子數(shù)據(jù)庫(http://planttfdb.cbi.pku.edu.cn/index.php)獲得301個(gè)楊樹MYB轉(zhuǎn)錄因子的cDNA及其編碼氨基酸序列,以及14個(gè)功能已知的擬南芥MYB轉(zhuǎn)錄因子氨基酸序列;利用BioEdit軟件分別進(jìn)行序列比對(duì),利用Weblogo 3.0對(duì)比對(duì)結(jié)果進(jìn)行基序分析(a;b),利用MEGA 5.0構(gòu)建進(jìn)化樹(NJ),設(shè)置Bootstrap為1 000次重復(fù);利用ProtParam在線分析,分析301個(gè)楊樹MYB轉(zhuǎn)錄因子家族蛋白氨基酸數(shù)目、分子量、理論等電點(diǎn)、脂肪族氨基酸指數(shù)及蛋白質(zhì)疏水性等理化性質(zhì);利用TargetP1.1 Server在線序列分析及Cello v2.5在線分析預(yù)測(cè)MYB轉(zhuǎn)錄因子亞細(xì)胞定位情況。
將培養(yǎng)1個(gè)月的84K楊(Populusalba×Populusglandulosa)組培苗洗掉培養(yǎng)基,置于水中,在25℃室溫,14 h·d-1光照條件下培養(yǎng)1個(gè)月后,然后將生長狀態(tài)相似的植株分為8組,分別用水和0.15 mol·L-1NaCl處理24 h,每個(gè)處理重復(fù)4次。采集葉片樣本,保存于-80℃冰箱,委托金唯智(GENEWIZ)公司進(jìn)行RNA提取和轉(zhuǎn)錄組測(cè)序。
用瓊脂糖凝膠電泳檢測(cè)轉(zhuǎn)錄組測(cè)序RNA樣品完整性,用Takara的PrimeScriptTMRT reagent kit with gDNA Eraser試劑盒進(jìn)行cDNA合成。根據(jù)69個(gè)MYB候選基因序列,利用primer5.0設(shè)計(jì)定量PCR引物(表1)。其中FN356200(EF1),JM986590(ACT)為內(nèi)參基因[22]。按照TaKaRa公司SYBR?RPremix Ex TaqaTMП(Tli RNaseH Plus)實(shí)時(shí)定量試劑盒進(jìn)行實(shí)時(shí)定量RT-qPCR分析,所用程序?yàn)椋?5.0℃ 30 s,(95.0℃ 5 s、60.0℃ 34 s、95.0℃ 15 s)35個(gè)循環(huán),60.0℃ 60 s,95.0℃ 15 s,利用-△△Ct法進(jìn)行基因表達(dá)分析。
2.1 楊樹MYB轉(zhuǎn)錄因子分類
根據(jù)MYB轉(zhuǎn)錄因子保守結(jié)構(gòu)域差異將301個(gè)楊樹MYB轉(zhuǎn)錄因子蛋白分為4個(gè)亞族:1R-MYB(MYB-relaed)、 R2R3-MYB、3R-MYB和4R-MYB。
表1 RT-qPCR引物
其中,1R-MYB(MYB-relaed)亞族有89個(gè)成員、R2R3-MYB亞族有206個(gè)成員、3R-MYB亞族有5個(gè)成員、4R-MYB亞族僅有1個(gè)成員。將206個(gè)R2R3-MYB亞家族轉(zhuǎn)錄因子的保守結(jié)構(gòu)域(DNA binding domain)與14個(gè)功能已知的擬南芥MYB轉(zhuǎn)錄因子家族保守結(jié)構(gòu)域(DNA binding domain)進(jìn)行比對(duì),將R2R3-MYB亞族分為22個(gè)組,命名為R2R3-1~R2R3-22(圖1)。其中,有7個(gè)轉(zhuǎn)錄因子與擬南芥AtMYB61聚在一起,命名為R2R3-1亞組,該亞組基因多與氣孔調(diào)節(jié)和光合作用有關(guān)[23];有12個(gè)轉(zhuǎn)錄因子與擬南芥AtMYB4聚在一起,命名為R2R3-10亞組,該亞組基因多參與調(diào)節(jié)植物耐紫外輻射過程[24];有3個(gè)轉(zhuǎn)錄因子與擬南芥AtMYB11聚在一起,命名為R2R3-11亞組,該亞組基因可能參與與細(xì)胞發(fā)育和形態(tài)發(fā)生相關(guān)蛋白質(zhì)的功能分化[25];有9個(gè)轉(zhuǎn)錄因子與擬南芥AtMYB75、AtMYB90和AtMYB113聚在一起,命名為R2R3-14亞組,該亞組基因可能參與調(diào)節(jié)花青素的合成[26~27];有9個(gè)轉(zhuǎn)錄因子與擬南芥AtMYB59聚在一起,命名為2R3R-15亞組,該亞組基因可能參與調(diào)控植物細(xì)胞周期及根的發(fā)育過程[28]。
圖1 楊樹R2R3-MYB亞族保守結(jié)構(gòu)域系統(tǒng)發(fā)生樹 ▼表示14個(gè)功能已知的擬南芥MYB轉(zhuǎn)錄因子保守結(jié)構(gòu)域。Fig.1 Phylogenetic tree of Poplar R2R3-MYB subfamily DNA binding domains based on NJ method ▼represents DNA binding domains of the known functions Arabidopsis thaliana MYB transcription factors.
2.2 楊樹MYB轉(zhuǎn)錄因子保守結(jié)構(gòu)域預(yù)測(cè)
不同楊樹MYB轉(zhuǎn)錄因子亞家族成員中含有的保守結(jié)構(gòu)域數(shù)目不同,1R-MYB亞族成員有1個(gè)保守結(jié)構(gòu)域,R2R3-MYB亞族成員有2個(gè)保守結(jié)構(gòu)域,3R-MYB亞族成員有3個(gè)保守結(jié)構(gòu)域,4R-MYB亞族成員有4個(gè)保守結(jié)構(gòu)域。將301個(gè)楊樹MYB轉(zhuǎn)錄因子的第一結(jié)構(gòu)域和第二結(jié)構(gòu)域進(jìn)行比對(duì),可以發(fā)現(xiàn)其保守性均較高,但不同氨基酸的保守性存在差異。圖2MYB轉(zhuǎn)錄因子結(jié)構(gòu)域中,代表氨基酸的字母越大表示該氨基酸的保守程度越高,從圖2a中可以發(fā)現(xiàn)MYB第一結(jié)構(gòu)域的第4位,第32位的色氨酸(W)殘基極保守,但第4位的色氨酸(W)殘基極少數(shù)被苯丙氨酸(F)和甲硫氨酸(M)所取代;第32位的色氨酸(W)殘基極少數(shù)被苯丙氨酸(F)和亮氨酸(L)所取代。從圖2b可以發(fā)現(xiàn)MYB第二結(jié)構(gòu)域的第32位色氨酸(W)殘基始終極保守??傮w而言,第一和第二結(jié)構(gòu)域內(nèi)其他位點(diǎn)的色氨酸(W)也較為保守,只有少數(shù)被苯丙氨酸(F),異亮氨酸(I),酪氨酸(Y)和丙氨酸(A)所取代,除此之外,保守結(jié)合域內(nèi)部還有很多保守的氨基酸殘基,比如賴氨酸(K),精氨酸(R),甘氨酸(G),天冬氨酸(D),谷氨酸(E),天冬酰胺(N),異亮氨酸(I),酪氨酸(Y)以及亮氨酸(L),共同維持著MYB轉(zhuǎn)錄因子家族蛋白結(jié)構(gòu)域的基本穩(wěn)定。
圖2 楊樹MYB轉(zhuǎn)錄因子結(jié)構(gòu)域基序分析 a. 1R-MYB,R2R3-MYB,3R-MYB和4R-MYB亞族第一結(jié)構(gòu)域基序;b. R2R3-MYB,3R-MYB和4R-MYB亞族第二結(jié)構(gòu)域基序Fig.2 Sequence alignment of Poplar MYB transcription factors motif in the first domain and the second domaina. The first domain motif of 1R-MYB,R2R3-MYB,3R-MYB and 4R-MYB subfamilies; b. The second domain motif of R2R3-MYB,3R-MYB and 4R-MYB subfamilies
2.3 楊樹MYB轉(zhuǎn)錄因子理化性質(zhì)分析
1R-MYB亞族轉(zhuǎn)錄因子平均長度為392 aa,平均分子量為43 558.7 kDa,理論等電點(diǎn)多在堿性范圍,細(xì)胞核定位占整個(gè)亞族的88%。2R3R-MYB亞族轉(zhuǎn)錄因子平均長度為346 aa,平均分子量為38 861 kDa,其中最小的是2R3R-14亞組,平均長度只有234.89 aa,平均分子量為26 830.79 kDa;最大的為2R3R-21亞組,平均長度為1 389.25 aa,平均分子量為153 708.10 kDa,除第3、5、21亞組轉(zhuǎn)錄因子的等電點(diǎn)都為酸性外,其他2R3R-MYB亞組轉(zhuǎn)錄因子的等電點(diǎn)均為堿性。第1、3、17、19、20亞組多數(shù)為細(xì)胞外定位,過氧化酶體和高爾基體定位,其他亞組多數(shù)為細(xì)胞核定位,細(xì)胞核定位占整個(gè)亞族的79.6%。3R-MYB亞族、4R-MYB亞族多為堿性氨基酸,多數(shù)定位在細(xì)胞核外,過氧化酶體和高爾基體。脂肪族氨基酸指數(shù)是衡量蛋白質(zhì)穩(wěn)定性的指標(biāo),該指數(shù)越高蛋白質(zhì)穩(wěn)定性越強(qiáng),MYB轉(zhuǎn)錄因子蛋白的穩(wěn)定性均較強(qiáng)。蛋白質(zhì)的疏水性負(fù)值越大親水性越強(qiáng),不同MYB轉(zhuǎn)錄因子氨基酸疏水性值雖存在差距,但都屬親水蛋白。
2.4 楊樹MYB基因應(yīng)答鹽脅迫分析
根據(jù)84K楊轉(zhuǎn)錄組測(cè)序數(shù)據(jù),分析楊樹MYB基因應(yīng)答鹽脅迫情況,結(jié)果有69個(gè)基因表達(dá)發(fā)生了變化,并且P≤0.05,這些基因定義為鹽脅迫應(yīng)答基因(圖3),其中包括37個(gè)下調(diào)表達(dá)基因和32個(gè)上調(diào)表達(dá)基因,分別占家族基因總數(shù)的12.33%和10.67%。在37個(gè)下調(diào)表達(dá)基因中,14個(gè)屬1R-MYB亞族,23個(gè)屬2R3R-MYB亞族,下調(diào)表達(dá)超過15倍的基因有7個(gè):分別是Potri.002G260000,Potri.004G102600,Potri.005G112000,Potri.007G023800,Potri.009G116600,Potri.013G001000,Potri.018G049600;在32個(gè)上調(diào)表達(dá)基因中,8個(gè)屬1R-MYB亞族,24個(gè)屬2R3R-MYB亞族,上調(diào)表達(dá)超過15倍的基因有4個(gè):分別是Potri.008G122100,Potri.009G007100,Potri.010G149900,Potri.015G046200。
圖3 楊樹MYB應(yīng)答鹽脅迫表達(dá)情況Fig.3 Expression of Poplar MYB genes in response to salt stress
圖4 69個(gè)楊樹MYB基因的RT-qPCR分析Fig.4 Expression analysis of 69 Poplar MYB genes by RT-qPCR
2.5 楊樹應(yīng)答鹽脅迫MYB基因的RT-qPCR驗(yàn)證
用RT-qPCR驗(yàn)證69個(gè)應(yīng)答鹽脅迫的MYB基因的表達(dá)情況(圖4),結(jié)果表明RT-qPCR結(jié)果與轉(zhuǎn)錄組測(cè)序分析結(jié)果總體趨勢(shì)基本一致。如在轉(zhuǎn)錄組測(cè)序分析和RT-qPCR結(jié)果中,Potri.007G023800、Potri.018G049600下調(diào)表達(dá)量均超過15倍;Potri.008G122100、Potri.009G007100、Potri.010G149900、Potri.012G055600、Potri.015G046200上調(diào)表達(dá)量均超過15倍。但兩種方法檢測(cè)到的基因相對(duì)表達(dá)水平有所差異,如Potri.012G080400在轉(zhuǎn)錄組測(cè)序分析中下調(diào)表達(dá)1.11倍,RT-qPCR分析中下調(diào)表達(dá)11.14倍;而Potri.008G101400在轉(zhuǎn)錄組測(cè)序分析中上調(diào)表達(dá)3.77倍,在RT-qPCR分析中上調(diào)表達(dá)47.78倍。
我們發(fā)現(xiàn)下調(diào)表達(dá)超過15倍的Potri.018G049600基因與擬南芥AtMYB7基因聚于2R3R-10亞組。有實(shí)驗(yàn)證明擬南芥AtMYB7基因在鹽脅迫下呈明顯下調(diào)表達(dá)[29];上調(diào)表達(dá)倍數(shù)超過15倍的Potri.008G122100,Potri.010G149900,Potri.012G055600,Potri.015G046200基因與擬南芥AtMYB2,AtMYB112基因同屬于2R3R-16亞組,擬南芥AtMYB2和AtMYB112基因在高鹽刺激下表達(dá)量上升,過量表達(dá)的轉(zhuǎn)基因植物耐鹽能力明顯提高[30~31]。Potri.009G007100基因與擬南芥AtMYB68基因?qū)儆?R3R-4亞組,擬南芥AtMYB68基因響應(yīng)環(huán)境脅迫[32];Potri.013G067500、Potri.014G081200、Potri.017G082500、Potri.019G045900基因與擬南芥AtMYB60、AtMYB94基因聚于2R3R-8亞組,擬南芥AtMYB60、AtMYB94基因參與鹽脅迫和干旱脅迫的生理調(diào)節(jié)過程[33~34];Potri.002G122600、Potri.002G128900、Potri.007G048900與擬南芥AtMYB44基因?qū)儆?R3R-18亞組,過表達(dá)AtMYB44通過SOS2負(fù)反饋環(huán)增強(qiáng)植株的耐鹽能力[35]。
根據(jù)MYB轉(zhuǎn)錄因子結(jié)構(gòu)域數(shù)量差異將301個(gè)MYB轉(zhuǎn)錄因子基因分為4個(gè)亞族:1R-MYB(MYB-relaed)、R2R3-MYB、3R-MYB和4R-MYB。通過84K楊轉(zhuǎn)錄組測(cè)序篩選出69個(gè)應(yīng)答鹽脅迫的MYB轉(zhuǎn)錄因子基因,其中下調(diào)表達(dá)基因37個(gè),上調(diào)表達(dá)基因32個(gè)。RT-qPCR分析結(jié)果與轉(zhuǎn)錄組測(cè)序結(jié)果基本一致。本研究對(duì)明確MYB轉(zhuǎn)錄因子基因的應(yīng)答鹽脅迫表達(dá)特點(diǎn)和探明楊樹耐鹽分子機(jī)制具有參考價(jià)值。
1.Kasuga M,Liu Q,Miura S,et al.Improving plant drought,salt,and freezing tolerance by gene transfer of a single stress-inducible transcription factor[J].Nature Biotechnology,1999,17(3):287-291.
2.Frampton J.MYB transcription factors:their role in growth,differentiation and disease:proteins and cell regulation[M].Netherlands:Springer,2004.
3.Rabinowicz P D,Braun E L,Wolfe A D,et al.Maize R2R3 Myb genes:sequence analysis reveals amplification in the higher plants[J].Genetics,1999,153(1):427-444.
4.Chen Y H,Yang X Y,He K,et al.The MYB transcription factor superfamily ofArabidopsis:expression analysis and phylogenetic comparison with the Rice MYB Family[J].Plant Molecular Biology,2006,60(1):107-124.
5.Ogate K,Morikawa S,Nakamura H,et al.Comparison of the free and DNA-complexed forms of the DNA-binding domain from c-MYB[J].Nature Structural Biology,1995,2(4):309-320.
6.Carré I A,Kim J Y.MYB transcription factors in theArabidopsiscircadian clock[J].Journal of Experimental Botany,2002,53(374):1551-1557.
7.羅莉莉,劉道鳳,茅允彬,等.蠟梅轉(zhuǎn)錄因子1R-Myb1的cDNA克隆、分子特性與表達(dá)載體的構(gòu)建[C].//中國園藝學(xué)會(huì)第八屆青年學(xué)術(shù)討論會(huì)論文集.上海:中國園藝學(xué)會(huì),2008.
Luo L L,Liu D F,Mao Y B,et al.Chimonanthuspraecox(L.) link gene 1R-Myb1 with plant-specific SANT/MYB domain protein cDNA clones,molecular character and constructing expression vector[C].//China Horticultural Society Youth Seminar.Shanghai:Chinese Society for Horticultural Science,2008.
8.Shin D,Moon S J,Han S,et al.Expression ofStMYB1R-1,a novel potato single MYB-like domain transcription factor,increases drought to lerance[J].Plant Physiology,2011,155(1):421-432.
9.Zhang P F,Chopra S,Peterson T.A segmental gene duplication generated differentially expressed MYB-homologous genes inMaize[J].The Plant Cell,2000,12(12):2311-2322.
10.Nesi N,Jond C,Debeaujon I,et al.TheArabidopsisTT2 gene encodes an R2R3 MYB domain protein that acts as a key determinant for proanthocyanidin accumulation in developing seed[J].The Plant Cell,2001,13(9):2099-2114.
11.Gubler F,Kalla R,Roberts J K,et al.Gibberellin-regulated expression of a MYB gene in barley aleurone cells:evidence for MYB transactivation of a high-pI α-amylase gene promoter[J].The Plant Cell,1995,7(11):1879-1891.
12.Steiner-lange S,Unte U S,Eckstein L,et al.Disruption ofArabidopsisthalianaMYB26 results in male sterility due to non-dehiscent anthers[J].The Plant Journal,2003,34(4):519-528.
13.Penfield S,Meissner R C,Shoue D A,et al.MYB61 is required for mucilage deposition and extrusion in theArabidopsisseed coat[J].The Plant Cell,2001,13(12):2777-2791.
14.Groteword E,Drummond B J,Bowen B,et al.The MYB-homologousPgene controls phlobaphene pigmentation inMaizefloral organs by directly activating a flavonoid biosynthetic gene subset[J].Cell,1994,76(3):543-553.
15.Sagawa J M,Stanley L E,Lafountain A M,et al.An R2R3-MYB transcription factor regulates carotenoid pigmentation inMimuluslewisiiflowers[J].New Phytologist,2016,209(3):1049-1057.
16.張旸,吳佳巖,吳雅妮,等.MYB轉(zhuǎn)錄因子基因MIXTA及其同源基因功能的研究進(jìn)展[J].中國農(nóng)業(yè)科學(xué),2016,49(7):1230-1241.
Zhang Y,Wu J Y,Wu Y N,et al.Progresses and perspective of the function of MYB Transcription factorMIXTAand its orthologous gene[J].Scientia Agricultura Sinica,2016,49(7):1230-1241.
17.Klempnauer K H,Gonda T J,Bishop J M.Nucleotide sequence of the retroviral leukemia genev-MYBand its cellular progenitorc-MYB:the architecture of a transduced oncogene[J].Cell,1982,31(2):453-463.
18.Ito M,Araki S,Matsunaga S,et al.G2/M-phase-specific transcription during the plant cell cycle is mediated by c-MYB-like transcription factors[J].The Plant Cell,2001,13(8):1891-1905.
19.Ma Q B,Dai X Y,Xu Y Y,et al.Enhanced tolerance to chilling stress inOsMYB3R-2 transgenic Rice is mediated by alteration in cell cycle and ectopic expression of stress genes[J].Plant Physiology,2009,150(1):244-256.
20.Dai X Y,Xu Y Y,Ma Q B,et al.Overexpression of an R1R2R3 MYB gene,OsMYB3R-2,increases tolerance to freezing,Drought,and salt stress in transgenicArabidopsis[J].Plant Physiology,2007,143(4):1739-1751.
21.Cai H S,Tian S,Dong H S.Large scaleinsilicoidentification ofMYBfamily genes from Wheat expressed sequence tags[J].Molecular Biotechnology,2012,52(2):184-192.
22.Wang S J,Yao W J,Wei H R,et al.Expression patterns of ERF genes underlying abiotic stresses in Di-haploidPopulussimonii×P.nigra[J].The Scientific World Journal,2014,2014:745091.
23.Liang Y K,Dubos C,Dodd I C,et al.AtMYB61,an R2R3-MYB transcription factor controlling stomatal aperture inArabidopsisthaliana[J].Current Biology,2005,15(13):1201-1206.
24.Hemm M R,Herrmann K M,Chapple C.AtMYB4:a transcription factor general in the battle against UV[J].Trends in Plant Science,2001,6(4):135-136.
25.Petroni K,Falasca G,Calvenzani V,et al.The AtMYB11 gene fromArabidopsisis expressed in meristematic cells and modulates growth in planta and organogenesis in vitro[J].Journal of Experimental Botany,2008,59(6):1201-1213.
26.Bhargava A,Mansfield S D,Hall H C,et al.MYB75 functions in regulation of secondary cell wall formation in theArabidopsisinflorescence stem[J].Plant Physiology,2010,154(3):1428-1438.
27.Rajagopalan R,Vaucheret H,Trejo J,et al.A diverse and evolutionarily fluid set of microRNAs inArabidopsisthaliana[J].Genes & Development,2006,20(24):3407-3425.
28.Mu R L,Cao Y R,Liu Y F,et al.An R2R3-type transcription factor geneAtMYB59 regulates root growth and cell cycle progression inArabidopsis[J].Cell Research,2009,19(11):1291-1304.
29.Kim J H,Hyun W Y,Nguyen H N,et al.AtMyb7,a subgroup 4 R2R3 Myb,negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5[J].Plant,Cell & Environment,2015,38(3):559-571.
30.Urao T,Noji M A,Yamaguchi-shinozaki K,et al.A transcriptional activation domain of ATMYB2,a drought-inducibleArabidopsisMYB-related protein[J].The Plant Journal,1996,10(6):1145-1148.
31.Lotkowska M E,Tohge T,Fernie A R,et al.TheArabidopsistranscription factor MYB112 promotes anthocyanin formation during salinity and under high light stress[J].Plant Physiology,2015,169(3):1862-1880.
32.Feng C P,Andreasson E,Maslak A,et al.ArabidopsisMYB68 in development and responses to environmental cues[J].Plant Science,2004,167(5):1099-1107.
33.Cominelli E,Galbiati M,Vavasseur A,et al.A guard-cell-specific MYB transcription factor regulates stomatal movements and plant drought tolerance[J].Current Biology Cb,2005,15(13):1196-1200.
34.Lee S B,Kim J,Suh M C.Cuticular Wax biosynthesis is up-regulated by the MYB94 transcription factor inArabidopsis[J].Plant & Cell Physiology,2015,56(1):48-60.
35.Jung C,Seo J S,Han S W,et al.Overexpression ofAtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenicArabidopsis[J].Plant Physiology,2008,146(2):623-635.
National 863 project funding(2013AA102701)
introduction:LI Xi-Yan(1992—),female,graduate,major in forest resistance mechanism.
date:2017-02-16
ExpressionAnalysisofPoplarMYBTranscriptionFactorGeneFamilyinResponsetoSaltStress
LI Xi-Yan ZHAO Kai ZHANG Xue-Mei ZHOU Bo-Ru*
(State Key Laboratory of Tree Genetics and Breeding,Northeast Forestry University,Harbin 150040)
MYB transcription factor family is one of the most important transcription factors in plants, and plays an important role in the process of plant secondary metabolism regulation, signal transduction and stress resistance. According to the difference of domain structure of MYB transcription factor, it can be divided into 4 subfamilies: 1R-MYB(MYB-relaed), R2R3-MYB, 3R-MYB and 4R-MYB. Among them, the R2R3-MYB sub family with the largest number of members can be further divided into 22 subgroups. Using bioinformatics, the characterizations of conserved domain ofPoplarMYB transcription factors, genomic location, amino acid composition and physicochemical properties were analyzed. According to the Arabidopsis MYB transcription factor, the functions ofPoplarMYB transcription factor were predicted. Based on the transcriptome sequencing and RT-qPCR, 69 salt-stress responding genes(P≤0.05) were screened from 301 MYB genes, including 32 up-regulated genes and 37 down regulated genes. The study could provide a reference for further study on the function of MYB family genes inPoplar.
Poplar;MYB transcription factors;bioinformatics;RT-qPCR
國家863課題資助(2013AA102701)
李晰妍(1992—),女,碩士研究生,主要從事林木抗逆機(jī)理方面研究。
* 通信作者:E-mail:boruzhou@yahoo.com
2017-02-16
* Corresponding author:E-mail:boruzhou@yahoo.com
S792.11
A
10.7525/j.issn.1673-5102.2017.03.013