張 磊,孟元林,崔存蕭,李新寧,陶士振,吳晨亮,胡安文,許 丞
(1.東北石油大學(xué) 地球科學(xué)學(xué)院,黑龍江 大慶 163318; 2.中國(guó)石油 吐哈油田分公司 勘探開發(fā)研究院,新疆 哈密 839009;3.中國(guó)石油 勘探開發(fā)研究院 ,北京 100083; 4.萊斯大學(xué) 地球、環(huán)境與空間系,休斯頓,77005)
氫抑制條件下的有機(jī)質(zhì)熱演化動(dòng)力學(xué)模型
——以三塘湖盆地蘆草溝組為例
張 磊1,孟元林1,崔存蕭1,李新寧2,陶士振3,吳晨亮4,胡安文1,許 丞1
(1.東北石油大學(xué) 地球科學(xué)學(xué)院,黑龍江 大慶 163318; 2.中國(guó)石油 吐哈油田分公司 勘探開發(fā)研究院,新疆 哈密 839009;3.中國(guó)石油 勘探開發(fā)研究院 ,北京 100083; 4.萊斯大學(xué) 地球、環(huán)境與空間系,休斯頓,77005)
三塘湖盆地馬朗凹陷蘆草溝組烴源巖含有較多的富氫組分,有機(jī)質(zhì)的熱演化受到氫抑制。為了模擬氫抑制背景下的有機(jī)質(zhì)熱演化史,在經(jīng)典的Sweeny和Burham Easy%Ro時(shí)-溫雙控化學(xué)動(dòng)力學(xué)模型基礎(chǔ)上,本文考慮氫抑制對(duì)有機(jī)質(zhì)熱演化的影響,根據(jù)氫指數(shù)調(diào)節(jié)反應(yīng)活化能,建立了描述有機(jī)質(zhì)熱演化的時(shí)-溫-氫抑制多控化學(xué)動(dòng)力學(xué)模型。研究結(jié)果表明,蘆草溝組氫抑制對(duì)Ro的貢獻(xiàn)值為0.2%左右;由于氫抑制的影響,蘆草溝組烴源巖進(jìn)入生烴門限和開始大量生烴的時(shí)間均被延遲。文中新建立的化學(xué)動(dòng)力學(xué)模型可以應(yīng)用于各種類型干酪根的有機(jī)質(zhì)熱演化史模擬,其精度更高、應(yīng)用范圍更廣。
氫抑制;化學(xué)動(dòng)力學(xué);頁巖油;中二疊統(tǒng);三塘湖盆地
鏡質(zhì)組反射率Ro是烴源巖評(píng)價(jià)、成巖階段劃分、蓋層封閉性研究、成巖作用數(shù)值模擬、成藏動(dòng)力學(xué)模擬和盆地模擬最常用的指標(biāo)[1-7]。傳統(tǒng)的觀點(diǎn)認(rèn)為,鏡質(zhì)組反射率主要受溫度與時(shí)間的影響與控制[8],也有人認(rèn)為壓力或超壓對(duì)Ro有明顯的影響[9-13],Carr(2000),Zou (2001)和肖麗華(2003)考慮超壓對(duì)Ro的影響,分別建立了描述有機(jī)質(zhì)熱演化的時(shí)-溫-壓多控化學(xué)動(dòng)力學(xué)模型[14-16]。但越來越多的研究表明,有機(jī)質(zhì)的熱演化受到氫的抑制作用[17-24],即在富含氫元素的干酪根中有機(jī)質(zhì)的熱演化受到氫抑制(Hydrogen Suppression),Ro隨埋深和地溫的增加演化緩慢,Ro的實(shí)測(cè)值偏低。而形成頁巖油或致密油聚集的烴源巖常常是氫組分含量很高的優(yōu)質(zhì)烴源巖[25],有機(jī)質(zhì)的熱演化受到氫抑制,比較典型的是Williston盆地Barkken 頁巖的氫抑制現(xiàn)象[21]。因此,在研究富含藻質(zhì)體和殼質(zhì)組等顯微組分的泥巖有機(jī)質(zhì)熱演化時(shí),必須考慮氫抑制對(duì)Ro的影響。更重要的是,以前被廣泛應(yīng)用的Sweeny 和Burham的Easy%Ro時(shí)-溫雙控模型不再適用,需要加以改進(jìn)。本文試圖以三塘湖盆地為例,研究有機(jī)質(zhì)熱演化被氫抑制的特征,建立氫抑制背景下有機(jī)質(zhì)熱演化的化學(xué)動(dòng)力學(xué)模型。
三塘湖盆地位于新疆維吾爾自治區(qū)境內(nèi),總面積為2.3×104km2,可進(jìn)一步劃分為北部隆起帶、中央坳陷帶和南緣沖斷帶3個(gè)二級(jí)構(gòu)造單元(圖1a)[26]。條湖凹陷和馬朗凹陷相鄰,位于中央坳陷帶的中部,是三塘湖盆地最有利的勘探區(qū)。三塘湖盆地從下到上發(fā)育上古生界石炭系(C)、二疊系(P),中生界三疊系(T)、侏羅系(J)、白堊系(K)和新生界(Q+R)。其中,上古生界僅發(fā)育中二疊統(tǒng),由蘆草溝組(P2l)和條湖組(P2t)構(gòu)成。蘆草溝組從下到上分為蘆一段(P2l1)、蘆二段(P2l2)和蘆三段(P2l3)(圖1b)。蘆草溝組屬于咸化湖碳酸鹽和泥質(zhì)巖混合沉積,在沉積的同時(shí)還伴有火山噴發(fā)和火山灰堆積,主要巖性為泥質(zhì)沉凝灰?guī)r、碳酸鹽質(zhì)沉凝灰?guī)r、沉凝灰?guī)r和泥質(zhì)凝灰質(zhì)碳酸鹽巖[26-27]。
蘆草溝組富含有機(jī)質(zhì),發(fā)育優(yōu)質(zhì)烴源巖,源儲(chǔ)一體,形成了致密油或頁巖油聚集。鉆遇蘆草溝組的48口井中,有28口井測(cè)試見油,7口井產(chǎn)出工業(yè)油流。
蘆草溝組是三塘湖盆地一套極為優(yōu)質(zhì)的烴源巖,該盆地80%的儲(chǔ)量來自這套烴源巖[26-27]。由于凝灰質(zhì)成分對(duì)有機(jī)質(zhì)的富集作用[28],烴源巖有機(jī)質(zhì)極為豐富,有機(jī)質(zhì)呈層狀富集(圖2)。馬朗凹陷蘆草溝組烴源巖的TOC主要分布在2.0%~8.0%,條湖凹陷蘆草溝組TOC主要分布1.0%~4.0%。有機(jī)質(zhì)類型為主要Ⅰ型和Ⅱ1型,富含氫元素,H/C原子比為1.0~1.5,O/C原子比為0.05~0.15。顯微組分中富氫組分含量很高,殼質(zhì)組和腐泥組的含量主要分布在40%~98%(圖3),富氫組分含量高的烴源巖主要發(fā)育在馬朗凹陷。
正是由于蘆草溝組(P2l)烴源巖干酪根中含有大量富氫組分,蘆草溝組烴源巖的有機(jī)質(zhì)熱演化很慢,受到氫抑制。在深度相同的情況下,蘆草溝組(P2l)烴源巖的Ro低于三疊系(T)、二疊系條湖組(P2t)和石炭系(C)烴源巖的Ro(圖4)。
值得說明的是,超壓也可以抑制有機(jī)質(zhì)的熱演化[9-16]。但是,由于三塘湖盆地蘆草溝組屬于一套由碳酸鹽、凝灰質(zhì)和陸源碎屑混雜堆積形成的細(xì)粒沉積,非常致密,欠壓實(shí)的程度很弱;而且有機(jī)質(zhì)熱演化程度較低,目前處于液態(tài)窗內(nèi),由生烴產(chǎn)生的壓力有限,所以實(shí)測(cè)地層壓力不高。吐哈油田的實(shí)測(cè)地層壓力表明[29-30],蘆草溝組的壓力系數(shù)分布在0.5~1.29,主要集中在1.0~1.2的范圍內(nèi)(圖5),基本屬于正常壓力,僅僅少數(shù)井存在弱超壓(壓力系數(shù)≥1.2),超壓對(duì)有機(jī)質(zhì)熱演化的影響不大,可以忽略。
圖1 研究區(qū)位置(a)及地層柱狀圖(b)[26]Fig.1 Location and stratigraphic column of the study area[26]
圖2 馬朗凹陷蘆草溝組烴源巖有機(jī)質(zhì)富集分布Fig.2 Distribution of organic matters abundance in the source rocks of the Lucaogou Formation in the Malang Saga.蘆1井,蘆草溝組,埋深3 172.68 m,有機(jī)質(zhì)(OM)層狀富集(綠色箭頭),Si為石英,F(xiàn)p為斜長(zhǎng)石,Ca為方解石,F(xiàn)k為鉀長(zhǎng)石,紅色箭頭為白云石; b.蘆1井,蘆草溝組,埋深3 123.68 m,有機(jī)質(zhì)層狀富集(綠色箭頭),F(xiàn)k為鉀長(zhǎng)石,Ab為斜長(zhǎng)石,Q為石英,Py為黃鐵礦(紅色箭頭)
圖3 三塘湖盆地蘆草溝組干酪根顯微組分組成Fig.3 Organic macerals of kerogen in the Lucaogou Formation in the Santanghu Basin
許多學(xué)者研究過鏡質(zhì)組反射率被氫抑制的原因。Taylor(1966,1987)最早在無定形有機(jī)質(zhì)占優(yōu)勢(shì)的烴源巖樣品中,發(fā)現(xiàn)了Ro氫抑制的現(xiàn)象[17-18]。而Hutton和Cook(1980)認(rèn)為,Ro的氫抑制是富氫鏡質(zhì)體本身造成的[19]。Kalkreuth(1982)的研究結(jié)果則表明[20],氫抑制由干酪根中高含量的殼質(zhì)體引起。Leigh和Charles(1985)認(rèn)為[21],Wilingston盆地Bakken頁巖Ro的抑制現(xiàn)象與高含量的藻質(zhì)體有關(guān),藻質(zhì)體的含量與鏡質(zhì)組反射率呈負(fù)相關(guān)??傊彩桥c富氫顯微組分共生的鏡質(zhì)組,它們的Ro測(cè)定值往往比預(yù)料的要低。而且Ro抑制現(xiàn)象多發(fā)生于H/C原子比較高的Ⅰ,Ⅱ型干酪根烴源巖中[22]。三塘湖盆地蘆草溝組烴源巖殼質(zhì)組與Ro亦呈負(fù)相關(guān)關(guān)系(圖6),顯示了鏡質(zhì)體反射率被氫抑制的特征。
圖4 三塘湖盆地鏡質(zhì)組反射率Ro與深度關(guān)系Fig.4 Relation beween Ro and depth in the Santanghu Basin
圖5 三塘湖盆地實(shí)測(cè)壓力系數(shù)與深度關(guān)系[29]Fig.5 Measured pressure coefficient vs.depth in the Santanghu Basin[29]
圖6 三塘湖盆地蘆草溝組干酪根殼質(zhì)組含量與Ro關(guān)系Fig.6 Relation between Ro and exinite of kerogen in the Lucaogou Formation in the Santanghu Basin
由上可見,抑制有機(jī)質(zhì)熱演化的主要原因是干酪根中含有較多的富氫組分。有機(jī)質(zhì)熱演化氫抑制的化學(xué)動(dòng)力學(xué)原理是,干酪根中的富氫顯微組分(藻質(zhì)體、殼質(zhì)體等)含有許多的脂族鏈,在有機(jī)質(zhì)熱演化的過程中,這些脂族鏈的C—C鍵斷裂,生成烴類,而C—C鍵斷裂需要的反應(yīng)活化能比貧氫顯微組分生烴時(shí)雜原子鍵斷裂所必需的活化能更高。也就是說,富氫鏡質(zhì)組熱演化生烴所需的活化能比貧氫鏡質(zhì)組更高。因此熱演化生烴的速度更慢,在經(jīng)歷同樣時(shí)-溫的條件下,富氫鏡質(zhì)組的Ro更低。
在Sweeny和Burham(1990)有機(jī)質(zhì)熱演化Easy%Ro時(shí)-溫雙控化學(xué)動(dòng)力學(xué)模型的基礎(chǔ)上,本文考慮氫抑制的影響,通過增加熱演化化學(xué)反應(yīng)的活化能,建立了時(shí)-溫-氫抑制多控的化學(xué)動(dòng)力學(xué)模型,描述富氫有機(jī)質(zhì)熱演化的過程:
(1)
(2)
Ro%=exp(-1.6+3.7F)
(3)
(4)
式中:wi為干酪根鏡質(zhì)組中組分i的反應(yīng)物濃度,%,i=1,2,…,20;wi0為干酪根鏡質(zhì)組中組分i的初始濃度,%;A為頻率因子,1.13×103/s;t為時(shí)間,s;T(t)為t時(shí)刻的絕對(duì)溫標(biāo),K;E為活化能, kcal/mol;Pi為權(quán)系數(shù);λ為氫抑制因子,λ>1,可用下式計(jì)算:
λ=1+β[ (IH-IH0) /IH]
(5)
式中:IH為氫指數(shù),mg/g;IH0為不發(fā)生氫抑制的最大氫指數(shù),IH0=150mg/g[23];β為比例因子。
由公式(5)可見,當(dāng)IH=IH0時(shí),λ=1,與Sweeny 和Burham(1990)提出的Easy%Ro經(jīng)典模型完全相同;當(dāng)IH
(6)
為了定量研究富氫組分對(duì)Ro抑制的程度、確定氫抑制因子λ、模擬馬朗凹陷蘆草溝組有機(jī)質(zhì)熱演化的化學(xué)動(dòng)力學(xué)過程,本文在條湖凹陷和馬朗凹陷分別選取了一口蘆草溝組有機(jī)質(zhì)熱演化沒有受到氫抑制的條5井和受到氫抑制的塘參3井,進(jìn)行了試算。
首先,以條湖凹陷條5井的實(shí)測(cè)Ro資料為基礎(chǔ),應(yīng)用Sweeny和Burham(1990)的Easy%Ro經(jīng)典模型,反演出條5井的古大地?zé)崃?圖7),直到鏡質(zhì)組反射率的計(jì)算值與實(shí)測(cè)值相符為止(圖8a);然后,根據(jù)由于這兩口井基底埋深差異引起的大地?zé)崃髡凵淠P蚚31-34],由基底埋藏較淺的條5井的古大地?zé)崃鳎?jì)算出基底埋藏較深的塘參3井的古大地?zé)崃?圖7),并以此恢復(fù)塘參3井不同地質(zhì)時(shí)期的古地溫,用Sweeny和Burham(1990)的Easy%Ro模型,計(jì)算出塘參3井的Ro值(圖8b)。由圖可見,塘參3井Ro實(shí)測(cè)值小于理論計(jì)算值,這是氫抑制有機(jī)質(zhì)熱演化的結(jié)果。其差值ΔRo就是氫抑制的貢獻(xiàn)值,ΔRo=0.20%左右。最后,應(yīng)用本文建立的考慮氫抑制的化學(xué)動(dòng)力學(xué)模型[公式(1)~(6)],由計(jì)算機(jī)給定一系列的βi值(i=1,2,…,N),得出相應(yīng)的氫抑制因子λi值,反復(fù)試算,直到計(jì)算的精度達(dá)到給定的精度[公式(6)]。計(jì)算結(jié)果表明,當(dāng)β=0.073 5,氫抑制因子λ=1.044 4時(shí),鏡質(zhì)組反射率的計(jì)算值和實(shí)測(cè)數(shù)據(jù)符合較好(圖8c)。
應(yīng)用得到的氫抑制因子λ值,模擬了受到氫抑制的塘參3井的有機(jī)質(zhì)熱演化史(圖9a)。由圖可見,蘆草溝組(P2l)烴源巖在侏羅紀(jì)末期才進(jìn)入生油門限(Ro≥0.5%);在白堊紀(jì)末期進(jìn)入大量生烴的成熟階段(Ro≥0.7%)。如果塘參3井不存在氫抑制,應(yīng)用Sweeny和Burham(1990)的Easy%Ro經(jīng)典模型恢復(fù)該井的有機(jī)質(zhì)熱演化史(圖9b),蘆草溝組(P2l)烴源巖在中二疊統(tǒng)條湖組(P2t)沉積末期就已進(jìn)入生油門限;在白堊紀(jì)中期進(jìn)入大量生烴的成熟階段。由圖9可知,正是由于鏡質(zhì)組反射率被氫抑制的結(jié)果,使蘆草溝組(P2l)烴源巖進(jìn)入生烴門限的時(shí)間和開始大量生烴的時(shí)間均被大大延遲。
1) 三塘湖盆地馬朗凹陷蘆草溝組烴源巖有機(jī)質(zhì)富含氫組分,有機(jī)質(zhì)熱演化被氫抑制,氫抑制的效應(yīng)為ΔRo=0.2%。
圖7 三塘湖盆地條5井與塘參3井不同地質(zhì)時(shí)期大地?zé)崃鲗?duì)比Fig.7 Heat flows comparison of Well Tiao-5 and Well Tangcan-3 in different geologic periods of the Santanghu Basin
圖8 三塘湖盆地Ro實(shí)測(cè)值與模擬值Fig.8 Measured Ro and modeled Ro in the Santanghu Basina.條5井Ro實(shí)測(cè)值與模擬值;b.塘參3井Ro實(shí)測(cè)值與Easy%Ro模型計(jì)算的理論值;c.塘參3井Ro實(shí)測(cè)值與氫抑制模型計(jì)算的理論值
圖9 三塘湖盆地地?zé)崾返幕謴?fù)Fig.9 Reconstructed thermal history in the Santanghu Basina.用氫抑制模型恢復(fù)的地?zé)崾?b.用Sweeny和Burham Easy% Ro模型恢復(fù)的地?zé)崾?/p>
2) 通過調(diào)節(jié)氫抑制因子λ、增加有機(jī)質(zhì)熱演化反應(yīng)的活化能,所建立的有機(jī)質(zhì)熱演化時(shí)-溫-氫抑制多控模型可以更好地模擬富氫有機(jī)質(zhì)的熱演化史,而且精度更高、應(yīng)用范圍更廣,可以模擬各種類型有機(jī)質(zhì)的熱演化過程。
3) 由于氫抑制的影響,三塘湖盆地蘆草溝組富含殼質(zhì)組和腐泥組的烴源巖進(jìn)入生烴門限和開始大量生烴的時(shí)間均被推遲。
[1] 黃飛,辛茂安.SY/T5735-1995中華人民共和國(guó)石油天然氣行業(yè)標(biāo)準(zhǔn)并陸相烴源巖地球化學(xué)評(píng)價(jià)方法[S].北京:石油工業(yè)出版社,1996:1-19.
Huang Fei and Xin Maoan.Oil and gas industry standard of the People’s Republic of China:The geochemical evaluation method of continental-facies source rocks,SY/T5735-1995 [S].Beijing:Petroleum Industry Press,1996:1-19.
[2] 應(yīng)鳳祥,何東博,龍玉梅,等.SY/T5477-2003 中華人民共和國(guó)石油天然氣行業(yè)標(biāo)準(zhǔn)并碎屑巖成巖階段劃分[S].北京:石油工業(yè)出版社,2003:1-5.
Ying Fengxiang,He Dongfu,Long Yumei,et al.Oil and gas industry standard of the People’s Republic of China:The division of diagentic stages in clastic rocks,SY/T5477-2003 [S].Beijing:Petroleum Industry Press,2003:1-5.
[3] 龐雄奇,付廣,萬龍貴,等.蓋層封油氣性綜合定量評(píng)價(jià)—盆地模擬在蓋層評(píng)價(jià)中的應(yīng)用[M].北京:地質(zhì)出版社,1993:14-17.
Pang Xiongqi,F(xiàn)u Guang,Wan Longgui,et al.Caprock sealing comprehensive quantitative assessment of oil and gas basin simulation applied in the evaluation of cap rock[M].Beijing:Geological Publishing House,1993:14-17.
[4] Hantschel T,Kauerauf I A.Fundamentals of basin and petroleum systems modeling[M].Berlin Heidelberg:Springer-Verlag,2009:169-176.
[5] 孟元林,劉德來,賀如,等.歧北凹陷超壓背景下的成巖場(chǎng)分析與儲(chǔ)層孔隙度預(yù)測(cè)[J].沉積學(xué)報(bào),2005,23(3):389-396.
Meng Yuanlin,Liu Delai,He Ru,et al.Diagentic field analysis and porosity prediction of the Shaer member(Es2) in overpressure setting in the Qibei depression[J].Acta Sedimentologica Sinica,2005,23(3):389-396.
[6] 孟元林,王粵川,羅憲嬰,等.渤海灣盆地孔西潛山構(gòu)造帶成藏史數(shù)值模擬[J],地質(zhì)力學(xué)學(xué)報(bào),2005,11(1):11-16.
Meng Yuanlin,Wang Yuechuan,Luo Xianying,et al.Reservoir forming history modeling of Kongxi buried hill,Bohaiwan Basin[J].Journal of Geomechanics,2005,11(1):11-16.
[7] 黃文彪,鄧守偉,盧雙舫,等.松遼盆地南部扶余油層致密儲(chǔ)層成巖序列及成藏期次[J].石油與天然氣地質(zhì),2017,38(03):508-516.
Huang Wenbiao,Deng Shouwei,Lu Shuangfang,et al.Diagenetic sequence and hydrocarbon accumulation phases of the Fuyu layer tight reservoir in the southern Songliao Basin[J].Oil & Gas Geology,2017,38(03):508-516.
[8] Sweeny J J,Burham A K.Evaluation of a simple model of vitrinite reflectance based on chemical kinetics[J].AAPGBulletin,1990,74:1559-1570.
[9] McTavish R A.Pressure retardation of vitrinite diagenesis,offshore north—West Europe[J].Nature,1978,271(16):648-650.
[10] Hao F,Li S T,Dong W H,et al.Abnormal organic matter maturation in the Yinggehai Basin,offshore South China Sea:implications for hydrocarbon expulsion and fluid migration from overpressured systems[J].Journal of Petroleum Geology,1998,21:427-444.
[11] Huang W L.Experimental study of vitrinite maturation:effects of temperature,time,pressure,water,and hydrogen index[J].Organic Geochemistry,1996,24(2):233-241.
[12] Dalla T M,Mahlman F R,Ernt W G.Experimental study on the pressure dependence of vitrinite maturation[J].Organic Geochemistry,1997,61:2921-2928.
[13] 王永詩,邱貽博.濟(jì)陽坳陷超壓結(jié)構(gòu)差異性及其控制因素[J].石油與天然氣地質(zhì),2017,38(03):430-437.
Wang Yongshi,Qiu Yibo.Overpressure structure dissimilarity and its controlling factors in the Jiyang Depression[J].Oil & Gas Geology,2017,38(03):430-437.
[14] Carr A D.A vitrinite reflectance kinetic model incorporating overpressure retardation[J].Marine and Petroleum Geology,1999,16:355-377.
[15] Zou Y,Peng P.Overpressure retardation of organic-matter maturation: a kinetic model and its application[J].Marine and Petroleum Geology,2001,18: 707-713.
[16] 肖麗華,盂元林,張連雪,等.超壓地層中鏡質(zhì)組反射率的計(jì)算[J].石油勘探與開發(fā),2005,32(1):14-17.
Xiao Lihua,Meng Yuanlin,Zhang Lianxue,et al.Vitrinite reflectance modeling in the pressured formations[J].Petroleum Exploration and Development,2005,32(1):14-17.
[17] Taylor G.H.The electron microscopy of vitrinites.In Coal Sciences (Edited by Gould R.F.) [D].Am.Chemical Society Publications,Washington,D.C.1966,274-283.
[18] Taylor G H,Liu S Y.Biodegradation in coals and other organic-rich rocks[J].Fuel,1987,66(9):1269-1273.
[19] Hutton A C,Cook A C.Influence of alginate on the reflectance of vitrinite from Joadja.NSW,and some other coals and oil shales containing alginite[J].Fuel,1980,59(10):711-714.
[20] Kalkreuth W D.Rank and petrolographic composition of selected Jurassic-Lower Cretaceous coals of British Columbia,Canada[J].Bulletin of Canadian Petroleum Geology,1982,30(2):112-139.
[21] Leigh C P,Charles E B.Suppression of vitrinite reflectance inamorphous rich kerogen-amajor unrecognized problem[J].Journal of Petroleum Geology,1985,8(1):59-84.
[22] Hao F,Chen J.The cause and mechanism of vitrinite refletance anomolies[J].Journal of Petroleum Geology,1992,15(4):419-434.
[23] Lo H B.Correction criteria for the suppression of vitrinite reflectance in hydrogen-rich kerogens: preliminary guidelines[J].Organic Geochemistry,1993,20(6):653-657.
[24] Dow W G.Kerogen studies and geological interpretations[J].Journal of Geochemical Exploration,1977,7:79-99.
[25] 鄒才能.非常規(guī)油氣地質(zhì)(第二版)[M].北京:石油工業(yè)出版社,2013:93-169.
Zou Caineng.Unconventional petroleum geology(second edition)[M].Beijing:Petroleum Industry Press,2011.
[26] 李新寧,馬強(qiáng),梁輝,等.三塘湖盆地蘆草溝組二段混積巖致密油地質(zhì)特征及勘探潛力[J].石油勘探與開發(fā),2015,42(6):1-9.
Li Xinning,Ma Qiang,Liang Hui,et al.Geological characteristics and exploration potential of diamictite tight oil in the second Member of the Permian Lucaogou Formation,Santanghu Basin[J].Petroleum Exploration and Development,2015,42(6):1-9.
[27] 國(guó)建英,鐘寧寧,梁浩,等.三塘湖盆地中二疊統(tǒng)原油的來源及其分布特征[J].地球化學(xué),2012,41(3):266-277.
Guo Jianying,Zhong Ningning,Liang Hao,et al.Study on the source and distribution of Middle Permian oils in the Santanghu Basin[J].Geochimica,2012,41(3):266-277.
[28] 孟元林,張磊,李新寧,等.雜積巖地化特征與生烴機(jī)理—以三塘湖盆地蘆草溝組為例,第十五屆全國(guó)有機(jī)地球化學(xué)學(xué)術(shù)會(huì)議,青島,2015.
Meng Yuanlin,Zhang Lei,Li Xinning,et al.Mixed siliciclastic-volcaniclastic-carbonate sediments—taking Lu Caogou Formation of Santanghu Basin as an example,The 15thNational Meeting on Organic Geochemistry in China,Qingdao,2015.
[29] 李新寧.三塘湖盆地蘆草溝組頁巖油藏地質(zhì)特征與勘探開發(fā)潛力[R].2011,中國(guó)石油吐哈油田分公司勘探開發(fā)研究院.
Li Xinning .Geologic characteristics and exploration and development potential of the Lucaogou shale oil play in Santanghu Basin[R].2011,Exploration and Development Institute of Tuha Oil-field Branch,Petrochina.
[30] 黃志龍,馬劍,吳紅燭,等.馬朗凹陷蘆草溝組頁巖油流體壓力與初次運(yùn)移特征[J].中國(guó)石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2012,36(5):7-11
Huang Zhilong,Ma Jian,Wu Honghu,et al .Fluid pressure and primary migration characteristics of shale oil of Lucaogou formation in Malang sag[J].Journal of China University of Petroleum,2012,36(5):7-11.
[31] 張菊明,熊亮萍.有限單元法在地?zé)嵫芯恐械膽?yīng)用[M].北京:科學(xué)出版社,1986:15-22.
Zhang Juming,Xiong Liangping.The applications of finite element in geothermal researches[M].Beijing: Science Press,1986:15-22.
[32] 肖麗華,張靖,孟元林,等.地?zé)釁?shù)及邊界條件的探討[J].大慶石油學(xué)院學(xué)報(bào),1996,20(2):28-31.
Xiao Lihua,Zhang Jing,Meng Yuanlin,et al.Study of geothermal parameters and boundary conditions[J].Journal of Daqing Petroleum Institute,1996,20(2): 28-31.
[33] Meng Y L,Xiao L H,Zhang J.Basin modeling by gravity,magnetics and electrical information and its application[C].//Liu B.T.,Li S.T.eds.Basin analysis,global sedimentary geology and sedimentology.Amsterdam:VSP,1997:97-207.
[34] 崔軍平,任戰(zhàn)利,李金翔,等.海拉爾盆地呼倫湖凹陷熱演化史恢復(fù)[J].石油與天然氣地質(zhì),2015,36(01):35-42.
Cui Junping,Ren Zhanli,Li Jinxiang,et al.Reconstruction of geothermal history in Hulunhu Depression,Hailaer Basin[J].Oil & Gas Geology,2015,36(01):35-42.
A new kinetic model of organic thermal evolution under the condition of hydrogen suppression:A case study from the Lucaogou Formation in the Santanghu Basin
Zhang Lei1,Meng Yuanlin1,Cui Cunxiao1,Li Xinning2,Tao Shizhen3, Wu Chenliang4,Hu Anwen1, Xu Cheng1
(1.CollegeofEarthScience,NortheastPetroleumUniversity,Daqing,Heilongjiang163318,China;2.ResearchInstituteofPetroleumExploration&Development,TuhaOilfieldBranch,Petrochina,Hami,Xinjiang839009,China;3.ResearchInstituteofPetroleumExploration&Development,Petrochina,Beijing100083,China;4.DepartmentofEarthScience,RiceUniversity,Houston77005,USA)
Organic matters of the source rocks in the Lucaogou Formation of the Malang Sag,Santanghu Basin are rich in hydrogen components,which suppresses the thermal evolution of organic matters.To simulate thermal evolution of organic matters,a new kinetic model of organic thermal evolution under the condition of hydrogen suppression was established integrating time,temperature,and hydrogen retardation based on Sweeny and Burham Easy %Rotime and temperature controlling kinetic model.In the new kinetic model,activity energies are adjusted by hydrogen index.The results show that hydrogen suppression contributes to 0.2% ofRovalue in the Lucaogou Formation.Hydrogen suppression also resulted in delays of both initial generation of hydrocarbons and peak generation of hydrocarbons.This new established model is widely applicable to thermal histories for different kerogen types with higher accuracy.
hydrogen suppression,chemical kinetics,shale oil,Middle Permian,Santanghu Basin
2016-01-05;
2017-08-15。
張磊(1990—),男,博士,石油地質(zhì)。E-mail:zhlangei245@hotmail.com。
孟元林(1960—),男,教授、博士生導(dǎo)師,石油地質(zhì)。E-mail:qhdmyl@163.com。
國(guó)家自然科學(xué)基金項(xiàng)目(41572135);國(guó)家科技重大專項(xiàng)(2016ZX05046-001-006);東北石油大學(xué)研究生創(chuàng)新科研項(xiàng)目(YJSCX2017-004NEPU);黑龍江省科學(xué)基金項(xiàng)目(QC2016049);黑龍江省普通本科高等學(xué)校青年創(chuàng)新人才培養(yǎng)計(jì)劃項(xiàng)目(UNPYSCT-2016122)。
0253-9985(2017)05-0862-07
10.11743/ogg20170504
TE122.1
A
(編輯 張玉銀)