祁清華 綜述 周勤 審校
·綜 述·
進化理論在癌癥治療中的探索
祁清華 綜述 周勤 審校
腫瘤的發(fā)生、發(fā)展本質(zhì)上是進化過程發(fā)生的疾病,包括腫瘤細胞相互競爭及其對環(huán)境的適應(yīng)。進化理論的探索研究,為腫瘤治療提供更多新的思路及理論依據(jù)。本文從進化要素、生態(tài)理念、微環(huán)境3個方面分別綜述治療策略、療效及可能存在的問題,為腫瘤精準(zhǔn)治療提供新視角。
進化 腫瘤 治療
腫瘤可以被看作是機體某一細胞克隆在進化過程中發(fā)生的異常。自1976年Nowell首次提出腫瘤是一個進化的“生物體”以后,學(xué)術(shù)界開始將腫瘤的發(fā)生視為生物進化過程增殖異常[1-2]。2006年Merlo等[3]提出腫瘤是一個獨特的“生態(tài)系統(tǒng)”,在該系統(tǒng)中,一個物種滅絕的機制主要分為2種:1)物種自身表觀遺傳改變,無法獲得足夠的生存空間和資源,或被“獵食者”大量“捕食”;2)環(huán)境急劇變化,物種無法適應(yīng)。隨著基因測序技術(shù)的不斷發(fā)展以及臨床大數(shù)據(jù)時代的到來,de Bruin等[4]找到了“進化樹”的證據(jù),Gundem等[5]則以前列腺癌為背景揭示腫瘤細胞亞克隆的轉(zhuǎn)移擴散模式,從進化的角度闡述了腫瘤轉(zhuǎn)移的復(fù)雜機制。隨著基礎(chǔ)理論研究的不斷深入,學(xué)術(shù)界逐漸將這些理念用于腫瘤的治療,以期達到更好的療效?;谶M化的動態(tài)理論有學(xué)者提出關(guān)于靶向藥物的兩聯(lián)甚至三聯(lián)方案的可行性[6-7],也有學(xué)者提出靶向藥物的更換療法[8]。Solomon等計劃開展一項臨床試驗,對于T790M突變的肺癌患者首先給予第3代酪氨酸激酶抑制劑(TKI)奧西替尼(ADZ9291)治療,一旦檢測發(fā)現(xiàn)突變較前削弱則迅速更換至第1代TKI藥物,當(dāng)突變再次爆發(fā)時,則再次予以奧西替尼。本文主要從進化要素、生態(tài)理念、微環(huán)境3個方面回顧相應(yīng)的治療進展,為今后腫瘤治療研究提供新思路。
腫瘤進化的要素包括3個方面:突變、遺傳漂變和選擇[9],其在整個腫瘤的發(fā)展中也相互聯(lián)系。突變即DNA序列的改變,而漂變是由小群體引起的基因頻率增減甚至消失的現(xiàn)象;選擇則是通過對具有不同表型個體進行篩選從而影響基因頻率。隨著醫(yī)學(xué)檢測技術(shù)的進步,許多研究人員將重點放在研究腫瘤基因的多樣性上,針對癌細胞基因突變的靶向治療更是當(dāng)下的熱門話題。以非小細胞肺癌(nonsmall cell lung cancer,NSCLC)為例,其靶向藥物的發(fā)展歷經(jīng)了第1代酪氨酸激酶抑制劑(TKIs)吉非替尼、厄洛替尼,發(fā)展至現(xiàn)在第3代奧西替尼和rociletinib(CO-1686)。但是,這種針對基因突變的靶向治療方案很多最終仍會失敗。因為隨著治療時間的推移,耐藥性會逐漸顯現(xiàn)。rociletinib主要用于EGFR T790M突變產(chǎn)生獲得性耐藥的患者[10],其緩解率可達59%[11]。然而對rociletinib治療失敗的患者活檢發(fā)現(xiàn),6/13耐藥性腫瘤細胞會再次變?yōu)門790野生型。這也表明基因突變的不穩(wěn)定性,故不能單純地寄希望于依靠發(fā)現(xiàn)某一種關(guān)鍵基因的突變來達到治愈腫瘤的目的。與基因突變和遺傳漂變的隨機性相比,選擇本質(zhì)上是有一定方向性的[12-13]。此外,生物體中一些有益的突變雖然免除了遺傳漂移潛在的有害影響,但仍然可以被其他競爭性克隆即外界的選擇所影響[14]。因此,Gatenby等[15]將研究重點放在選擇上面,并且提出了一種自適應(yīng)療法。通過調(diào)控藥物壓力,即調(diào)整給藥劑量和時間,來保持一定數(shù)量的藥物敏感性細胞,使之對抗耐藥細胞,以期達到減緩腫瘤進展的目的[16-17]。
作者單位:蕪湖市第二人民醫(yī)院放療二科(安徽省蕪湖市241000)
腫瘤存在基因多樣性[18-20]和表觀多樣性[21]。多個細胞克隆之間存在著相互競爭。簡而言之,腫瘤細胞可以分為敏感細胞和耐藥細胞,而治療干預(yù)實際上是一種人工選擇壓力,通過對壓力的調(diào)控來實現(xiàn)維持耐藥細胞和敏感細胞間的平衡,最終抑制腫瘤的生長。Gatenby的研究團隊提出了2種自適應(yīng)療法:1)給藥頻率固定,但劑量根據(jù)腫瘤大小進行調(diào)整;2)藥物劑量根據(jù)腫瘤生長速率的百分比調(diào)整。結(jié)果是前者有顯著的生存獲益,而后者僅能在一定程度上控制腫瘤的生長,最終腫瘤進展。起初,自適應(yīng)療法的效果遠未達到研究預(yù)期。因為此方法中腫瘤細胞的殺滅程度遠遠低于其他治療手段。但是隨著時間的推移,將敏感細胞株維持在一個合適的生長水平,可以減少耐藥株的繁殖,導(dǎo)致腫瘤的緩慢生長,最終延長患者的生存時間[15]。除此之外,研究還表明自適應(yīng)療法可以促進腫瘤血管正常化,增加血流量,有助于將藥物快速傳遞至腫瘤病灶中,盡快發(fā)揮療效。需要指出的是,這2種方法都不屬于“節(jié)拍化療”,即采用小劑量的化療藥物較頻繁地給藥[22-23]。因為自適應(yīng)療法是應(yīng)用小劑量藥物使得腫瘤細胞數(shù)量穩(wěn)定在某個范圍,并非“節(jié)拍化療”期望最大程度上殺滅所有腫瘤細胞。
自適應(yīng)療法的核心理論強調(diào)在適當(dāng)?shù)娜斯みx擇壓力下,保持耐藥細胞和敏感細胞的平衡,但是除了選擇之外,腫瘤的進展、復(fù)發(fā)和耐藥還與其他的進化因素相關(guān)。如關(guān)于腸癌患者的循環(huán)腫瘤DNA(ctDNA)測定結(jié)果顯示[24],在抗EGFR治療之前,有小部分細胞亞克隆出現(xiàn)同源基因的耐藥突變,即遺傳突變有時會超過選擇。除此之外,選擇在空間上也受到限制。對許多實體瘤空間分離的亞克隆細胞株的識別中發(fā)現(xiàn)細胞株自身的3D結(jié)構(gòu)會阻礙亞克隆之間的相互融合[4,25-28],這也意味著僅相鄰細胞株之間才容易形成競爭壓力。換言之,腫瘤細胞克隆的不同空間位置給競爭壓力設(shè)置了障礙,這種結(jié)構(gòu)會削弱選擇的效果而增加基因突變的作用[14]。因此,在腫瘤治療途徑的選擇上應(yīng)秉持多管齊下,相互協(xié)作的原則。
生態(tài)系統(tǒng)是由環(huán)境中各種生物體和非生物體相互作用、相互影響、互利共生構(gòu)成的一個動態(tài)開放、不斷演進的適應(yīng)性、平衡系統(tǒng)。從生態(tài)特點上,腫瘤細胞可以看作在代謝和生長上不同于正常宿主細胞的新物種。在合適的時間、空間和環(huán)境條件下成功“入侵”生態(tài)位后形成原發(fā)性腫瘤[29-31]。而一個新物種的入侵,必將與原物種在空間和資源上進行爭奪。眾所周知,細胞的增殖、侵襲和轉(zhuǎn)移需要消耗能量。在有限的資源環(huán)境中,蛋白的表達和應(yīng)用勢必會奪取細胞生長和侵襲所需的能量。Kam等[32]研究通過增加細胞其他方面的能量消耗,來減少耐藥細胞生長所需能量,最終達到殺滅的目的。
ABC蛋白(即ATP結(jié)合轉(zhuǎn)運蛋白)通過消耗ATP,可以將多種化學(xué)物質(zhì)和藥物泵出細胞外。ersatzdroges是一種ABC蛋白的底物并且促使多藥耐藥細胞(MDR)激活細胞膜上的轉(zhuǎn)運體。Kam等[32]研究發(fā)現(xiàn)ersatzdroges的應(yīng)用可以顯著降低阿霉素耐藥株(MCF-7/DOX)的增殖水平,尤其是在資源有限的情況下。與常規(guī)培養(yǎng)基(含2g/L葡萄糖)相比,在含0.5g/L葡萄糖培養(yǎng)基中MCF-7/DOX細胞存活率降低至84.0%±7.6%(P<0.05)。即通過增加維持細胞耐藥性的代謝成本從而延緩細胞的增殖。這種療法對于低表達ABC轉(zhuǎn)運體的細胞株沒有顯著效果。而大多數(shù)耐藥細胞株高表達ABC蛋白,因為它們通過消耗ATP可以將多種化學(xué)物質(zhì)和藥物泵出細胞外,進而產(chǎn)生耐藥。因此,ersatzdroges可以增大低表達ABC蛋白的敏感細胞株和過表達ABC蛋白的耐藥株之間的增殖差距,通過增加代謝成本來殺滅耐藥細胞株。
目前,這種方法仍處于細胞學(xué)實驗階段,且ersatzdroges是否會影響細胞膜上其他的泵尚不明確,距離應(yīng)用于臨床實踐將會是一個漫長的過程。
微環(huán)境是由多種細胞及它們的表達產(chǎn)物、代謝物質(zhì)等成分構(gòu)成,而腫瘤細胞賴以生存的低氧、酸性、耐藥和免疫逃逸“居住”微環(huán)境,更是為其生存、發(fā)展、侵襲和轉(zhuǎn)移提供了庇護所。有研究表明[33-35]惡性腫瘤組織和正常組織的細胞外pH值(pHe)有顯著性差異,分別是pHe=6.5~6.9和pHe=7.2~7.4。腫瘤細胞周圍的酸性環(huán)境,尤其是細胞外酸性pH(Phe)是腫瘤患者無轉(zhuǎn)移生存率的重要負向預(yù)測指標(biāo)[36]。
有研究提出緩沖微環(huán)境療法,通過中和腫瘤細胞周圍的酸性成分,來削弱它的生長和侵襲能力。已有研究發(fā)現(xiàn)[37]賴氨酸游離基團(pH=10.6)可以抑制前列腺癌細胞的轉(zhuǎn)移形成。給藥時間的不同,其療效也不盡相同。早期給藥主要是針對原發(fā)灶的形成,而晚期給藥與對照組相比則無明顯療效。因此,早期予以局部pH值的干預(yù)可能有助于腫瘤的預(yù)防[38]。除此之外,這種緩沖治療也可以提高常規(guī)化療的療效[39-40]。
緩沖療法的方式可以多種多樣,包括質(zhì)子泵藥物、非揮發(fā)的口服緩沖液等。但是藥物劑量的選擇仍是未知。目前,雖然有部分學(xué)者[41-43]研究口服緩沖液,并發(fā)現(xiàn)它們確實可以中和腫瘤的酸性,但是對于長期服用緩沖液的不良作用仍不明確。
眾所周知,腫瘤耐藥是化療失敗的主要原因之一。目前,已有學(xué)者從耐藥相關(guān)基因及蛋白[44]、細胞凋亡[45]、細胞信號轉(zhuǎn)導(dǎo)通路[46]等角度闡釋了耐藥機制的發(fā)生。近年來隨著二代測序技術(shù)及DNA嵌合芯片技術(shù)的發(fā)展,長鏈非編碼RNA(lncRNA)[47]和小分子RNA(microRNA)[48]成為研究的熱點,2種RNA從轉(zhuǎn)錄及轉(zhuǎn)錄后水平調(diào)控了多種基因及蛋白的表達進而參與腫瘤耐藥的形成。基于進化理論來研究耐藥和相應(yīng)的治療手段仍被忽略[49]。腫瘤的進化和生態(tài)學(xué)實際上為腫瘤的研究及治療提供了新的機遇。腫瘤細胞像自然界中的生物個體一樣,接受外界的選擇,并相互競爭生存空間和資源,逃避免疫系統(tǒng)的捕殺,甚至能相互“協(xié)作”從而成功發(fā)生播散和轉(zhuǎn)移。針對其中各個環(huán)節(jié)的研究和靶向治療,可能會產(chǎn)生更多應(yīng)對的新方法。
[1]Gerlinger M,Swanton C.How darwinian models inform therapeutic failure initiated by clonal heterogeneity in cancer medicine[J].Br J Cancer,2010,103(8):1139-1143.
[2]Nowell PC.The clonal evolution of tumor cell populations[J].Science,1976,194(4260):23-28.
[3]Merlo LM,Pepper JW,Reid BJ,et al.Cancer as an evolutionary and ecological process[J].Nat Rev Cancer,2006,(6):924-935.
[4]de Bruin EC,McGranahan N,Mitter R,et al.Spatial and temporal diversity in genomic instability processes defines lung cancer evolution[J].Science,2014,346(6206):251-256.
[5]Gundem G,Van Loo P,Kremeyer B,et al.The evolutionary history of lethal metastatic prostate cancer[J].Nature,2015,520(7547):353-357.
[6]MisaleS,Bozic I,TongJ,et al.Vertical suppression of the EGFR path way prevents onset of resistance in colorectal cancers[J].Nat Commun,2015,6(5):8305.
[7]Bozic I,Reiter JG,Allen B,et al.Evolutionary dynamics of cancer in response to targeted combination therapy[J].Elife,2013,(2):e00747.
[8]Willyard C.Cancer therapy:an evolved approach[J].Nature,2016,532(7598):166-168.
[9]Lipinski KA,Barber LJ,Davies MN,et al.Cancer Evolution and the Limits of Predictability in Precision Cancer Medicine[J].Trends Cancer,2016,2(1):49-63.
[10]Cortot AB,Janne PA.Molecular mechanisms of resistance in epidermal growth factor receptor-mutant lung adenocarcinomas[J].Eur Respir Rev,2014,23(133):356-366.
[11]Sequist LV,Rolfe L,Allen AR.Rociletinib in EGFR-mutated non-smallcell lung cance[J].N Engl J Med,2015,373(6):578-579.
[12]Szendro IG,Franke J,de Visser JA,et al.Predictability of evolution depends nonmonotonically on population size[J].Proc Natl Acad Sci U S A,2013,110(2):571-576.
[13] Blount ZD, Borland CZ, Lenski RE. Historical contingency and theevolution of a key innovation in an experimental population ofEscherichia coli[J]. Proc Natl Acad Sci U S A, 2008, 105(23):7899-906.
[14]Lynch M.The frailty of adaptive hypotheses for the origins of organismal complexity[J].Proc Natl Acad Sci U S A,2007,104(Suppl 1):8597-8604.
[15]Gatenby RA,Silva AS,Gillies RJ,et al.Adaptive therapy[J].Cancer Res,2009,69(11):4894-4903.
[16]Silva AS,Kam Y,Khin ZP,et al.Evolutionary approaches to prolong progression-free survival in breast cancer[J].Cancer Res,2012,72(24):6362-6370.
[17]Enriquez-Navas PM,Kam Y,Das T,et al.Exploiting evolutionary principles to prolong tumor control in preclinical models of breast cancer[J].Sci Transl Med,2016,8(327):327ra24.
[18]Yachida S,Jones S,Bozic I,et al.Distant metastasis occurs late during the genetic evolution of pancreatic cancer[J].Nature,2010,467(7319):1114-1117.
[19]Merlo LM,Shah NA,Li X,et al.A comprehensive survey of clonal diversity measures in Barrett's esophagus as biomarkers of progression to esophageal adenocarcinoma[J].Cancer Prev Res(Phila),2010,3(11):1388-1397.
[20]Park SY,Gonen M,Kim HJ,et al.Cellular and genetic diversity in the progression of in situ human breast carcinomas to an invasive phenotype[J].J Clin Invest,2010,120(2):636-644.
[21]Varley KE,Mutch DG,Edmonston TB,et al.Intra-tumor heterogeneity ofmLH1 promoter methylation revealed by deep single molecule bisulfite sequencing[J].Nucleic Acids Res,2009,37(14):4603-4612.
[22]Mehta RS,Jackson D,Schubbert T.Metronomic schedule of paclitaxel is effective in hormone receptor-positive and hormone receptornegative breast cancer[J].J Clin Oncol,2009,27(18):3067-3068.
[23]Montagna E,Cancello G,Dellapasqua S,et al.Metronomic therapy and breast cancer:a systematic review[J].Cancer Treat Rev,2014,40(8):942-950.
[24]Diaz LA Jr,Williams RT,Wu J,et al.The molecular evolution of acquired resistance to targeted EGFR blockade in colorectal cancers[J].Nature,2012,486(7404):537-540.
[25]Gerlinger M,Rowan AJ,Horswell S,et al.Intratumor heterogeneity and branched evolution revealed by multiregion sequencing[J].N Engl J Med,2012,366(10):883-892.
[26]Gerlinger M,Horswell S,Larkin J,et al.Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing[J].Nat Genet,2014,46(3):225-233.
[27]Sottoriva A,Spiteri I,Piccirillo SG,et al.Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics[J].Proc Natl Acad Sci U S A,2013,110(10):4009-4014.
[28]Zhang J,Fujimoto J,Zhang J,et al.Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing[J].Science,2014,346(6206):256-259.
[29]Whiteside TL.The tumor microenvironment and its role in promoting tumor growth[J].Oncogene,2008,27(45):5904-5912.
[30]Didham RK,Tylianakis JM,Gemmell NJ,et al.Interactive effects of habitat modification and species invasion on native species decline[J].Trends Ecol Evol,2007,22(9):489-496.
[31]Kareva I.What can ecology teach us about cancer[J].Transl Oncol,2011,4(5):266-270.
[32]Kam Y,Das T,Tian H,et al.Sweat but no gain:inhibiting proliferation of multidrug resistant cancer cells with"ersatzdroges"[J].Int J Cancer,2015,136(4):E188-196.
[33]Stubbs M,McSheehy PM,Griffiths JR,et al.Causes and consequences of tumour acidity and implications for treatment[J].Mol Med Today,2000,6(1):15-19.
[34]Gillies R J,Liu Z,Bhujwalla Z.31P-MRS measurements of extracellular pH of tumors using 3-aminopropylphosphonate[J].Am J Physiol,1994,267(1 Pt 1):C195-203.
[35]van Sluis R,Bhujwalla ZM,Raghunand N,et al.In vivo imaging of extracellular pH using 1H MRSI[J].Magn Reson Med,1999,41(4):743-750.
[36]Lora-Michiels M,Yu D,Sanders L,et al.Extracellular pH and P-31 magnetic resonance spectroscopic variables are related to outcome in canine soft tissue sarcomas treated with thermoradiotherapy[J].Clin Cancer Res,2006,12(19):5733-5740.
[37]Ribeiro MD,Silva AS,Bailey KM,et al.Buffer Therapy for Cancer[J].J Nutr Food Sci,2012,2(2):6-22.
[38]Ibrahim-Hashim A,Cornnell HH,Abrahams D,et al.Systemic buffers inhibit carcinogenesis in TRAMP mice[J].J Urol,2012,188(2):624-631.
[39]Mahoney BP,Raghunand N,Baggett B,et al.Tumor acidity,ion trapping and chemotherapeutics.I.Acid pH affects the distribution of chemotherapeutic agents in vitro[J].Biochem Pharmacol,2003,66(7):1207-1218.
[40]Raghunand N,Mahoney BP,Gillies RJ.Tumor acidity,ion trapping and chemotherapeuticsⅡ.pH-dependent partition coefficients predict importance of ion trapping on pharmacokinetics of weakly basic chemotherapeutic agents[J].Biochem Pharmacol,2003,66(7):1219-1229.
[41]Raghunand N,He X,van Sluis R,et al.Enhancement of chemotherapy by manipulation of tumour pH[J].Br J Cancer,1999,80(7):1005-1011.
[42]Chen LQ,Randtke EA,Jones KM,et al.Evaluations of Tumor Acidosis Within In Vivo Tumor Models Using Parametric Maps Generated with Acido CEST MRI[J].Mol Imaging Biol,2015,17(4):488-496.
[43]Andreev OA,Dupuy AD,Segala M,et al.Mechanism and uses of a membrane peptide that targets tumors and other acidic tissues in vivo[J].Proc Natl Acad Sci U S A,2007,104(19):7893-7898.
[44]Sui H,Fan ZZ,Li Q.Signal transduction pathways and transcriptional mechanisms of ABCB1/Pgp-mediated multiple drug resistance in human cancer cells[J].J Int Med Res,2012,40(2):426-435.
[45]Mor G,Montagna MK,Alvero AB.Modulation of apoptosis to reverse chemoresistance J].Methods Mol Biol,2008,414(414):1-12.
[46]Chitnismm,Yuen JS,Protheroe AS,et al.The type1 insulin-like growth factor receptor pathway[J].Clin Cancer Res,2008,14(20):6364-6370.
[47]Pan JJ,Xie XJ,Li X,et al.Long non-coding RNAs and drug resistance[J].Asian Pac J Cancer Prev,2015,16(18):8067-8073.
[48]Dehghanzadeh R,Jadidi-Niaragh F,Gharibi T,et al.MicroRNA-induced drug resistance in gastric cancer[J].Biomed Pharmacother,2015,74(1):191-199.
[49]Aktipis CA,Kwan VS,Johnson KA,et al.Overlooking evolution:a systematic analysis of cancer relapse and therapeutic resistance research[J].PLoS One,2011,6(11):e26100.
Evolution theory in cancer treatment
Qinghua QI,Qin ZHOU
Department of Radiotherapy,the Second People's Hospital of Wuhu,Wuhu 241000,China
Tumorigenesis and development are essential evolutionary processes that include tumor cell selection,mutual competition,and environmental adaptation.The exploration of evolution theory provides newer ideas and theoretical basis for cancer treatment.This paper reviews the methods,curative effect,and possible problems of three treatment strategies based on evolutionary factors,ecological concepts,and microenvironment,shedding new light on precision tumor treatment.
evolution,cancer,treatment
Qin ZHOU;E-mail:632556250@qq.com
10.3969/j.issn.1000-8179.2017.18.383
周勤 632556250@qq.com
(2017-03-30收稿)
(2017-07-10修回)
(編輯:鄭莉 校對:孫喜佳)
祁清華 專業(yè)方向為消化道腫瘤的治療。
E-mail:823141695@qq.com