国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

隨機游走對單陀螺連續(xù)旋轉(zhuǎn)尋北影響的分析*

2017-11-01 22:48馬琛翔王亞凱
彈箭與制導(dǎo)學(xué)報 2017年3期
關(guān)鍵詞:加速度計標準差方位

馬琛翔, 葛 磊, 王亞凱

(中國航天科工集團第二研究院706所, 北京 100854)

隨機游走對單陀螺連續(xù)旋轉(zhuǎn)尋北影響的分析*

馬琛翔, 葛 磊, 王亞凱

(中國航天科工集團第二研究院706所, 北京 100854)

分析了單陀螺連續(xù)旋轉(zhuǎn)尋北方法的原理,指出陀螺的常值漂移可以被積分平滑掉,不影響尋北精度。但陀螺隨機游走仍然會影響尋北精度,并推導(dǎo)出了相應(yīng)誤差公式,得出隨機游走系數(shù)、尋北時間和陀螺尋北儀所處方位都會影響尋北精度的結(jié)論,并求出陀螺尋北儀最佳尋北方位和應(yīng)避免的尋北方位。最后通過三組數(shù)值仿真驗證了所提出觀點的正確性。

陀螺;尋北;旋轉(zhuǎn);隨機游走;精度

0 引言

陀螺尋北儀能夠提供北向基準,既可以作為武器瞄準的定向設(shè)備,也能為大地測量、石油鉆井等民用領(lǐng)域提供精確的方位,因此在國防和民用領(lǐng)域的應(yīng)用越來越廣泛[1]。

傳統(tǒng)的陀螺尋北儀采用機械陀螺,精度較高,但是其體積大,結(jié)構(gòu)較為復(fù)雜,成本非常昂貴,且不易于保養(yǎng)維護,使用壽命也受到限制,因此,傳統(tǒng)陀螺尋北儀逐漸被具有固態(tài)陀螺的新型陀螺尋北儀替代[2]。目前,新型陀螺尋北儀由一個陀螺和兩個加速度計組成[3-5],也可由3個陀螺和3個加速度計組成[6]。前者能完成載體靜態(tài)下的尋北;后者即為捷聯(lián)慣導(dǎo)系統(tǒng),利用慣性導(dǎo)航初始對準進行尋北。前者結(jié)構(gòu)簡單,并且所用慣性器件較少,成本較低,但只能在載體靜止不動條件下完成尋北;后者成本較高,但抗干擾性強。出于對成本和應(yīng)用環(huán)境的考慮,目前兩種尋北儀在不同領(lǐng)域和應(yīng)用環(huán)境中都被廣泛應(yīng)用。

文中主要對單陀螺尋北進行研究。目前單陀螺尋北儀的尋北方法有兩位置尋北、四位置尋北、多位置尋北等[3-5,7],這些方法都是基于旋轉(zhuǎn)定點測量的靜態(tài)方案,且陀螺本身的零偏和隨機漂移對這些方案的影響較大。近年來,有學(xué)者提出基于單陀螺連續(xù)旋轉(zhuǎn)的尋北方法,該方法與靜態(tài)尋北方法相比,能更加有效的抑制陀螺零偏和隨機漂移,進而提高尋北精度,因此受到眾多學(xué)者的關(guān)注,相關(guān)研究成果也不斷涌現(xiàn)[8-10]。然而有關(guān)陀螺噪聲對尋北精度的影響,目前還未有相關(guān)文獻作理論分析,不利于設(shè)計陀螺尋北儀時的精度鏈的分解,難以從理論上選用合適精度的陀螺,影響了該方法的進一步研究發(fā)展。

基于以上原因,文中深入研究了單陀螺連續(xù)旋轉(zhuǎn)尋北方法的原理,推導(dǎo)了相應(yīng)的誤差方程,重點分析了陀螺隨機游走對尋北精度的影響,并得到相關(guān)理論公式,為單陀螺連續(xù)旋轉(zhuǎn)尋北儀的工程研制提供理論基礎(chǔ)。

1 單陀螺連續(xù)旋轉(zhuǎn)尋北原理

通常來說,單陀螺連續(xù)旋轉(zhuǎn)尋北儀由一個陀螺和兩個加速度計及一個轉(zhuǎn)位構(gòu)成[8-10],陀螺和加速度計安裝在一個平面上,陀螺尋北儀工作時,轉(zhuǎn)位帶動陀螺和加速度計以恒定的角速度連續(xù)旋轉(zhuǎn),加速度計的作用為調(diào)平,陀螺則用來尋北。

文中為了分析簡便,只考慮水平情況,不水平時,可由兩個加速度計調(diào)平,但還會引入其它誤差,在這里不予考慮。

當陀螺安裝在水平面上旋轉(zhuǎn),且不考慮陀螺誤差時,陀螺儀的輸出為:

ωib(t)=ωiecosLcos(ωt+φ)

其中:ωie為地球自轉(zhuǎn)角速度;L為當?shù)氐乩砭暥?ω為轉(zhuǎn)位轉(zhuǎn)動角速度;φ為尋北儀與北向夾角,是需要求取的量。則陀螺儀在尋北儀上的投影為[10]:

ωis(t)=ωib(t)cos(ωt)=

ωiecosLcos(ωt+φ)cos(ωt)

當陀螺尋北儀以角速度ω勻速旋轉(zhuǎn)了n圈時(n≥1,且為整數(shù)),對ωis(t)積分得:

運用三角函數(shù)積化和差公式可知:

并令T=2nπ/ω,則上面的積分有:

由于A可由陀螺儀輸出的各個時刻的角速度在尋北儀上的投影累加求和得到,因此有:

(1)

再對式(1)求反余弦函數(shù),即可得到尋北儀的方位角φ。此即單陀螺連續(xù)旋轉(zhuǎn)尋北的原理。

2 誤差分析

上面的推導(dǎo)都是在忽略陀螺儀誤差的基礎(chǔ)上,現(xiàn)在考慮陀螺儀存在誤差時的情況。一般來說,影響陀螺性能的主要誤差有陀螺零偏和陀螺隨機游走(一般用RWC表示),隨機游走為陀螺輸出白噪聲隨時間的積分,在陀螺輸出角速率時以白噪聲的形式體現(xiàn)出來,因此當只考慮陀螺零偏和隨機游走這兩項誤差時,陀螺儀的輸出為:

其中:ε(t)為陀螺零偏,且隨時間變化而變化,這里為了分析簡便,認為ε(t)=ε在整個尋北過程中保持不變;w(t)為0均值、方差為Q的白噪聲。

這里需對隨機游走的一些性質(zhì)進行簡單介紹。根據(jù)隨機游走的定義可知[11],隨機游走為陀螺輸出白噪聲隨時間的積分,即:

因此,可知隨機游走仍然是隨機變量,其方差為:

(2)

從上面的式子可以看到,當陀螺旋轉(zhuǎn)n圈時,陀螺零偏被積分平滑掉(前提是認為陀螺零偏不隨時間變化),不影響尋北精度,但是,白噪聲產(chǎn)生的誤差,是不能被平滑掉的,會對尋北結(jié)果造成影響。

再考慮上面的白噪聲的積分,令:

由于w(t)為白噪聲,則B仍然為一隨機變量,其均值和方差分別為:

由于B為隨機變量,則方位角誤差Δφ也是隨機變量,其均值為0,方差則為:

則方位角誤差Δφ的標準差為:

(3)

此即隨機游走系數(shù)對單陀螺連續(xù)旋轉(zhuǎn)尋北影響的誤差公式。

從上面的推導(dǎo)中可以發(fā)現(xiàn),當陀螺常值漂移恒定不變時(或短時間內(nèi)變化較小),經(jīng)過整圈的積分會被平滑掉,不影響尋北精度,這一點體現(xiàn)出了連續(xù)旋轉(zhuǎn)尋北的好處。但是陀螺隨機游走系數(shù)并不能被積分平滑掉,仍然影響著尋北精度。

從方位角誤差公式(3)可以看出,隨機游走系數(shù)、尋北時間、尋北儀所處方位都影響著尋北結(jié)果。隨機游走系數(shù)越小,則尋北的標準差越小,且與隨機游走系數(shù)的標準差成正比;尋北時間越長,則尋北的標準差越小,且與尋北時間的1/2次方成反比;同時,尋北儀所處的方位角的正弦的絕對值(|sinφ|)越大,則尋北精度越高,且與|sinφ|成反比,因此,可求出,當φ=90°或270°時,尋北精度最高,而當φ處于0°或180°附近時,尋北精度最差。并且參照上面的式子:

3 仿真分析

本節(jié)設(shè)計3個仿真試驗,以驗證所提觀點的正確性。

第一個仿真試驗是驗證單陀螺連續(xù)旋轉(zhuǎn)尋北精度與陀螺隨機游走系數(shù)有關(guān),隨機游走系數(shù)越小,則尋北精度越高,且與誤差公式(3)相吻合;

第二個仿真試驗是驗證單陀螺連續(xù)旋轉(zhuǎn)尋北精度與尋北時間有關(guān),時間越長,精度越高,且與誤差公式(3)相吻合;

第三個仿真試驗要驗證尋北精度與|sinφ|成反比,具體要驗證兩個內(nèi)容:1)在方位角0°、180°附近時,尋北精度很差,甚至有出現(xiàn)計算錯誤而失效的可能;2)方位角在90°、270°附近時,尋北效果最好。

其中,第一組仿真試驗列出了10次尋北結(jié)果,盡管樣本點較少,但是便于分析觀察數(shù)據(jù)分布情況,同時,為了得到較為準確的統(tǒng)計結(jié)果,又進行了100次的大樣本數(shù)據(jù)量仿真試驗,并列出統(tǒng)計結(jié)果。而第二組和第三組試驗,限于篇幅,不進行10次尋北仿真試驗,只進行100次仿真試驗并列出大樣本數(shù)據(jù)統(tǒng)計結(jié)果。

表1 不同隨機游走系數(shù)尋北精度比較 單位:(°)

從表1中可見,第一組的尋北精度明顯優(yōu)于第二組,第一組的誤差標準差約為第二組的1/5,經(jīng)理論計算,兩組試驗的標準差為0.070 9°和0.354 7°,與仿真結(jié)果吻合較好,但稍有偏差,其原因在于仿真次數(shù)太少,樣本較少,統(tǒng)計存在偶然性。因此,又做了100次的仿真,其標準差如表2所示。

表2 不同隨機游走系數(shù)100次仿真標準差與理論值比較

此時可見,尋北結(jié)果與理論計算吻合較好。從而驗證了第一個結(jié)論:單陀螺連續(xù)旋轉(zhuǎn)尋北精度與陀螺隨機游走系數(shù)有關(guān),隨機游走系數(shù)越小,則尋北精度越高,且與誤差公式(3)相吻合。

表3 不同時間100次仿真標準差與理論值比較

從表3可以看出,8 min尋北結(jié)果優(yōu)于4 min尋北結(jié)果,且4 min、8 min尋北標準差與理論值吻合程度較高,達到了理論分析的效果。

再設(shè)計第三個仿真試驗,假設(shè)陀螺尋北儀分別處于0°、30°、90°,尋北時間為4 min,其它參數(shù)與第二個試驗相同,每個方位進行100次仿真。

在仿真中發(fā)現(xiàn),當陀螺尋北儀處于0°時,尋北結(jié)果有時會出錯,表4列出了尋北出錯次數(shù)。

表4 陀螺尋北儀0°時尋北錯誤次數(shù)

再觀察方位處于30°和90°的尋北情況,其尋北統(tǒng)計結(jié)果見表5。從表5可見方位處于90°時的結(jié)果明顯優(yōu)于30°。按照理論分析,方位處于90°時的標準差應(yīng)為30°的一半,從表5中可以看出方位處于90°時尋北統(tǒng)計結(jié)果恰好與理論值吻合較好,且前者是后者的二倍,從而驗證了誤差公式的正確性。

表5 不同方位100次仿真標準差與理論值比較

4 結(jié)論

隨機游走系數(shù)是陀螺的主要誤差源之一,也是影響單陀螺尋北精度的重要因素。文中分析了單陀螺連續(xù)旋轉(zhuǎn)尋北方法的原理,指出陀螺的常值零偏可以被積分平滑掉,不影響尋北精度,但由于陀螺隨機游走系數(shù)的存在,導(dǎo)致該方法的尋北精度與隨機游走系數(shù)、尋北時間和陀螺尋北儀所處方位都有關(guān)系,并推導(dǎo)出了相應(yīng)誤差公式。根據(jù)公式可知,單陀螺連續(xù)旋轉(zhuǎn)尋北方法的尋北精度與陀螺隨機游走系數(shù)成正比;與尋北時間的1/2次方成反比;與尋北儀所處的方位角的正弦的絕對值(|sinφ|)成反比,并根據(jù)誤差公式指出,尋北儀方位越接近90°和270°,尋北精度越高,而尋北儀在0°或180°的方位時,尋北精度最差,且可能會計算出錯,導(dǎo)致尋北失敗,故應(yīng)當避免尋北儀處在0°或180°的方位時進行尋北。

[1] KIM S J, LEE S S, KWON Y S, et al. Dynamic north-finding scheme based on a fiber optic gyroscope [C]// Proc. SPIE 3087, Navigation and Control Technologies for Unmanned Systems Ⅱ. [S.l.:s.n.],1997: 126-136.

[2] RUFFIN P B. Progress in development of gyroscope for use in tactical weapon system [C]// Proc. SPIE 3990, Smart Structures and Materials 2000: Smart Eletronics and MEMS.[S.l.:s.n.],2000: 2-12.

[3] 姜璐, 于運治, 姜慶國. 二位置光纖陀螺尋北方案及誤差分析 [J]. 兵工自動化, 2012, 31(3): 55-57.

[4] 郭喜慶, 黃蕾, 劉偉. 基于光纖陀螺零偏穩(wěn)定性的高精度尋北方案 [J]. 中國慣性技術(shù)學(xué)報, 2009, 17(3): 258-260.

[5] 李緒友, 王爽, 張琛. 光纖陀螺尋北儀四位置尋北算法的改進 [J]. 儀器儀表學(xué)報, 2009, 30(6): 759-763.

[6] 郝燕玲, 張義, 孫楓, 等. 單軸旋轉(zhuǎn)式捷聯(lián)慣導(dǎo)方位對準研究 [J]. 儀器儀表學(xué)報, 2013, 34(2): 309-315.

[7] 王彬, 翁海娜, 劉暢, 等. 正交檢測技術(shù)在光纖陀螺尋北儀中的應(yīng)用 [J]. 中國慣性技術(shù)學(xué)報, 2013, 21(2): 164-168.

[8] 白云超, 李學(xué)琴, 馬小輝, 等. 采用旋轉(zhuǎn)調(diào)制技術(shù)的高精度陀螺尋北方案 [J]. 中國慣性技術(shù)學(xué)報, 2010, 18(4): 421-424.

[9] 徐海剛, 郭宗本. 一種實用旋轉(zhuǎn)調(diào)制式陀螺尋北儀的設(shè)計 [J]. 兵工學(xué)報, 2010, 31(5): 616-619.

[10] 段苛苛, 李鄧化. 光纖陀螺尋北儀連續(xù)旋轉(zhuǎn)尋北方案及算法研究 [J]. 儀器儀表學(xué)報, 2014, 35(4): 801-806.

[11] 孫國飛, 吳衍記, 那永林. 光纖陀螺中隨機游走的分析研究 [J]. 戰(zhàn)術(shù)導(dǎo)彈技術(shù), 2009(1): 75-78.

AnalysisontheInfluenceofRandomMigrationonSingleGyroContinuousRotaryNorthSeeking

MA Chenxiang, GE Lei, WANG Yakai

(No.706 Institute of the Second Academy, CASIC, Beijing 100854, China)

The principle of the single gyro continuous rotation north seeking method was analyzed in this article to point out that the constant gyro drift could be smoothed out by integral which did not affect the precision of north seeking. But the random migration of gyro would still affect the accuracy of the north seeking. The corresponding error formula was derived and it came to the conclusion that the random migration coefficient, north seeking time and the precision of gyro north seeker would affect north seeking accuracy. The optimal north seeking position of the gyro north seeker and the north seeking position that should be avoided were calculated Finally, the correctness of the proposed view was verified by three groups of numerical simulation.

gyro; north-seeking; rotation; random migration; precision

TN06

A

2016-08-25

馬琛翔(1991-),男,山西忻州人,碩士研究生,研究方向:捷聯(lián)慣導(dǎo)技術(shù)。

猜你喜歡
加速度計標準差方位
抑制交叉軸干擾的納米光柵加速度計*
面外軸向檢測MEMS加速度計研究現(xiàn)狀*
認方位
訂正
減載加速度計組合減振設(shè)計與分析
梳狀電容式微加速度計溫度性能優(yōu)化
Word Fun
方差中亟待澄清的兩個錯誤觀點
醫(yī)學(xué)科技論文中有效數(shù)字的確定
練思維:看圖學(xué)方位
呼图壁县| 三都| 来宾市| 九龙坡区| 井研县| 金溪县| 漠河县| 三台县| 辽中县| 黎平县| 金平| 敦化市| 新竹县| 新河县| 平阳县| 元阳县| 广平县| 且末县| 杂多县| 会东县| 蓬溪县| 雷波县| 高唐县| 专栏| 德钦县| 襄樊市| 静乐县| 南丹县| 综艺| 肥东县| 甘谷县| 双鸭山市| 屏东县| 滕州市| 永清县| 渑池县| 理塘县| 江川县| 东兴市| 东明县| 舟山市|