潘琳,褚春旭,李梓文,孫基豐,張昊
(長(zhǎng)春理工大學(xué) 生命科學(xué)技術(shù)學(xué)院,長(zhǎng)春 130022)
BKR基因啟動(dòng)子鑒定及表達(dá)調(diào)控
潘琳,褚春旭,李梓文,孫基豐,張昊
(長(zhǎng)春理工大學(xué) 生命科學(xué)技術(shù)學(xué)院,長(zhǎng)春 130022)
BKR基因是睪丸酮叢毛單胞菌中的一個(gè)重要的甾體化合物降解酶基因,TetR、LysR和LuxR蛋白是睪丸酮叢毛單胞菌中的調(diào)控蛋白。以EGFP為報(bào)告基因,構(gòu)建pK-BKR-EGFP質(zhì)粒,通過(guò)與pK-EGFP分別轉(zhuǎn)化到大腸桿菌JM109,檢測(cè)熒光信號(hào),確定預(yù)測(cè)的序列中包含BKR基因的啟動(dòng)子。然后通過(guò)質(zhì)粒共轉(zhuǎn)化技術(shù),檢測(cè)TetR、LysR和LuxR蛋白與pK-BKR-EGFP的熒光信號(hào)強(qiáng)度,探討TetR、LysR和LuxR三個(gè)蛋白與BKR基因之間的調(diào)控關(guān)系。實(shí)驗(yàn)結(jié)果表明:BKR基因的啟動(dòng)子在該基因前699bp內(nèi);LysR與BKR基因共轉(zhuǎn)后熒光信號(hào)增強(qiáng);TetR和LuxR分別與BKR基因共轉(zhuǎn)后熒光信號(hào)減弱。由此可以得出結(jié)論,LysR對(duì)BKR基因的調(diào)控起增強(qiáng)作用;TetR和LuxR對(duì)BKR基因的調(diào)控起抑制作用。該實(shí)驗(yàn)揭示了睪丸酮叢毛單胞菌中BKR基因的調(diào)控序列,為CT菌利用甾體激素作為唯一的碳源及能源機(jī)理提供理論基礎(chǔ)。
啟動(dòng)子;增強(qiáng)綠色熒光蛋白;BKR基因
甾體類化合物對(duì)生態(tài)環(huán)境的污染日趨嚴(yán)峻,引發(fā)人和動(dòng)物的一系列不良的生理反應(yīng)[1,2]。睪丸酮叢毛單胞菌ATCC11996(Comamonas testosteroni ATCC11996)具有降解多種甾體激素的能力[3],在降解環(huán)境中甾體激素污染上具有很高的應(yīng)用價(jià)值[4],使人類能夠避免一些環(huán)境中類固醇激素對(duì)人健康的危害。對(duì)睪丸酮叢毛單胞菌早期研究發(fā)現(xiàn)幾個(gè)類固醇代謝酶[5,6,7],對(duì)類固醇代謝起關(guān)鍵作用[8]。
BKR基因通過(guò)DNA序列分析表明,屬于短鏈脫氫酶(SDR)家族,并參與脂肪酸的合成。先前的研究表明,BKR基因是睪丸酮叢毛單胞菌降解激素所必須的基因[9]。TetR[10]、LysR[11,12]和LuxR[13]基因是菌體中的一種調(diào)控基因,可能對(duì)BKR基因具有調(diào)控作用,但目前尚未有明確的認(rèn)識(shí)。為深入了解TetR、LuxR和LysR基因?qū)KR基因的調(diào)控作用,該實(shí)驗(yàn)構(gòu)建了以增強(qiáng)綠色熒光蛋白(Enforcement green fluorescence protein,EGFP)[14]為報(bào)告基因的啟動(dòng)子鑒定質(zhì)粒,并在此基礎(chǔ)上明確了TetR、LuxR和LysR基因?qū)KR基因的調(diào)控作用。以期了解BKR基因的調(diào)控基因,進(jìn)一步了解睪丸酮叢毛單胞菌的調(diào)控模型。
質(zhì)粒pK-EGFP及睪丸酮叢毛單胞菌由德國(guó)基爾大學(xué)熊光明教授贈(zèng)送。質(zhì)粒Puc19、Puc-TetR、pET 15b、pET-LuxR及pET-LysR為長(zhǎng)春理工大學(xué)實(shí)驗(yàn)室所保存。pUC 18-T,連接酶及PCR反應(yīng)所以試劑均為T(mén)akara公司產(chǎn)品。限制性內(nèi)切酶 Sal I,BamH I及 buffer為 Thermo公司產(chǎn)品。質(zhì)粒小量抽提試劑盒及膠回收試劑盒為上海生工產(chǎn)品。JM109菌株為promega公司產(chǎn)品。其他常用試劑為實(shí)驗(yàn)室自行配制。
如圖1所示,通過(guò)PCR及TA克隆構(gòu)建BKRT質(zhì)粒,用限制性內(nèi)切酶Sal I和BamH I對(duì)pKEGFP和BKR-T進(jìn)行雙酶切,分別回收大片段和小片段,以T4DNA連接酶連接后獲得質(zhì)粒pKBKR-EGFP。
圖1 質(zhì)粒Pk-BKR-EGFP構(gòu)建路線圖
1.2.2.1 引物設(shè)計(jì)與合成
根據(jù)睪丸酮叢毛單胞菌基因組序列,設(shè)計(jì)合成一對(duì)擴(kuò)增引物。上游引物為5’-GTCGACCAGCGACCAGCTGCTGCAAAAG-3’,含有Sal I酶切位點(diǎn);下游引物為5’-GGATCCTGCTGTCTCCTTGGGTGCG-3’,含有 BamH I酶切位點(diǎn)。擴(kuò)增產(chǎn)物為BKR-699bp片段。引物有吉林省庫(kù)美生物科技有限公司合成。
1.2.2.2 PCR擴(kuò)增
反應(yīng)體系:25μl,2xTaq Maste Mix,上下游引物(10pmol/μl)各 1μl,睪丸酮叢毛單胞菌模版 1μl,ddH2O補(bǔ)足至25μl。反應(yīng)條件為:94℃預(yù)變性10min;94℃變性45s,58℃退火45s,72℃延伸50s,循環(huán)35次后72℃延伸10min。擴(kuò)增產(chǎn)物用1%瓊脂糖凝膠電泳,觀察并成像。
1.2.2.3 質(zhì)粒構(gòu)建
PCR產(chǎn)物經(jīng)膠回收后與pUC 18-T進(jìn)行連接。連接產(chǎn)物轉(zhuǎn)化到感受態(tài)JM109細(xì)菌內(nèi),接種至LB平板,37℃過(guò)夜培養(yǎng)。
1.2.2.4 克隆鑒定
挑取LB平板上生長(zhǎng)的單個(gè)菌落至LB液體培養(yǎng)基,37℃,180rpm/min震搖培養(yǎng)16h,取1.5ml細(xì)菌用質(zhì)粒小量抽提試劑盒提取質(zhì)粒,并進(jìn)行序列分析。DNA序列分析由吉林省庫(kù)美生物科技有限公司完成。
使用Sal I和BamH I將BKR-T和pK-EGFP進(jìn)行雙酶切,用T4DNA連接酶將回收后的片段進(jìn)行連接,過(guò)夜后轉(zhuǎn)化到感受態(tài)JM109中并進(jìn)行克隆鑒定。
將pK-EGFP和pK-BKR-EGFP復(fù)蘇后,分別取1ml菌液進(jìn)行離心,13000rpm,1min后,使用生理鹽水洗滌2次,13000rpm,1min,用1ml生理鹽水將菌體懸起。通過(guò)紫外分光光度計(jì)在OD600處將pK-EGFP和pK-BKR-EGFP調(diào)至相同OD值。后用酶標(biāo)儀在485nm激發(fā)光和530nm發(fā)射光處進(jìn)行熒光檢測(cè)。
通過(guò)質(zhì)粒共轉(zhuǎn)化技術(shù)將pK-BKR-EGFP質(zhì)粒 分別與 pUC 19、pUC-TetR、pUC-LuxR 及pUC-LysR質(zhì)粒進(jìn)行共轉(zhuǎn)化。其中pUC 19為對(duì)照。
將共轉(zhuǎn)化的質(zhì)粒進(jìn)行復(fù)蘇,分別去1ml菌液分別取1ml菌液進(jìn)行離心,13000rpm,1min后,使用生理鹽水洗滌2次,13000rpm,1min,用1ml生理鹽水將菌體懸起。通過(guò)紫外分光光度計(jì)在OD600處將共轉(zhuǎn)化的質(zhì)粒調(diào)至相同OD值。后用酶標(biāo)儀在485nm激發(fā)光和530nm發(fā)射光處進(jìn)行熒光檢測(cè)。
根據(jù)引物的設(shè)計(jì),PCR應(yīng)擴(kuò)增出699bp的產(chǎn)物,為完整的BKR基因的5’非翻譯區(qū)。如圖2所示,PCR產(chǎn)物位置與設(shè)計(jì)一致。
圖2 BKR基因啟動(dòng)子PCR
孔道M:DNA的標(biāo)準(zhǔn)Marker;孔道1,2:BKR基因PCR的目的片斷
挑取5個(gè)克隆做質(zhì)粒初篩實(shí)驗(yàn),如圖3所示,以T載體自連為對(duì)照可以看出質(zhì)粒1,2的條帶大小與目的質(zhì)粒大小相同。送去吉林省庫(kù)美生物科技有限公司測(cè)序出的基因序列,與目的基因序列一致。結(jié)果表明已經(jīng)成功構(gòu)建BKR-T質(zhì)粒。
圖3 1%瓊脂糖凝膠電泳鑒定BKR-T質(zhì)粒
孔道T:T載體自連;孔道1,2,3,4,5,6:BKRT目的片斷;孔道M1:DNA的標(biāo)準(zhǔn)Marker
將構(gòu)建成功的BKR-T質(zhì)粒通過(guò)限制性內(nèi)切酶Sal I和BamH I將BKR片段酶切下來(lái)與通過(guò)限制性內(nèi)切酶Sal I和BamH I酶切的質(zhì)粒pK-EGFP,連接成功,轉(zhuǎn)化后獲得多個(gè)陽(yáng)性克隆,其結(jié)果如圖4所示,送去吉林省庫(kù)美生物科技有限公司測(cè)序出的基因序列,與目的基因序列一致。結(jié)果表明已經(jīng)成功構(gòu)建pK-BKR-EGFP。
圖4 1%瓊脂糖凝膠電泳鑒定BKR-EGFP質(zhì)粒
孔道 M1:DNA 的標(biāo)準(zhǔn) Marker;孔道 pKEGFP:pK-EGFP 質(zhì)粒;孔道 1,2,3,4,5:BKREGFP目的片斷
將攜帶有重組質(zhì)粒pK-BKR-EGFP和pKEGFP的JM109菌株分別涂布于LB固體培養(yǎng)基,37℃,過(guò)夜培養(yǎng)。通過(guò)紫外分光光度計(jì)在OD600處將共轉(zhuǎn)化的質(zhì)粒調(diào)至相同OD值。后用酶標(biāo)儀在485nm和530nm處進(jìn)行熒光檢測(cè)。檢測(cè)結(jié)果如圖5所示。由圖可以看出含有BKR基因啟動(dòng)子的BKR-EGFP的熒光信號(hào)是對(duì)照組pK-EGFP的二倍,由此可以得出該5’非翻譯區(qū)為BKR基因的啟動(dòng)子區(qū)域。
圖5 BKR基因啟動(dòng)子熒光檢測(cè)
以pUC 19為對(duì)照,分別將pUC 19-TetR,pUC 19-LysR,pUC 19-LuxR與BKR-EGFP進(jìn)行共轉(zhuǎn)化。將共轉(zhuǎn)化的質(zhì)粒通過(guò)紫外分光光度計(jì)在OD600處將共轉(zhuǎn)化的質(zhì)粒調(diào)至相同OD值。后用酶標(biāo)儀在485nm和530nm處進(jìn)行熒光檢測(cè)。檢測(cè)結(jié)果如圖6所示,可以看出TetR和LuxR的熒光信號(hào)低于對(duì)照組,而LysR的熒光信號(hào)高于對(duì)照組,故得出結(jié)論LysR對(duì)BKR基因的調(diào)控起增強(qiáng)作用;TetR和LuxR對(duì)BKR基因的調(diào)控起抑制作用。
圖6 TetR、LysR、LuxR和BKR基因共轉(zhuǎn)的熒光檢測(cè)
實(shí)驗(yàn)通過(guò)熱擊法將重組載體轉(zhuǎn)入至JM109中,成功構(gòu)建了pK-BKR-EGFP工程菌。通過(guò)對(duì)目的基因進(jìn)行熒光檢測(cè),檢測(cè)結(jié)果表明該非翻譯區(qū)確定為啟動(dòng)子區(qū)域。在此基礎(chǔ)上以pUC 19為對(duì)照進(jìn)行共轉(zhuǎn)化,得到含BKR-pUC 19-EGFP、BKR-pUC19-TetR-EGFP、pK-pUC19-LysREGFP、BKR-pUC 19-LuxR-EGFP 共轉(zhuǎn) 化 菌株。進(jìn)行熒光檢測(cè)得到以下結(jié)論:LysR對(duì)BKR基因的調(diào)控起增強(qiáng)作用;TetR和LuxR對(duì)BKR基因的調(diào)控起抑制作用。
實(shí)驗(yàn)通過(guò)質(zhì)粒共轉(zhuǎn)化,熒光檢測(cè)等生物技術(shù)手段,對(duì)BKR基因的調(diào)控機(jī)制進(jìn)行研究,揭示睪丸酮叢毛單胞菌中BKR基因的調(diào)控序列,為睪丸酮叢毛單胞菌利用甾體激素作為唯一的碳源及能源機(jī)理提供理論基礎(chǔ),為了進(jìn)一步分析睪丸酮叢毛單胞菌的調(diào)控模型,后續(xù)將進(jìn)行ELISA和EMSA實(shí)驗(yàn)對(duì)上述結(jié)論進(jìn)行驗(yàn)證,為開(kāi)發(fā)環(huán)境中痕量甾體激素的檢測(cè)試劑提供基礎(chǔ)。
[1]Colborn T,vom Saal F S,Soto A M.Developmental effects of endocrine disrupting chemicals in wildlife and humans[J].Environ.Health Perspect,1993(101):378-384.
[2]Khan S,Cao Q,Lin A J,et al.Concentrations and bioaccessibility of polycyclic aromatic hydrocarbons in wastewater-irrigated soil using in vitro gastrointestinal test[J].Environmental Science and Pollution Research,2008,15(4):344-353.
[3]Garcíavaldés E,Cozar E,Rotger R,et al.New naphthalene-degrading marine Pseudomonas strains[J].Applied&Environmental Microbiology,1988,54(10):2478–2485.
[4]Coulter A W,Talalay P.Studies on the microbiological degradation of steroid ring A[J].Journal of Biological Chemistry,1968,243(12):3238-3247.
[5]戴藝民.睪丸酮叢毛單胞菌3α-HSD/CR等基因的表達(dá)調(diào)控研究[D].福州:福建農(nóng)林大學(xué),2005.
[6]Wu Y,Huang P,Xiong G,et al.Identification and isolation of a regulator protein for 3,17β-HSD expressional regulation in Comamonas testosteroni[J].Chemico-Biological Interactions,2015,234(9):197-204.
[7]Maser E,M?bus E,Xiong G.Functional expression,purification,and characterization of 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase from Comamonas testosteroni[J].Biochemical&Biophysical Research Communications,2000,272(2):622-628.
[8]Wu Y,Huang P,Xiong G,et al.Identification and isolation of a regulator protein for 3,17β-HSD expressional regulation in Comamonas testosteroni[J].Chemico-biological interactions,2015,234(9):197-204.
[9]Zhang H,Ye J,Wang Y,et al.Cloning and characterization of a novel β-ketoacyl-ACP reductase from Comamonas testosteroni[J].Chem Biol Interact.2015,234(9):213-220.
[10]Pan T,Huang P,Xiong G,et al.Isolation and identification of a repressor TetR for 3,17β-HSD expressional regulation in Comamonas testosteroni[J].Chemico-biological interactions,2015(234):205-212.
[11]Gong W,Xiong G,Maser E.Oligomerization and negative autoregulation of the LysR-type transcriptional regulator HsdR from Comamonas testosteroni[J].Journal of Steroid Biochemistry&Molecular Biology,2012,132(3-5):203-211.
[12]李明堂,王清爽,于源華.睪丸酮叢毛單胞菌LysR基因的克隆及對(duì)3α-HSD/CR表達(dá)的調(diào)節(jié)[J].吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),2011,33(6):624-627.
[13]Pruneda-Paz J L,Linares M,Cabrera J E,et al.TeiR,a LuxR-type transcription factor required for testosterone degradation in Comamonas testosteroni[J].Journal of Bacteriology,2004,186(5):1430-1437.
[14]Xiong G,Maser E.Construction of a biosensor mutant of Comamonas testosteroni for testosterone determination by cloning the EGFP gene downstream to the regulatory region of the 3,17β-HSD gene[J].Chemico-Biological Interactions,2014(234):188-196.
Identification and Expression Regulation of BKR Gene Promoter
PAN Lin,CHU Chunxu,LI Ziwen,SUN Jifeng,ZHANG Hao
(School of Life Science and Technology,Changchun University of Science and Technology,Changchun 130022)
BKR gene is an important steroid degrading enzyme gene in Comamonas testosteroni.TetR,LysR and LuxR proteins are the regulatory proteins in Comamonas testosteroni.In this experiment,EGFP was used as reporter gene and pK-BKREGFP plasmid was constructed.By converting the pK-EGFP to E.coli JM109,we detected fluorescence signals and determined that our predicted sequence contained the promoter of the BKR gene.Then,the signal intensity of TetR,LysR and LuxR protein and pK-BKR-EGFP was detected by plasmid CO transformation technique,and the relationship between the three proteins of etR,LysR and LuxR and BKR gene was investigated.The results showed that the promoter of BKR gene was enhanced in the pre gene 699bp,and the fluorescence signal was enhanced when LysR and BKR genes were co transferred;the fluorescence signals of TetR and LuxR were decreased when they were co transferred with BKR gene.From this we can conclude that LysR plays an important role in the regulation of BKR gene;TetR and LuxR inhibit the regulation of BKR gene.This experiment has revealed the regulation sequence of BKR gene in the testis,and provided the theoretical basis for the use of steroid hormones as the sole carbon source and energy mechanism for Comamonas testosteroni.
promoter;EGFP;BKR gene
Q789
A
1672-9870(2017)04-0129-04
2017-06-22
潘琳(1996-),女,本科,E-mail:1009670449@qq.com
張昊(1985-),女,博士,講師,E-mail:853287300@qq.com