国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

黃藤2個NAC基因的分子特征及其SSR分子標記開發(fā)*

2017-10-14 08:02:15孫化雨李利超趙韓生楊意宏王思寧高志民
林業(yè)科學 2017年8期
關鍵詞:基因組位點引物

孫化雨 李利超 趙韓生 楊意宏,2 王思寧 高志民

(1. 國際竹藤中心 國家林業(yè)局竹藤科學與技術重點開放實驗室 北京 100102; 2. 河北農(nóng)業(yè)大學園藝學院 保定 071001)

黃藤2個NAC基因的分子特征及其SSR分子標記開發(fā)*

孫化雨1李利超1趙韓生1楊意宏1,2王思寧1高志民1

(1. 國際竹藤中心 國家林業(yè)局竹藤科學與技術重點開放實驗室 北京 100102; 2. 河北農(nóng)業(yè)大學園藝學院 保定 071001)

【目的】 棕櫚藤是重要的森林植物,纖鞭是其重要的攀援器官,也是重要的分類依據(jù)。研究黃藤NAC(NAM,ATAF和CUC)轉(zhuǎn)錄因子基因的分子特征并開發(fā)SSR分子標記,以期為棕櫚藤的分子育種和輔助分類提供參考依據(jù)?!痉椒ā?以黃藤為材料,借助轉(zhuǎn)錄組數(shù)據(jù),采用同源克隆的方法從黃藤中分離NAC基因,采用生物信息學方法進行基因結(jié)構、蛋白性質(zhì)與結(jié)構分析和SSR位點預測,采用實時定量PCR技術分析基因的組織表達特性,利用PAGE電泳和測序技術分析SSR分子標記在不同棕櫚藤樣品中的通用性和多態(tài)性?!窘Y(jié)果】 從黃藤葉片中獲得了2個NAC同源基因DjNAC3 (GenBank登錄號: KU556738)和DjNAC4(GenBank登錄號: KX579750),二者的開放閱讀框長度分別為729 bp和1 326 bp,對應的基因組序列為850 bp和1 441 bp,均包含2個外顯子和1個內(nèi)含子。DjNAC3和DjNAC4編碼的蛋白分別為242 aa和441 aa。蛋白結(jié)構分析表明,DjNAC3和DjNAC4具有典型的NAC轉(zhuǎn)錄因子結(jié)構特征,屬于NAC家族的CUC亞家族,但二者之間的相似系數(shù)僅為23.6%,表明它們在黃藤生長發(fā)育過程中可能具有不同的功能。DjNAC3和DjNAC4在不同組織中的表達模式存在明顯差異,DjNAC3在發(fā)育成熟纖鞭中的表達豐度最高,葉片中的表達豐度最低,而DjNAC4則在發(fā)育成熟的鉤刺中表達豐度最高,而發(fā)育初期的鉤刺中最低。在DjNAC3和DjNAC4的基因組序列中分別包含1個SSR位點,其中前者的SSR位點位于內(nèi)含子區(qū)域,為(TA)6,后者的SSR位點位于第1個外顯子區(qū)域,為(GCA)5。根據(jù)DjNAC3和DjNAC4中SSR位點旁側(cè)序列設計引物,以黃藤和另外20個不同棕櫚藤樣品的基因組DNA為模板進行擴增,PAGE電泳結(jié)果分析表明,引物具有較高的通用性,且擴增產(chǎn)物具有多態(tài)性。6個樣品的測序結(jié)果證實,用DjNAC3設計引物的擴增產(chǎn)物測序獲得的SSR位點序列存在著一定的差異,既包括SSR類型變異、重復次數(shù)變化等多態(tài)性,又有SSR位點缺失的現(xiàn)象; 而根據(jù)DjNAC4設計引物擴增獲得的SSR位點序列差異主要為重復次數(shù)的變化?!窘Y(jié)論】 黃藤DjNAC3和DjNAC4基因的基因結(jié)構、表達模式、SSR位點等均存在明顯的差異,這表明它們在黃藤生長發(fā)育中可能具有不同的功能,二者所包含的SSR分子標記具有通用性和多態(tài)性,可以作為分子標記應用于棕櫚藤的輔助分類和分子輔助育種。

黃藤;NAC; 基因表達; SSR開發(fā)

Abstract: 【Objective】 Rattan is one of the important forest plants, cirri and flagella are important organs for its climbing habit, which are also the important basis for rattan classification. In order to provide a basis for molecular breeding and SSR-assisted classification of rattan, study on the molecular characteristics of NAC (NAM, ATAF and CUC) transcription factor genes inDaemonoropsjenkinsianaand the development of SSR markers was performed in this paper.【Method】 With the aid of transcriptome data, the sequences ofNAChomologue genes inD.jenkinsianawere isolated by PCR method. The analyses of gene structure, protein properties and structure as well as the prediction of SSR locus inNACgenes were conducted using bioinformatics method. The tissue specific expression ofNACgenes in different tissues were analyzed using real-time quantitative PCR (qPCR). To evaluate the universality and polymorphism of the developed SSR markers, PAGE electrophoresis and sequencing analyses were used on the basis of products amplified with different rattan samples.【Result】 Two homologous genes,DjNAC3 (GenBank No. KU556738) andDjNAC4 (GenBank No. KX579750), were obtained from leaves ofD.jenkinsiana, of which open reading frame (ORF) were 729 bp and 1 326 bp, respectively. The genomic sequence corresponding to the ORFs ofDjNAC3 andDjNAC4 were 850 bp and 1 441 bp, which all contained two exons and one intron. The proteins encoded byDjNAC3 andDjNAC4 were 242 aa and 441 aa respectively. Protein structure analysis showed that DjNAC3 and DjNAC4 had the typical structural features of NAC transcription factors, which were belonged to the CUC subfamily of NAC family. However, the similarity coefficient between DjNAC3 and DjNAC4 was only 23.6%, indicating that they might have different functions in the growth process ofD.jenkinsiana. The expression patterns ofDjNAC3 andDjNAC4 in different tissues were obviously different.DjNAC3 was expressed in developed cirri with the highest level, and the lowest in leaves, while that ofDjNAC4 was the highest abundance in developed barbs and the lowest in early developed barbs. The SSR loci were detected in the genomic sequences ofDjNAC3 andDjNAC4, the SSR locus of (TA)6was located in the intron region ofDjNAC3 and that of (GCA)5was in the first exon ofDjNAC4. SSR primers were designed according to the flanking sequences of SSR loci inDjNAC3 andDjNAC4. Genomic DNAs ofD.jenkinsianaand other 20 different rattan samples were selected as templates for amplification. PAGE electrophoresis analysis showed that the primers had universality and polymorphism in the samples. The sequencing result of amplification products from six different templates further confirmed the polymorphism such as variation of SSR type, the number change of repetitions, and SSR locus missing, which were found in the sequences generated by the primer pair designed based onDjNAC3. The main difference in the sequences generated by the primer pair designed according toDjNAC4 was the number change of repetitions.【Conclusion】 There are significant differences betweenDjNAC3 andDjNAC4, such as gene structures, gene expression patterns, and SSR locus, which means thatDjNAC3 andDjNAC4 might play different roles in the growth and development ofD.jenkinsiana. The universality and polymorphism of SSR markers developed fromDjNAC3 andDjNAC4 indicate that they can serve as molecular markers for rattan classification and molecular-assisted breeding.

Keywords:Daemonoropsjenkinsiana;NAC; gene expression; SSR development

NAC (NAM,ATAF和CUC)是植物所特有的轉(zhuǎn)錄因子家族,其成員數(shù)量眾多。NAC家族成員的N端相對保守,都由約150個氨基酸組成結(jié)構域,且被分為5個亞結(jié)構域(A、B、C、D和E),但其C端的序列呈現(xiàn)出高度多樣化,富含絲氨酸、谷氨酸等(Olsenetal., 2005)。迄今為止,對許多物種全基因組范圍內(nèi)的NAC轉(zhuǎn)錄因子進行了鑒定,包括擬南芥(Arabidopsisthaliana)(117個)、水稻(Oryzasativa)(151個)(Nuruzzamanetal., 2010)、大豆(Glycinemax)(152個)(Leetal., 2011)、白菜(Brassicarapa)(204個)(Liuetal., 2014)、玉米(Zeamays)(152個)(Shirigaetal., 2014)、鷹嘴豆(Cicerarietinum)(71個)(Haetal., 2014)、番茄(Solanumlycopersicum)(104個)(Suetal., 2015)和毛竹(Phyllostachysedulis)(125個)(黎幫勇等, 2015)等。NAC轉(zhuǎn)錄因子的功能多樣,參與許多生物學過程,包括花發(fā)育、次生壁形成、細胞分裂、頂端分生組織的形成、葉片衰老,以及生物和非生物脅迫應答(Olsenetal., 2005; Tranetal., 2010; Nakashimaetal., 2012; Nuruzzamanetal., 2013; Banerjeeetal., 2015)等,在植物的生長發(fā)育過程中起著重要的調(diào)控作用。

隨著研究的不斷深入,越來越多NAC在植物中的功能被揭示。NAM基因在矮牽牛(Petuniahybrida)的分生組織和原基邊界表達,是其胚胎和花形成所需的(Soueretal., 1996); 擬南芥CUC2的表達決定其葉緣鋸齒的程度(Nikovicsetal., 2006); 玉米ZmCUC3在頂端分生組織外圍表達,邊界明顯,部分細胞將形成一個新的葉原基(Zimmermannetal., 2005)。擬南芥NAC轉(zhuǎn)錄因子NTL8參與赤霉酸介導的鹽信號調(diào)控(Kimetal., 2008),而且通過FLOWERING LOCUST調(diào)節(jié)擬南芥鹽響應開花(Kimetal., 2007),冷激活NAC轉(zhuǎn)錄因子調(diào)控誘導擬南芥病原體的抗性反應(Seoetal., 2010),AtNAC2作為乙烯和生長素信號轉(zhuǎn)導通路下游的轉(zhuǎn)錄因子,參與鹽應激反應和側(cè)根發(fā)育調(diào)控(Heetal., 2005)。擬南芥NAC轉(zhuǎn)錄因子AtNAP在葉片衰老中發(fā)揮著重要作用,AtNAP的誘導表達導致擬南芥早熟衰老(Guoetal., 2006),ABA-AtNAP通過控制氣孔的開閉來調(diào)節(jié)乙烯刺激呼吸,實現(xiàn)對果實的衰老調(diào)控(Kouetal., 2012)。在祖野麥(Triticumturgidumssp.dicoccoides)中NAC轉(zhuǎn)錄因子(NAM-B1)可以加速衰老,提高葉片的營養(yǎng)轉(zhuǎn)運形成籽粒(Uauyetal., 2006)。水稻OsNAC19是一種轉(zhuǎn)錄激活因子,參與水稻響應稻瘟病菌感染,可能在茉莉酸甲酯介導的信號傳導途徑中起重要作用(Linetal., 2007)。歐洲油菜(Brassicanapus)BnaNAC55通過激活一些活性氧(Reactive Oxygen Species, ROS)以及與防御有關的基因的表達,來調(diào)控ROS的積累和細胞死亡(Niuetal., 2016)。

棕櫚藤屬于棕櫚科(Palmae)植物,是重要的熱帶森林資源,其藤莖是優(yōu)良的非木材森林產(chǎn)品之一,是編制各種高檔家具及工藝品的理想材料,具有很高的經(jīng)濟價值。由于棕櫚藤資源極其匱乏,其原料是國內(nèi)外市場上的緊缺物資。絕大多數(shù)棕櫚藤具有極強的攀緣性,總是和其他的樹木糾纏在一起,使其成為森林的伴生物種。黃藤(Daemonoropsjenkinsiana)為棕櫚科鱗果亞科(Lepidocaryoideae)省藤族(CALAMEAE)黃藤屬(Daemonorops)植物,分布于廣東東南部、香港、海南及廣西西南部,為我國棕櫚科單屬單種植物,葉羽狀全裂,莖初時直立,后攀援,其攀援主要借助于葉片頂端延伸而成的具爪狀刺的纖鞭。研究表明NAC參與葉片形態(tài)建成的調(diào)控(Zimmermannetal., 2005; Nikovicsetal., 2006),目前雖然對黃藤的生長特性以及形態(tài)特征具有比較詳細的描述(江澤慧等, 2013),但關于黃藤的生長發(fā)育的分子基礎尚屬空白。因此,本研究以黃藤為對象,從葉片中分離克隆了2個NAC基因,并對其分子特征進行深入分析,研究其表達模式,并開發(fā)SSR分子標記,以期為深入研究其功能和分子標記輔助育種提供參考。

1 材料與方法

1.1 試驗材料 黃藤樣品取自中國林業(yè)科學研究院熱帶林業(yè)研究所(廣州,龍洞),分別采集葉片、發(fā)育初期的纖鞭、發(fā)育成熟的纖鞭、發(fā)育初期的鉤刺、發(fā)育成熟的鉤刺,放入RNAlater? RNA Stabilization Reagent(QIAGEN,德國)中,帶回實驗室備用。另外從中國科學院西雙版納植物園分別采集的20個藤種(表1)葉片,用硅膠干燥處理后帶回實驗室備用。

1.2 DNA提取、RNA分離與cDNA的合成 采用改良CTAB法提取不同藤種的基因組DNA(高志民等, 2006),存-20 ℃?zhèn)溆谩2捎酶牧糡rizol法提取黃藤葉片、發(fā)育初期鉤刺、發(fā)育成熟鉤刺、發(fā)育初期纖鞭和發(fā)育成熟纖鞭的總RNA(Gaoetal., 2006),按照反轉(zhuǎn)錄試劑盒(Promega, 美國)說明書分別合成cDNA。

表1 本研究所用藤種Tab.1 The list of rattan accessions used in this study

1.3 基因克隆與分析 根據(jù)黃藤轉(zhuǎn)錄組數(shù)據(jù)(NCBI SRA 注冊號: SRR3089417、SRR3089429、SRR3089432、SRR3089433、SRR3089434、SRR3089435、SRR3089436和SRR3089437)中預測的NAC轉(zhuǎn)錄因子基因序列設計引物,Teng-NAC3-F和Teng-NAC3-R,以及Teng-NAC4-F和Teng-NAC4-R(表2),由生工生物工程股份有限公司合成。分別以黃藤cDNA和基因組DNA為模板進行擴增。PCR反應體系為: 5×Prime STARTMBuffer 4 μL,dNTP Mixture (2.5 mmol·L-1)2 μL,正向引物(10 μmol·L-1)0.5 μL,反向引物(10 μmol·L-1)0.5 μL,cDNA/基因組DNA 2 μL,Prime STAR HS DNA polymerase 0.2 μL,DMSO 1 μL,加水補至總體積為20 μL。PCR反應程序為: 98 ℃ 4 min; 98 ℃ 30 s,60 ℃ 30 s,72 ℃ 1 min 50 s(基因組DNA擴增延伸為2 min 30 s),反應循環(huán)35個; 72 ℃ 10 min,4 ℃保存。用膠回收試劑盒(Biomega, 美國)回收PCR產(chǎn)物,進行加A反應,反應體系為: 10×LA PCR Buffer 1.0 μL,dATP(2.5 mmol·L-1)1.0 μL,回收產(chǎn)物7.9 μL,LATaq酶0.1 μL; 反應程序: 70 ℃ 30 min。用加A產(chǎn)物連接 pGEM-T easy載體(Promega, 美國),轉(zhuǎn)化大腸桿菌(Escherichiacoli)DH5α,選取陽性克隆,酶切檢測分析后,送生工生物工程股份有限公司測序。

用DNAstar對測序獲得的序列進行初步分析。用NCBI在線軟件BLAST (http:∥blast.ncbi.nlm.nih.gov/Blast.cgi)程序進行序列同源性比較。蛋白結(jié)構域預測用TMHMM 2.0 (http:∥myhits.isb-sib.ch/cgi-bin/motif_scan)來完成。對獲得基因編碼的蛋白采用Phyre2.0 (http:∥www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index)進行三級結(jié)構建模。

表2 PCR擴增所用引物Tab.2 List of PCR primer sequences

1.4 基因表達分析 分別利用定量引物qNAC3-F和qNAC3-R、qNAC4-F和qNAC4-R(表2)對2個NAC基因在葉片、發(fā)育初期的纖鞭、發(fā)育成熟的纖鞭、發(fā)育初期的鉤刺、發(fā)育成熟的鉤刺中的表達變化情況進行定量分析。反應在耶拿qTOWER2.2儀器上進行,總體系(10.0 μL): 5.0 μL LightCycler?480 SYBR Green I Master Mix (Roche,美國),0.8 μL cDNA,正、反向引物各0.2 μL,3.8 μL ddH2O。反應程序: 95 ℃ 5 min; 95 ℃ 30 s,60 ℃ 10 s,40個循環(huán)。定量分析所用內(nèi)參基因為γ-tubulin(GenBank No. KX793703)。反應重復3次,結(jié)果用2-ΔΔCt法(Livaketal., 2001)分析。

1.5 SSR位點分析 利用SSRIT(Simple Sequence Repeat Identification Tool)在線軟件 (Temnykhetal., 2001)對獲得的黃藤NAC轉(zhuǎn)錄因子基因序列進行SSR搜索,SSR類型最多核苷酸數(shù)量設置為4個,重復次數(shù)等于或大于5。

根據(jù)DjNAC3和DjNAC4基因組序列分別設計SSR引物(ssrNAC3-F和ssrNAC3-R、ssrNAC4-F和ssrNAC4-R),分別以21個不同藤種(表1)的基因組DNA為模板,進行擴增,PCR產(chǎn)物用8%的PAGE電泳進行分析?;厥找陨扉L鉤葉藤、老撾鉤葉藤、狹葉黃藤、黃藤屬種1、勐臘鞭藤、斑嶺省藤6個藤種基因組DNA為模板擴增獲得的目的片段,并連接到pGEM-T easy載體,轉(zhuǎn)化大腸桿菌,并送公司測序。

2 結(jié)果與分析

2.1DjNAC的克隆與基因結(jié)構分析 對應黃藤cDNA和基因組DNA模板,引物Teng-NAC3-F和Teng-NAC3-R的PCR擴增產(chǎn)物電泳結(jié)果顯示,分別約在0.7 kb和0.8 kb有1條目的條帶,同時引物Teng-NAC4-F和Teng-NAC4-R分別約在1.3 kb和1.4 kb有1條目的條帶。分別回收目的條帶測序結(jié)果表明,引物Teng-NAC3-F和Teng-NAC3-R擴增的cDNA為731 bp,包含1個729 bp的開放閱讀(ORF),ORF對應的基因組序列為850 bp,包含2個外顯子和1個121 bp內(nèi)含子(454-574 bp),將該基因cDNA命名為DjNAC3 (GenBank登錄號: KU556738)。引物Teng-NAC4-F和Teng-NAC4-R擴增的cDNA為1 334 bp,包含1個1 326 bp的ORF,ORF對應的基因組序列為1 441 bp,包含2個外顯子和1個107 bp的內(nèi)含子(875-981 bp),將該基因cDNA命名為DjNAC4 (GenBank登錄號: KX579750)。DjNAC3和DjNAC4的開放閱讀(ORF)對應的基因組所包含的內(nèi)含子均符合GT-AG剪切原則(Mooreetal., 1993),基因結(jié)構如圖1所示。

2.2 DjNAC蛋白性質(zhì)與結(jié)構分析DjNAC3編碼1個242 aa的蛋白,預測的分子量為27.95 kDa,等電點為8.323。DjNAC4編碼1個441 aa的蛋白,預測的分子量為49.66 kDa,等電點為7.082。Blast分析表明,DjNAC3和DjNAC4具有典型的NAC轉(zhuǎn)錄因子結(jié)構特征,N端保守性較強,由大約150個高度保守的氨基酸殘基組成,包含A、B、C、D、E 5個亞結(jié)構域,C端的氨基酸序列保守性較弱。DjNAC3和DjNAC4均屬于CUC (development-related NAC)亞家族(Zhuetal., 2015),但二者之間的相似系數(shù)僅為23.6%,以c3ulxA_為模板構建DjNAC3和DjNAC4的三級結(jié)構(圖2),結(jié)構上的差異意味著它們在黃藤生長發(fā)育過程中可能具有不同的功能。

圖1 DjNAC3和DjNAC4的基因結(jié)構Fig.1 Gene structures of DjNAC3 and DjNAC4E: 外顯子; I: 內(nèi)含子。E: Exon; I: Intron.

圖2 DjNAC3和DjNAC4蛋白的三級結(jié)構Fig.2 Tertiary structures of DjNAC3 and DjNAC4

2.3DjNAC的表達分析 以黃藤葉片、發(fā)育初期鉤刺、發(fā)育成熟鉤刺、發(fā)育初期纖鞭和發(fā)育成熟纖鞭的cDNA為模板,進行實時定量PCR分析,檢測DjNAC在不同組織中的表達模式。結(jié)果顯示,DjNAC3和DjNAC4的表達模式存在著明顯的差異。DjNAC3在葉片中的表達豐度最低,遠低于鉤刺和纖鞭,而纖鞭中的表達又高于鉤刺,以發(fā)育成熟的纖鞭中的表達豐度最高;DjNAC4則在發(fā)育成熟的鉤刺中表達豐度最高,發(fā)育成熟的纖鞭次之,葉片和發(fā)育初期的纖鞭中均較多,而發(fā)育初期的鉤刺中最低(圖3)。由此表明,DjNAC3和DjNAC4在黃藤葉片發(fā)育過程中可能具有不同的功能。

2.4 SSR位點分析與分子標記開發(fā) SSR搜索結(jié)果表明,在DjNAC3和DjNAC4的基因組序列中分別找到1個SSR位點,其中前者的SSR位點位于內(nèi)含子區(qū)域,SSR類型為TA,重復次數(shù)為6; 后者的SSR位點位于第1個外顯子區(qū)域,SSR類型為GCA,重復次數(shù)為5(表3)。

圖3 DjNAC3和DjNAC4在黃藤不同組織中的表達分析Fig.3 Expression analysis of DjNAC3 and DjNAC4 in different tissues of Daemonorops jenkinsiana1: 葉片; 2: 發(fā)育初期鉤刺; 3: 發(fā)育成熟鉤刺; 4: 發(fā)育初期纖鞭; 5: 發(fā)育成熟纖鞭。1: Leaves; 2: Early developed barbs; 3: Developed barbs; 4: Early developed cirri; 5: Developed cirri.

表3 SSR位點分析Tab.3 Analysis of SSR loci

圖4 不同藤種樣品SSR擴增產(chǎn)物的測序分析Fig.4 Analysis of SSR sequences of PCR products amplified from six rattan samplesA: ssrNAC3-F和ssrNAC3-R擴增產(chǎn)物序列; B: ssrNAC4-F和ssrNAC4-R擴增產(chǎn)物序列。編號與表1中藤種相對應。A: Sequences of products amplified by ssrNAC3-F and ssrNAC3-R; B: Sequences of products amplified by ssrNAC4-F and ssrNAC4-R. The No. represents the species in Tab.1 correspondingly.

為進一步驗證SSR位點的可靠性,分別回收了伸長鉤葉藤、老撾鉤葉藤、狹葉黃藤、黃藤屬種1、勐臘鞭藤、斑嶺省藤6個藤種的PCR產(chǎn)物進行測序。結(jié)果表明,引物對ssrNAC3-F和ssrNAC3-R的擴增產(chǎn)物在205~220 bp之間,不同藤種樣品中的SSR序列存在著一定的差異,既包括SSR類型變異、重復次數(shù)變化等多態(tài)性,又有SSR位點缺失的現(xiàn)象。如狹葉黃藤、黃藤屬種1與黃藤的SSR位點均為(TA)6,而伸長鉤葉藤、老撾鉤葉藤和勐臘鞭藤的SSR位點均為(TA)4,少了2個TA重復,但在斑嶺省藤中SSR位點卻缺失了,同時在SSR位點之后的30個堿基各種之間存在著不同程度的多態(tài)性(圖4A)。引物對ssrNAC4-F和ssrNAC4-R的擴增產(chǎn)物在331~346 bp之間,其中狹葉黃藤、黃藤屬種1與黃藤的SSR位點均為(GCA)5,而伸長鉤葉藤、老撾鉤葉藤、勐臘鞭藤和斑嶺省藤的SSR位點分別為(GCA)8、(GCA)9、(GCA)7和(GCA)4,不同屬間存在明顯的多態(tài)性(圖4B)。

2.5 SSR分子標記的不同藤種通用性分析 為驗證SSR位點的通用性和多態(tài)性,利用SSR引物(ssrNAC3-F和ssrNAC3-R、ssrNAC4-F和ssrNAC4-R)(表2),以黃藤和另外20個不同藤種的基因組DNA為模板進行擴增。PAGE電泳結(jié)果表明,所有PCR產(chǎn)物均有明顯的目的條帶,表明2個分子標記在不同藤種中具有通用性(圖5)。

引物對ssrNAC3-F和ssrNAC3-R的21個樣品擴增產(chǎn)物約在220 bp均有一明顯特異條帶(圖5A),其中鉤葉藤屬的伸長鉤葉藤和老撾鉤葉藤的目的條帶大小一致,而細鉤葉藤的明顯偏大; 黃藤屬的長柄黃藤、狹葉黃藤和黃藤種1的帶型一致,而黃藤的目的條帶明顯偏小; 省藤屬中除了褐鱗省藤和勐捧省藤帶型一致、種2(C. sp. 2)和種3(C. sp. 3)的帶型較一致外,其他藤種的帶型差異明顯。引物對ssrNAC4-F和ssrNAC4-R的擴增產(chǎn)物則約在350 bp均有一明顯特異條帶(圖5 B),其中鉤葉藤屬3個藤種的目的條帶大小一致; 黃藤屬的長柄黃藤、狹葉黃藤和種1(D. sp. 1)的帶型一致,而黃藤的目的條帶明顯偏??; 省藤屬柳條省藤和褐鱗省藤帶型目的條帶差異明顯,而褐鱗省藤和勐捧省藤的相一致,其余藤種的帶型差異明顯,但元江省藤(C. sp.)與種1(C. sp. 1)、種2(C. sp. 2)和種3(C. sp. 3)的基本一致。由此表明,2個SSR分子標記在不同藤種中具有多態(tài)性,尤其是不同屬的不同藤種之間更為明顯。

圖5 不同藤種樣品SSR引物擴增產(chǎn)物的PAGE電泳分析Fig.5 PAGE analysis of PCR products amplified from different rattan samples using SSR primersA: ssrNAC3-F和ssrNAC3-R的擴增產(chǎn)物; B: ssrNAC4-F和ssrNAC4-R的擴增產(chǎn)物。M: DNA分子量標記; 1-21: 不同藤種樣品。A. PCR products of ssrNAC3-F and ssrNAC3-R; B. PCR products of ssrNAC4-F and ssrNAC4-R. M: DNA ladder; 1-21: Different rattan samples.

3 討論

NAC轉(zhuǎn)錄因子對植物不同組織器官的系統(tǒng)發(fā)育具有重要作用,是植物形態(tài)建成中不可或缺的調(diào)控因子。根據(jù)蛋白結(jié)構特征將被子植物的NAC劃分為6個大的家族,每個家族包含不同的亞家族,即家族Ⅰ(VND和NST/BRN/SMB)、Ⅱ(NAC1、CUC和ORE)、Ⅲ(NTL、NAC2和TMM)、Ⅳ(FEZ/JUB和LOV1)、Ⅴ(XND1、脅迫相關家族和NARS)和家族Ⅵ(其他) (Pereira-Santanaetal., 2015)。本研究從黃藤葉片中分離得到的DjNAC3和DjNAC4基因均屬于NAC家族的CUC亞家族。基因結(jié)構的差異,意味著它們具有不同的功能,DjNAC3和DjNAC4在葉片、發(fā)育初期鉤刺、發(fā)育成熟鉤刺、發(fā)育初期纖鞭和發(fā)育成熟纖鞭中的基因表達模式差異進一步證實了這一點。纖鞭是棕櫚藤植物為適應森林攀援生活形成的最為重要的器官,是由葉軸頂端延伸出去形成的,或是葉鞘發(fā)育形成。黃藤的葉片屬于大型羽狀復葉(全裂),其纖鞭由葉軸頂端延伸發(fā)育而成,纖鞭上具有輪生的鉤刺,利于絞纏攀爬。DjNAC3和DjNAC4在黃藤葉片的不同部位均有表達,且存在明顯差異,但其功能如何,在黃藤葉片生長發(fā)育中是怎么實現(xiàn)其調(diào)控作用的,有待于進一步深入研究。

SSR標記作為一種有效的分子標記已被廣泛應用于遺傳多樣性分析、系統(tǒng)發(fā)育、輔助分類和育種研究等。DjNAC3和DjNAC4的基因組中均具有1個SSR位點,并證實在21個不同棕櫚藤樣品中具有通用性,且在不同屬種間具有多態(tài)性,這為進一步研究棕櫚藤的遺傳多樣性和輔助分類提供了分子標記。另外研究表明,SSR位點在基因序列中所處位置不同,其功能也存在著差異,如位于5′非翻譯區(qū)的SSR 可以調(diào)控基因的轉(zhuǎn)錄和翻譯,位于基因內(nèi)部的SSR具有較強的選擇壓力,可以調(diào)控基因的表達,位于內(nèi)含子區(qū)域的SSR可以影響基因的轉(zhuǎn)錄,位于3′非翻譯區(qū)的SSR可以引起mRNA的延伸 (Lietal., 2004)。DjNAC3和DjNAC4的SSR位點,分別位于內(nèi)含子區(qū)域和外顯子區(qū)域,這對二者的基因表達可能具有不同的影響,具體情況需要進一步試驗驗證。

隨著現(xiàn)代生物技術的快速發(fā)展,利用基因工程手段開發(fā)利用植物中具有調(diào)控作用的關鍵NAC 轉(zhuǎn)錄因子,實現(xiàn)植物性狀的定向改良已成為現(xiàn)實。水稻SNAC1轉(zhuǎn)入小麥(Triticumaestivum)導致轉(zhuǎn)基因植物生長遲緩(Saadetal., 2013),毛竹PeNAC在擬南芥中過量表達促進轉(zhuǎn)基因植株的側(cè)根發(fā)育(Wangetal., 2016),在水稻中過量表達穇子(Eleusinecoracana)的EcNAC67能夠提高水稻的耐鹽和抗旱能力(Rahmanetal., 2016),大麥(Hordeumvulgare)中過量表達HvNAC005導致提早成熟(Christiansenetal., 2016)。棕櫚藤植物作為重要的森林資源之一,其潛在的價值遠遠沒有得到開發(fā)利用,隨著對其生長發(fā)育分子基礎研究的不斷深入,諸如NAC家族的轉(zhuǎn)錄因子等具有重大經(jīng)濟價值的功能基因?qū)⒉粩啾煌诰虺鰜?,對其性狀的調(diào)控將更具有操作性。因此,未來棕櫚藤的分子育種有著廣闊的前景。

4 結(jié)論

本研究從黃藤中克隆了2個NAC轉(zhuǎn)錄因子家族成員基因DjNAC3和DjNAC4,二者在基因結(jié)構、編碼蛋白特征等方面具有明顯不同的分子特征,在黃藤葉片形態(tài)建成中可能具有不同的調(diào)控功能。同時,DjNAC3和DjNAC4的序列中均包含1個SSR位點,分別為(TA)6和(GCA)5,據(jù)此開發(fā)的分子標記在不同的棕櫚藤中具有較高的通用性和多態(tài)性,可應用于棕櫚藤輔助分類和分子輔助育種。

高志民, 范少輝, 高 健, 等. 2006. 基于CTAB法提取毛竹基因組DNA的探討. 林業(yè)科學研究, 19(6): 725-728.

(Gao Z M, Fan S H, Gao J,etal. 2006. Extract genomic DNA fromPhyllostachysedulisby CTAB-based method. Forest Research, 19(6):725-728. [in Chinese])

江澤慧,王康林. 2013. 中國棕櫚藤. 北京: 科學出版社, 90-92.

(Jiang Z H, Wang K L. 2013. Rattan in China. Beijing: Science Press, 90-92.[in Chinese])

黎幫勇, 胡尚連, 曹 穎, 等. 2015. 毛竹NAC 轉(zhuǎn)錄因子家族生物信息學分析. 基因組學與應用生物學, 34(8): 1769-1777.

(Li B Y, Hu S L, Cao Y,etal. 2015. Bioinformatics analysis of NAC gene family in moso bamboo. Genomics Applied Biol, 34(8): 1769-1777. [in Chinese])

Banerjee A, Roychoudhury A. 2015. WRKY proteins: signaling and regulation of expression during abiotic stress responses. Sci World J, 2015: 807560.

Christiansen M W, Matthewman C,Podzimska-Sroka D,etal. 2016. Barley plants over-expressing the NAC transcription factor geneHvNAC005 show stunting and delay in development combined with early senescence. J Exp Bot, 67 (17): 5259-5273.

Gao Z M, Li X P, Li L B,etal. 2006. An effective method for total RNA isolation from bamboo. Chinese For Sci Tech, 5(3): 52-54.

Guo Y, Gan S. 2006. AtNAP, a NAC family transcription factor, has an important role in leaf senescence. Plant J, 46(4): 601-612.

Ha C V, Esfahani M N, Watanabe Y,etal. 2014. Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments. PLoS One, 9(12): e114107.

He X J, Mu R L, Cao W H,etal. 2005. AtNAC2, a transcription factor downstream of ethylene and auxin signaling pathways, is involved in salt stress response and lateral root development. Plant J, 44(6): 903-916.

Kim S G, Kim S Y, Park C M. 2007. A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUST inArabidopsis. Planta, 6(3): 647-654.

Kim S G, Lee A K, Yoon H K,etal. 2008. A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling inArabidopsisseed germination. Plant J, 55(1):77-88.

Kou X, Watkins C B, Gan S S. 2012.ArabidopsisAtNAP regulates fruit senescence. J Exp Bot, 63(17): 6139-6147.

Le D T, Nishiyama R, Watanabe Y,etal. 2011. Genome-wide survey and expression analysis of the plant-specific NAC transcription factor family in soybean during development and dehydration stress. DNA Res, 18(4): 263-276.

Li Y C, Korol A B, Fahima T,etal. 2004. Microsatellites within genes: structure, function, and evolution. Mol Biol Evol, 21(6): 991-1007.

Lin R M, Zhao W S, Meng X B,etal. 2007. Rice geneOsNAC19 encodes a novel NAC-domain transcription factor and responds to infection byMagnaporthegrisea. Plant Sci, 172(1): 120-130.

Liu T K, Song X M, Duan W K,etal. 2014. Genome-wide analysis and expression patterns of NAC transcription factor family under different developmental stages and abiotic stresses in Chinese cabbage. Plant Mol Biol Report, 32(5): 1041-1056.

Livak K J, Schmittgen T D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCtmethod. Methods, 25: 402-408.

Moore M J, Query C C, Sharp P A. 1993. Splicing of precursors to mRNA by the spliceosome∥ Gesteland R F, Atkins J F. The RNA world. Cold Spring Harbor: Cold Spring Harbor Laboratory Press, 303-357.

Nakashima K, Takasaki H, Mizoi J,etal. 2012. NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta, 1819(2): 97-103.

Nikovics K, Blein T, Peaucelle A,etal. 2006. The balance between theMIR164AandCUC2 genes controls leaf margin serration inArabidopsis. Plant Cell, 18(11): 2929-2945.

Niu F, Wang C, Yan J,etal. 2016. Functional characterization of NAC55 transcription factor from oilseed rape (BrassicanapusL.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death. Plant Mol Biol, 92(1/2): 89-104.

Nuruzzaman M, Manimekalai R, Sharoni A M,etal. 2010. Genome-wide analysis of NAC transcription factor family in rice. Gene, 465(1/2): 30-44.

Nuruzzaman M, Sharoni A M, Kikuchi S. 2013. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol, 4: 248.

Olsen A N, Ernst H A, Leggio L L,etal. 2005. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci, 10(2): 79-87.

Pereira-Santana A, Alcaraz L D, Castao E,etal. 2015. Comparative genomics of NAC transcriptional factors in angiosperms: Implications for the adaptation and diversification of flowering plants. PLoS One, 10(11): e0141866.

Rahman H, Ramanathan V, Nallathambi J,etal. 2016. Over-expression of a NAC 67 transcription factor from finger millet (EleusinecoracanaL.) confers tolerance against salinity and drought stress in rice. BMC Biotechnol, Suppl 1: 35.

Saad A S, Li X, Li H P,etal. 2013. A rice stress-responsive NAC gene enhances tolerance of transgenic wheat to drought and salt stresses. Plant Sci, 203/204: 33-40.

Seo P J, Kim M J, Park J Y,etal. 2010. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response inArabidopsis. Plant J, 61(4): 661-671.

Shiriga K, Sharma R, Kumar K,etal. 2014. Genome-wide identification and expression pattern of drought-responsive members of the NAC family in maize. Meta Gene, 2: 407-417.

Souer E, van Houwelingen A, Kloos D,etal. 1996. Thenoapicalmeristemgene of petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 85(2): 159-170.

Su H, Zhang S, Yin Y,etal. 2015. Genome-wide analysis of NAM-ATAF1,2-CUC2 transcription factor family inSolanumlycopersicum. J Plant Biochem Biotechnol, 24(2): 176-183.

Temnykh S, DeClerck G, Lukashova A,etal. 2001. Computational and experimental analysis of microsatellites in rice (OryzasativaL.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res, 11(8): 1441-1452.

Tran L S, Nishiyama R,Yamaguchi-Shinozaki K,etal. 2010. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach. GM Crops, 1(1): 32-39.

Uauy C, Distelfeld A, Fahima T,etal. 2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314(5803): 1298-1301.

Wang L, Zhao H, Chen D,etal. 2016. Characterization and primary functional analysis of a bambooNACgene targeted by miR164b. Plant Cell Rep, (6):1371-1383.

Zhu G, Chen G, Zhu J,etal. 2015. Molecular characterization and expression profiling of NAC transcription factors inBrachypodiumdistachyonL. PLoS One, 10(10): e0139794.

Zimmermann R, Werr W. 2005. Pattern formation in the monocot embryo as revealed by NAM and CUC3 orthologues fromZeamaysL. Plant Mol Biol, 58(5): 669-685.

(責任編輯 徐 紅)

MolecularCharacteristicsandSSRMarkerDevelopmentofTwoNACGenesfromDaemonoropsjenkinsiana

Sun Huayu1Li Lichao1Zhao Hansheng1Yang Yihong1,2Wang Sining1Gao Zhimin1

(1.KeyOpenLaboratoryontheScienceandTechnologyofBambooandRattanofStateForestryAdministrationInternationalCenterforBambooandRattanBeijing100102; 2.CollegeofHorticulture,HebeiAgriculturalUniversityBaoding071001)

S718.46

A

1001-7488(2017)08-0132-09

10.11707/j.1001-7488.20170815

2016-09-12;

2016-10-24。

“十二五”農(nóng)村領域國家科技計劃項目“竹藤種質(zhì)資源創(chuàng)新利用研究”第一課題“竹藤優(yōu)異種質(zhì)創(chuàng)制創(chuàng)新與種苗培育標準化示范”(2015BAD04B01)。

*高志民為通訊作者。

猜你喜歡
基因組位點引物
DNA引物合成起始的分子基礎
高中生物學PCR技術中“引物”相關問題歸類分析
生物學通報(2022年1期)2022-11-22 08:12:18
鎳基單晶高溫合金多組元置換的第一性原理研究
上海金屬(2021年6期)2021-12-02 10:47:20
SSR-based hybrid identification, genetic analyses and fingerprint development of hybridization progenies from sympodial bamboo (Bambusoideae, Poaceae)
牛參考基因組中發(fā)現(xiàn)被忽視基因
CLOCK基因rs4580704多態(tài)性位點與2型糖尿病和睡眠質(zhì)量的相關性
二項式通項公式在遺傳學計算中的運用*
生物學通報(2019年3期)2019-02-17 18:03:58
火炬松SSR-PCR反應體系的建立及引物篩選
基因組DNA甲基化及組蛋白甲基化
遺傳(2014年3期)2014-02-28 20:58:49
有趣的植物基因組
世界科學(2014年8期)2014-02-28 14:58:31
富顺县| 赣榆县| 中阳县| 定西市| 彭水| 云林县| 洱源县| 淅川县| 新乡市| 临西县| 许昌市| 庆城县| 牙克石市| 武义县| 永修县| 阳江市| 马尔康县| 乌兰察布市| 沁源县| 沧源| 彰化县| 安康市| 扶沟县| 海城市| 嘉黎县| 抚州市| 盐山县| 沂南县| 沈阳市| 宜州市| 新平| 金乡县| 黔南| 望奎县| 禹城市| 连平县| 且末县| 嘉兴市| 高碑店市| 喀喇| 灵石县|