趙學(xué)娟,岳海芹,錢祺,王儷蓉,何甜甜,王磊,李力成
(1.南京工程學(xué)院材料工程學(xué)院,南京 211167; 2.江蘇省先進(jìn)結(jié)構(gòu)材料與應(yīng)用技術(shù)重點(diǎn)實(shí)驗(yàn)室,南京 211167; 3.南京林業(yè)大學(xué)化學(xué)工程學(xué)院,南京 210037)
趙學(xué)娟1,2,岳海芹3,錢祺3,王儷蓉1,何甜甜3,王磊3,李力成3
(1.南京工程學(xué)院材料工程學(xué)院,南京 211167; 2.江蘇省先進(jìn)結(jié)構(gòu)材料與應(yīng)用技術(shù)重點(diǎn)實(shí)驗(yàn)室,南京 211167; 3.南京林業(yè)大學(xué)化學(xué)工程學(xué)院,南京 210037)
固體超強(qiáng)酸;酯化反應(yīng);Ba;穩(wěn)定性;TiO2
1.1 固體超強(qiáng)酸的制備
以TiCl4作為鈦源,將一定量的四氯化鈦(TiCl4)溶于4℃的去離子水中,攪拌配置成混合液;靜置0.5 h后,向混合液中緩慢滴加25%的氨水,并將溶液pH調(diào)節(jié)到9~10,陳化2 h;過濾,使用去離子水洗滌濾餅,待濾液中不含Cl-(向?yàn)V液中滴加0.1 mol/L的AgNO3溶液觀察不到白色沉淀);將洗凈的濾餅放入100℃的烘箱干燥12 h,去除濾餅中游離水后得到干燥的Ti(OH)4,研磨成粉末,將一半Ti(OH)4置于馬弗爐中500℃焙燒可制得TiO2。另一半Ti(OH)4與一定質(zhì)量的Ba(NO3)2溶液混合,靜置、干燥后,再經(jīng)馬弗爐500℃焙燒制得Ba-TiO2。
有關(guān)固體超強(qiáng)酸的水預(yù)處理過程已有報(bào)道[14-15],具體步驟為:稱取一定量固體超強(qiáng)酸粉末(粒徑180~250 μm)放入燒杯中,按固液比為1∶50加入去離子水,置于磁力攪拌器上以30 r/min攪拌3 h后,抽濾、120℃干燥12 h,即可得到水預(yù)處理的固體超強(qiáng)酸樣品。
1.2 表 征
X-射線粉末衍射(XRD),采用日本Rigaku公司的Ltima IV組合型多功能水平X-射線衍射儀,電流30 mA,電壓40 kV,掃描范圍5°~60°,掃描速度15°/min。傅里葉變換紅外光譜(FT-IR)采用美國Thermo Electron公司生產(chǎn)的Nicolet-360型FT-IR光譜儀,掃描范圍4 000~400 cm-1,分辨率0.9 cm-1。比表面積分析(BET)采用美國Micrometrics公司生產(chǎn)的ASAP 2020比表面孔隙吸附測定儀測定,測試溫度為-196℃,分別通過BET方程和BJH模型計(jì)算得到材料的比表面積、孔容和孔徑數(shù)據(jù)。程序升溫吸附氨脫附(NH3-TPD)測試在Quantachrome公司生產(chǎn)的CHEMBET-3000型儀器上進(jìn)行,樣品經(jīng)高溫活化后吸附NH3至飽和,氦氣吹掃后,再以10℃/min程序升溫脫附至終溫。
1.3 催化劑活性評(píng)價(jià)
采用乙酸和正丁醇的酯化反應(yīng)體系評(píng)價(jià)固體超強(qiáng)酸樣品的催化性能。該反應(yīng)在裝有回流冷凝管的100 mL三口燒瓶中進(jìn)行,并借助油浴鍋對(duì)反應(yīng)體系進(jìn)行加熱。總反應(yīng)時(shí)間為2 h,反應(yīng)溫度為(103±1)℃。具體步驟如下:首先,將5 mL乙酸和8 mL正丁醇(摩爾比為1∶1)加入三口燒瓶中,置于油浴鍋中加熱,待三口燒瓶中混合液溫度達(dá)103℃時(shí),加入0.5 g固體超強(qiáng)酸,并以此為反應(yīng)起始時(shí)間,每隔15 min采集混合液于試劑瓶中,共取8次。通過山東魯南分析儀器廠的SP-6890型氣相色譜儀測定正丁醇的酯化率。色譜柱為30 m OV-101毛細(xì)管柱,F(xiàn)ID檢測器,柱溫為60℃,檢測器溫度為180℃,汽化室溫度為140℃。
2.1 固體超強(qiáng)酸結(jié)構(gòu)分析
圖1 不同Ba質(zhì)量分?jǐn)?shù)復(fù)合型固體超強(qiáng)酸的XRD譜圖Fig.1 The XRD spectra of composite solid superacid with different Ba contents
表1 不同Ba質(zhì)量分?jǐn)?shù)復(fù)合固體超強(qiáng)酸的比表面積、孔容和孔徑數(shù)據(jù)Table 1 Surface area,pore volume and pore size of solid superacid with different Ba contents
圖2 不同Ba質(zhì)量分?jǐn)?shù)復(fù)合固體超強(qiáng)酸FT-IR譜圖Fig.2 The FT-IR spectra of solid superacid with different Ba contents
圖3 不同質(zhì)量分?jǐn)?shù)Ba復(fù)合型固體超強(qiáng)酸NH3-TPD圖Fig.3 The NH3-TPD spectra of solid superacid with different Ba contents
2.2 固體超強(qiáng)酸的酯化性能分析
圖4 不同復(fù)合固體超強(qiáng)酸在水預(yù)處理前后的酯化性能對(duì)比Fig.4 Comparison of esterification performance of various solid superacids before and after water pretreatment
[1]HINO M,ARATA K.Solid catalyst treated with anion.1.catalytic activity of iron-oxide treated with sulfate ion for dehydration of 2-propanol and ethanol and polymerization of isobutyl vinyl ether[J].Chemistry Letters,1979,8(5):477-480.
[2]FURUTA S,MATSUHASHI H,ARATA K.Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure[J].Catalysis Communications,2004,5(12):721-723.
[4]汪穎軍,李言,所艷華,等.負(fù)載型氧化物固體超強(qiáng)酸改性的研究進(jìn)展[J].石油學(xué)報(bào)(石油加工),2012,28(3):525-532.WANG Y J,LI Y,SUO Y H,et al.Advances in modification of supported oxides solid catalysts[J].Acta Petrolei Sinica (Petroleum Processing Section),2012,28(3):525-532.
[5]崔波,金青.無機(jī)固體超強(qiáng)酸的制備與再生[J].工業(yè)催化,2000,8(2):15-17.CUI B,JIN Q.Preparation and regeneration of inorganic solid superacid[J].Industrial Catalysis,2000,8(2):15-17.
[8]SUWANNAKARN K,LOTERO E,GOODWIN J,et al.Stability of sulfated zirconia and the nature of the catalytically active species in the transesterification of triglycerides[J].Journal of Catalysis,2008,255(2):279-286.
[10]LI X B,NAGAOKA K,LERCHER J A.Labile sulfates as key components in active sulfated zirconia for n-butane isomerization at low temperatures[J].Journal of Catalysis,2004,227(1):130-137.
[12]OKUHARA T.Water-tolerant solid acid catalysts[J].Chemical Reviews,2002,102(10):3641-3665.
[14]錢祺,王丹雅,王磊,等.硫酸促進(jìn)型固體超強(qiáng)酸在水預(yù)處理?xiàng)l件下的穩(wěn)定性對(duì)比[J].化工學(xué)報(bào),2016,67(4):1610-1617.QIAN Q,WANG D Y,WANG L,et al.Comparison on stability of sulfated solid superacid with water pretreatment[J].CIESC Journal,2016,67(4):1610-1617.
[16]MAO W,MA H,WANG B.Mild ring-opening coupling of liquid-phase cyclohexane to diesel components using sulfated metal oxides[J].Journal of Hazardous Materials,2010,176(1/2/3):361-366.
[17]VENKATACHALAM N,PALANICHAMY M,ARABINDOO B,et al.Alkaline earth metal doped nanoporous TiO2for enhanced photocatalytic mineralisation of bisphenol-A[J].Catalysis Communications,2007,8(7):1088-1093.
[18]ZHANG J,LI M,FENG Z,et al.UV raman spectroscopic study on TiO2.I.Phase transformation at the surface and in the bulk[J].The Journal of Physical Chemistry,2006,110(2):927-935.
[21]SHI W P.Zr-la doped sulfated titania with a by far better catalytic activity and stability than pure sulfated titania in the esterification of acetic acid and n-butanol[J].Catalysis Letters,2013,143(7):732-738.
ZHAO Xuejuan1,2,YUE Haiqin3,QIAN Qi3,WANG Lirong1,HE Tiantian3,WANG Lei3,LI Licheng3
(1.School of Materials Engineering,Nanjing Institute of Technology,Nanjing 211167,China;2.Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology,Nanjing 211167,China; 3.College of Chemical Engineering,Nanjing Forestry University,Nanjing 210037,China)
solid superacid;esterification;barium;stability;TiO2
TQ426
A
2096-1359(2017)05-0041-05