吳亞壘,祁力鈞※,張 亞,高春花,李 帥,Elizabeth Musiu
基于駐波率原理的農(nóng)藥霧滴沉積量檢測系統(tǒng)設(shè)計與試驗
吳亞壘1,祁力鈞1※,張 亞2,高春花1,李 帥3,Elizabeth Musiu1
(1. 中國農(nóng)業(yè)大學(xué)工學(xué)院,北京 100083; 2. 中國農(nóng)業(yè)大學(xué)信息與電氣工程學(xué)院,北京 100083;3. 華北電力大學(xué)機械工程系,保定 071051)
為實現(xiàn)施藥后霧滴地面沉積量的快速獲取,該文提出一種基于駐波率原理的叉指型霧滴采集極板結(jié)構(gòu)。為驗證該極板結(jié)構(gòu)的合理性,應(yīng)用三維電磁仿真軟件HFSS對此系統(tǒng)進行電磁仿真。HFSS模型求解的結(jié)果表明,叉指型極板內(nèi)部出現(xiàn)了靜電屏蔽,極板間通過霧滴能夠?qū)崿F(xiàn)電磁耦合,可用于霧滴沉積量檢測,系統(tǒng)靈敏程度將隨著極板間距的增大而減小。通過標定試驗,建立了檢測系統(tǒng)輸出電壓與試劑溶液沉積量關(guān)系的回歸方程,測試后2種不同介電常數(shù)的胭脂紅溶液和丙三醇溶液決定系數(shù)R2分別為0.982 1和0.997 6。通過對3W-ZW10型溫室自走式噴霧機應(yīng)用測試,結(jié)果表明:該系統(tǒng)在采樣點上沉積量的模擬值最大相對誤差率不超過7.95%,且模擬值與實測值均方根誤差RMSE最大為0.076 7 mg/cm2,霧滴沉積檢測準確率高,方便實用,可用于田間霧滴沉積率的快速測量。
設(shè)計;計算機仿真;噴霧;駐波率原理;叉指型極板探頭;霧滴沉積量測量;HFSS仿真
吳亞壘,祁力鈞,張 亞,高春花,李 帥,Elizabeth Musiu. 基于駐波率原理的農(nóng)藥霧滴沉積量檢測系統(tǒng)設(shè)計與試驗[J].農(nóng)業(yè)工程學(xué)報,2017,33(15):64-71. doi:10.11975/j.issn.1002-6819.2017.15.008 http://www.tcsae.org
Wu Yalei, Qi Lijun, Zhang Ya, Gao Chunhua, Li Shuai, Elizabeth Musiu. Design and experiment of pesticide droplet deposition detection system based on principle of standing wave ratio[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(15): 64-71. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.15.008 http://www.tcsae.org
霧滴沉積分布特性與規(guī)律的快速、有效獲取不僅能夠減少施藥實驗成本、降低操作難度和實驗復(fù)雜度[1-3],而且對于評估施藥作業(yè)質(zhì)量,提高農(nóng)藥利用率有重要意義[4-6]。優(yōu)化霧滴沉積檢測技術(shù),解決田間霧滴沉積分布測量方法單一和效率不高的問題是該領(lǐng)域?qū)W者追求的目標[7-8]。
王昌陵等[9]研發(fā)了一套霧滴空間質(zhì)量平衡收集裝置用于接收噴霧霧滴,采用多通道智能微氣象測量系統(tǒng)測量無人機下旋氣流場,分析精準作業(yè)高度和速度下無人機噴霧霧滴空間質(zhì)量分布和下旋氣流場特性及其內(nèi)在關(guān)系。張瑞瑞等[10]基于變介電常數(shù)電容器原理和傳感器網(wǎng)絡(luò)技術(shù),設(shè)計航空施藥霧滴地面沉積實時監(jiān)測系統(tǒng),并探究該系統(tǒng)用于霧滴地面沉積量測量的實用性。Zhu等[11]研究了基于圖像分析技術(shù)和水敏試紙的藥液沉積分析系統(tǒng)。Salyani等[12]通過研究藥液沉積量對導(dǎo)體電阻率的影響,設(shè)計了一種基于可變電阻器原理的藥液沉積傳感器,并建立了傳感器輸出電壓與藥液沉積量關(guān)系模型。王景旭等[13]利用CFD模擬技術(shù)研究了溫室風(fēng)送式噴霧機霧滴的沉積模型。高志濤等[14]借助矢量網(wǎng)絡(luò)分析儀與HFSS電磁場仿真軟件對傳感器電極的阻抗特性與電場分布狀況進行了分析,為實時獲取多層土壤墑情及土壤溫度提供了一種高效方法。總的來說,針對霧滴沉積量與在線快速檢測技術(shù)研究還相對較少[15-16]。
本文基于變介電常數(shù)理論中的駐波率原理和傳感器網(wǎng)絡(luò)技術(shù),旨在設(shè)計霧滴地面沉積實時檢測系統(tǒng),以仿真試驗分析為手段,探索電場的分布特性,逐步仿真優(yōu)化得到叉指型極板結(jié)構(gòu)形狀及最佳參數(shù),同時結(jié)合溫室自走式噴霧機系統(tǒng)進行了應(yīng)用測試與試驗驗證,以期為實現(xiàn)在線準確、快速獲取霧滴沉積分布特性提供參考。
本文設(shè)計的叉指型霧滴沉積量采集系統(tǒng)基于駐波率原理,由100 MHz信號源、50 ?同軸傳輸線、高頻檢波與差分運算放大電路、叉指型霧滴采集極板探頭及無線網(wǎng)絡(luò)傳輸裝置組成。利用駐波率法測量霧滴沉積量實際上反映的是噴霧環(huán)境下叉指型霧滴采集板探頭的特性阻抗變化。圖1為霧滴沉積量實時檢測裝置系統(tǒng)原理圖。
當(dāng)信號源產(chǎn)生的高頻電磁波沿著傳輸線被傳送到叉指型霧滴采集探頭,由于探頭的阻抗與傳輸線的阻抗不匹配,一部分信號將被反射回來。在傳輸線上,高頻入射波與反射波疊加形成駐波,傳輸線上各點的電壓幅值存在變化[17-18]。
圖1 霧滴沉積量系統(tǒng)原理圖Fig.1 Schematic diagram of droplets deposition system
根據(jù)基本傳輸線理論[19],其等效參數(shù)均勻分布可得等效電路如圖2所示。
圖2 測量裝置等效電路圖Fig.2 Equivalent circuit of measuring device
其中考慮高頻狀態(tài)下分布電容、電抗的影響,在傳輸線上任意點處取微元dz,得其電壓與電流的微分表達式
其瞬時解表達式為
式中A1為高頻振蕩器的信號幅值;ρ為反射系數(shù);β為相移系數(shù);ω為信號源角頻率;z為傳輸線阻抗瞬時值。
式中k為物質(zhì)豫馳時間;f為信號源測試頻率;λ為信號波波長。
根據(jù)駐波率測量原理,圖2中取A、B兩點的差動信號作為叉指型霧滴采集板探頭變換電路的輸出,傳輸線兩端的電壓UAB表達式為
式中ZC為同軸傳輸線的特征阻抗,?。
本研究中ZC為50 ?的標準同軸電纜。在A1和ZL恒定的情況下,傳輸線兩端的電位差UAB只與叉指型裝置阻抗ZL有關(guān),當(dāng)ZC=ZL時,傳輸線上不會產(chǎn)生駐波,傳輸線兩端電壓為0。因此,確定叉指型極板探頭的阻抗ZL尤為重要。叉指型極板探頭的檢測阻抗值ZL與導(dǎo)納Y關(guān)系如式(7)所示。
式中ωs為叉指型極板測試角頻率,rad/s;Cs為叉指型極板總的電容,F(xiàn);Y為傳輸線導(dǎo)納;j表示虛部。
叉指型極板探頭的阻抗特性與間隙內(nèi)鋪灑物質(zhì)的介電常數(shù)有關(guān),其電容C為
式中ε為極板間介電常數(shù);S為平行板覆蓋面積,mm2;d為叉指型極板間距,mm。
叉指型霧滴采集板探頭為具有一定間距d、一定寬度e、一定厚度h和一定長度L的敷銅板,將多個極板并聯(lián)且等間距固定,即可用于霧滴沉積測量的叉指型極板,極板底側(cè)與樹脂板固化,樹脂板總面積S0,包括叉指型極板的表面積S1及極板間面積S2,極板間面積可以根據(jù)介質(zhì)不同,分割成空氣介質(zhì)面積S3和藥液介質(zhì)面積S4,其中:
式中S0為樹脂板的總面積,mm2;S1和S2分別為極板上與極板間的表面積,mm2;S3和S4分別為空氣與藥液介質(zhì)的表面積,mm2。
當(dāng)所設(shè)計叉指型極板覆蓋面積S不可變,通過極板間介電質(zhì)改變引起介電常數(shù)變化,從而改變電容器電容。設(shè)定空氣介電常數(shù)為ε1,叉指型極板間無霧滴沉降時,電容量為Cz。當(dāng)叉指型極板間有霧滴沉降時,因介質(zhì)變成由液滴和空氣組成的混合體,液滴的介電常數(shù)與空氣不同[10],所以電容等效介電常數(shù)值發(fā)生變化,從而電容變?yōu)镃e。施藥過程中,藥液濃度一旦固定,在忽略環(huán)境溫差變化對溶液介電常數(shù)影響時,藥液的介電常數(shù)是定值,設(shè)定藥液的介電常數(shù)為ε2,電容量為
式中Cz和Ce分別為極板間霧滴無沉降與有沉降時的電容量,F(xiàn);ε1和ε2分別為空氣與藥液的介電常數(shù)。
施藥過程中,霧滴體積中徑較小,霧滴徑譜一致性較好,且沉積在靶標上的藥液相對較少,由此推測其霧滴的沉積面積S4與其沉積量m在一定的沉積量范圍內(nèi)具有較好的相關(guān)性,相關(guān)系數(shù)為k*。霧滴噴施前后電壓值變化與霧滴沉積量的理論關(guān)系表達式為
式中m為農(nóng)藥霧滴沉積量,mg/cm2;k*為相關(guān)系數(shù)。
故基于以上式(1)-式(11)公式推導(dǎo),可以通過噴霧環(huán)境下叉指型霧滴采集板探頭的特性阻抗變化來表征實際霧滴沉積量的變化,所以從理論分析來看,可以利用介電理論中的駐波率原理的電壓變化來反映噴施前后霧滴在叉指型霧滴采集板的沉積量變化。
選取合適的試驗控制參數(shù)是叉指型霧滴采集板設(shè)計的關(guān)鍵,其目的是通過采集板上面藥液與空氣的混合介電常數(shù)的變化轉(zhuǎn)換為傳輸線上駐波率的變化。
在叉指型霧滴采集極板間距固定的情況下,負載阻抗由信號源頻率和藥液與空氣混合的介電常數(shù)決定,而介電常數(shù)是與信號源頻率相關(guān),所以信號源頻率的選擇對測量結(jié)果會造成一定影響。Topp等[20]研究發(fā)現(xiàn),在1 MHz~1 GHz頻率范圍內(nèi),有效介電常數(shù)主要取決于介質(zhì)中的水分含量。
介電常數(shù)可以分解為
式中ε′和ε″分別為介電常數(shù)的實部和虛部。
經(jīng)數(shù)學(xué)推導(dǎo)[21],得
式中ε∝為電子位移極化對應(yīng)的高頻介電常數(shù);εs為靜電場中的介電常數(shù);τ為水常溫下的弛豫時間,s。
由式(13)和(14)可知,當(dāng)外加電場的角頻率1ωτ=時,ε″具有極大值;當(dāng)1τω≤時,ε′趨近于εs,此時介質(zhì)沒有電導(dǎo)產(chǎn)生的損耗。水分子是一種極性很強的偶極子,在外電場作用下,水的極化程度遠大于其他物質(zhì)。在微波頻段,不同波長對應(yīng)水的介電常數(shù)不同[21]。水的介電常數(shù)與波長的關(guān)系如圖3所示。
圖3 水的介電常數(shù)與波長的關(guān)系Fig.3 Relationship between dielectric constant of water and wavelength
由圖3可知,當(dāng)信號源波長在10 cm以上即頻率小于3 000 MHz時,介電常數(shù)的實部遠大于虛部。當(dāng)波長為10 cm時,水的ε′為77.2,空氣的介電系數(shù)為1,在此頻段內(nèi)水比空氣狀態(tài)下介電常數(shù)大很多。由于過高的頻率易受到外界電磁環(huán)境的干擾,本文綜合其他基于駐波率法測量含水率的研究,選用電磁波頻率為100 MHz的信號源[22]。
2.2.1 不同極板間距處電場分布狀況
利用Ansoft HFSS電磁仿真軟件[23]建立了叉指型霧滴采集極板幾何模型如圖4所示。1)極板的上表面寬度e設(shè)為1 mm,上表面長度L設(shè)為38 mm,側(cè)表面高度h設(shè)為100 μm,一極板末端距離另一極板設(shè)為1 mm,叉指型霧滴采集極板間距d分別設(shè)為0.5、1、3、6 mm;2)設(shè)定極板間距內(nèi)填充介質(zhì)的介電常數(shù)為18,樹脂板及輔助支架的介電常數(shù)設(shè)為4,設(shè)定叉指型銅極板為理想電場邊界,選取半徑為40 mm的球體作為輻射邊界的條件;3)選擇求解類型為Driver Model,其次設(shè)置波端口激勵為集總端口激勵方式,最后添加求解設(shè)置,設(shè)定求解模型頻率為100 MHz。運行Analyze-All,HFSS電磁軟件在叉指型霧滴采集極板上的電場分布狀況仿真結(jié)果如圖5所示。
圖4 叉指型霧滴采集極板電磁模型Fig.4 Electromagnetic model of interdigitated droplet collection board
由圖5可以看出叉指型不同間距的極板主要影響霧滴沉積區(qū)域的XY和YZ截面方向的電場分布,XY和YZ截面分別為電磁模型主視圖與左視圖,圖中淡黃色區(qū)域的電場強度滿足測試的要求。根據(jù)達到淡黃色區(qū)域的電場強度的作用進行分析:1)0.5和1 mm間距情況下,叉指型霧滴采集極板檢測區(qū)域電場分布差異不明顯,且0.5和1 mm情況下XY和YZ截面上極板之間均勻分布,周圍電場緊湊,沒有出現(xiàn)分離現(xiàn)象。但是隨著極板間距的逐漸增大,電場分布差異性越來越明顯;2)3 mm情況下,XY截面上基本滿足電場強度的要求,但是出現(xiàn)了不均勻的現(xiàn)象,且YZ截面的場強不連續(xù)性也隨之顯現(xiàn);3)6 mm情況下,XY截面上不滿足電場強度的要求,出現(xiàn)了嚴重不均勻的現(xiàn)象,且YZ截面的場強間斷性明顯,強度明顯變?nèi)?。由上述現(xiàn)象發(fā)現(xiàn):0.5和1 mm間距的極板均適用于霧滴的檢測,考慮到敷銅極板的加工難易程度以及噴霧中霧滴沉積量造成的系統(tǒng)靈敏度問題。綜上所述,本文選用間距為1 mm的叉指型霧滴采集極板探頭。
2.2.2 叉指型極板表面電場分布特性
同時圖5仿真結(jié)果表明:叉指型霧滴采集極板邊緣電場的強度在水平和垂直方向上均沿著遠離電極的方向而減小,電場的能量主要集中在兩極板探頭之間。兩電極相對的空間內(nèi)顏色最深,表現(xiàn)為紅色,具有最大強度的電場,尤其是電極邊緣處。應(yīng)該注意到,兩個電極板的中心部位表現(xiàn)為電場最弱的藍色,這是由于帶電導(dǎo)體的靜電屏蔽現(xiàn)象造成的[24]。在兩極板相對之外的空間內(nèi),隨著遠離電極的方向,電場顏色逐漸減弱為綠色、天藍色直至最后與遠處融為一色,變成深藍。這一結(jié)果表明,電場能夠在兩極板間距的范圍內(nèi)實現(xiàn)耦合。
圖5 叉指型霧滴采集極板不同間距下的電場強度分布圖Fig.5 Electric field intensity distribution of interdigitated droplet collection board under different spacing
試驗試劑:胭脂紅試劑、自來水及丙三醇溶液。試驗儀器:0.1~2.5 μL移液槍(上海注射器三廠Biohit proline W-103,精度0.05 μL),容量瓶、滴管、燒杯、溫濕度傳感器、德利斯公司玻璃手套箱、乳膠手套,英衡電子天平(精度0.001 g),SA-50W-12V/4A模塊,在線采集裝置,采樣濾紙規(guī)格(4 cm×4.2 cm),UV-5200分光光度計(上海元析公司),MSS-33544激光粒度儀。
考慮到藥液不同的介電常數(shù),試驗選取0.5 g/L胭脂紅溶液(介電常數(shù)79.2)與丙三醇溶液(介電常數(shù)47.8)。滴取前,叉指型極板表面擦拭干凈,放進玻璃手套箱,且平置于天平上,天平與電壓示數(shù)調(diào)至初始值。試驗開始,利用微量移液槍連續(xù)產(chǎn)生體積為0.05 μL大小的單個霧滴進行試驗,使霧滴充分滴落到叉指型霧滴采集極板間隙中,電壓示數(shù)趨于穩(wěn)定后停止。滴取中,不斷記錄天平與在線采集裝置中電壓的示數(shù)變化。滴取后,整個過程重復(fù)25次試驗。溫度為(24±0.5)℃,濕度為22%±0.8%,試驗布置(可忽略蒸發(fā)對本試驗的影響)示意圖如圖6所示。
圖6 實驗室試驗裝置示意圖Fig.6 Schematic diagram of test device in lab
試驗在玻璃手套箱環(huán)境下進行,為更好地定量分析叉指型霧滴采集裝置輸出電壓與滴取前后霧滴沉積量之間的關(guān)系,對所測的數(shù)據(jù)進行多項式擬合,測量數(shù)據(jù)中滴取前后在線采集電壓輸出變化值Δy為自變量,滴取前后的質(zhì)量變化值Δx為因變量,繪出了如圖7所示的曲線。
圖7 胭脂紅溶液與丙三醇溶液沉積回歸方程Fig.7 Regressive equation of carmine solution and glycerol solution in deposition
溶液的介電常數(shù)是和溶質(zhì)的濃度有關(guān)系的[25]:1)一般果蔬農(nóng)藥稀釋倍數(shù)介于800~1 600之間[26],藥液介電系數(shù)較大且接近水的介電常數(shù)80,因此該文選用胭脂紅藥液進行試驗;2)植保無人機噴灑多采用超低量噴霧,藥液濃度高,介電系數(shù)較小,因此選用丙三醇溶液進行試驗。所選的這2種用于標定的試劑的介電常數(shù)可以代表一般農(nóng)藥的介電常數(shù)。
圖7中2條曲線對比發(fā)現(xiàn),在相同沉積量情況下,胭脂紅溶液電壓輸出值波動范圍較丙三醇溶液明顯,且靈敏度較好,但二者滴取前后的電壓與藥液沉積量的回歸相關(guān)性均較好,2種不同介電常數(shù)的溶液決定系數(shù)R2分別為0.982 1和0.997 6。該基于駐波率原理的霧滴沉積量檢測系統(tǒng)實時采集的數(shù)據(jù)可以用于霧滴沉積量測量,同時可用于霧滴在作物靶標上分布參數(shù)優(yōu)化。
2017年2月15日,系統(tǒng)在中國農(nóng)業(yè)大學(xué)植保機械實驗室3 m×6 m區(qū)域內(nèi)測試,建立直角坐標系,區(qū)域布置在第一象限,坐標點標記(一個單位長度為1 m),噴霧機由坐標點(0,0)作業(yè)至(0,2)處,試驗中噴霧機的噴霧技術(shù)參數(shù)如表1所示。
表1 噴霧機的技術(shù)參數(shù)Table 1 Parameters of sprayer
叉指型霧滴采集極板布置分布在(1.5,1.5)、(3,1.5)、(4.5,1.5)的3個坐標點處,每塊霧滴采集極板周圍布置4張同樣大小的4 cm×4.2 cm濾紙,目的是在保證相同測試條件下,對4張測量結(jié)果取均值,用于與該系統(tǒng)的霧滴沉積量測量對比,試驗布置如圖8a所示。同時本研究設(shè)計的叉指型霧滴沉積量實時在線采集系統(tǒng)由帶有AD芯片數(shù)據(jù)采集的STM32單片機、ZigBee無線數(shù)傳模塊及12V歐力能供電模塊組成,傳感器節(jié)點安裝如圖8b所示。
圖8 叉指型霧滴采集板安裝與試驗布置Fig.8 Interdigitated droplet collector installation and test arrangement
噴施液體選用0.5 g/L胭脂紅溶液,試驗過程重復(fù)6次,分別得到18組采集樣本,噴霧測試環(huán)境溫度24°,濕度為22%,同時在此條件下利用激光粒度儀分別對不同噴霧距離處的霧滴體積中徑大小進行9次測定,取均值。基于在波長為508 nm下吸光度隨胭脂紅溶液濃度增大而增大的規(guī)律,本文借鑒了吸光度測量法在霧滴沉積量上的方法[27-31],見式(15)。利用模擬方法與吸光度法分別對18組采集樣本進行計算,試驗結(jié)果見表2。
式中βdep為霧滴沉積量,mg/cm2;ρsmpl為待測樣品的濃度讀數(shù);ρblk為空白對照的濃度讀數(shù);Vii為用于洗脫濾紙收集的胭脂紅的稀釋液的體積,L;ρspray為藥箱內(nèi)胭脂紅噴灑液濃度,g/L;Acol為濾紙面積,cm2;Fcal為校正因子。
為評估系統(tǒng)測量法和吸光度法對于霧滴沉積量檢測的效果,將不同噴霧距離處的模擬值和實測值進行比較(如表2所示),式(16)表述均方根誤差RMSE,反映了模擬值距偏離真實值的離散度與精密度,為進一步分析采樣點偏差程度,式(17)表述采樣點中最大相對測量誤差emax[32]。式中Xmodel,i為使用系統(tǒng)法所獲得的霧滴沉積量(簡稱“模擬值”),mg/cm2;Xobs,i為使用吸光度法所獲得霧滴沉積量(簡稱“實測值”),mg/cm2;N為所對應(yīng)噴霧距離處的樣本數(shù)。
表2 在噴霧距離1.5、3、4.5 m處模擬值與實測值試驗結(jié)果Table 2 Results of simulated values and measured values at spray distance of 1.5,3,4.5 m
將6次采集的試驗樣本篩選,并以不同噴霧距離處霧滴粒徑大小分布進行歸類,以采樣濾紙吸光度法獲得的數(shù)據(jù)為參考指標,結(jié)合激光粒度儀對不同距離處的霧滴大小測定結(jié)果,由試驗分析可知,表2中距離在1.5 m處時,霧滴體積中徑VMD在136.5至288.7 μm之間,采樣點均方根誤差RMSE為0.076 7 mg/cm2(系統(tǒng)的模擬值),最大相對測量誤差4.56%,按照Miller PH模型,1.5 m處由于距離噴嘴口較近,產(chǎn)生較多大粒徑霧滴,一方面由于動量較大,撞擊樹脂板較濾紙產(chǎn)生反彈作用更為明顯,另一方面由于采集板表面光滑,使得霧滴在樹脂板上鋪展面積相對較大,阻抗發(fā)生變化,使得氣液混合介電系數(shù)高于試驗標定數(shù)值;距離在3 m處時,霧滴體積中徑VMD在84.2至112.5 μm之間,采樣點均方根誤差RMSE為0.025 5 mg/cm2,最大相對測量誤差僅2.65%,原因是霧滴體積中徑減小,一方面動能急劇減少,反彈作用趨于減弱,另一方面,該粒徑下的霧滴粘連情況減少,鋪展面積符合標定試驗要求,在樹脂板上的沉積性趨于平穩(wěn);距離在4.5 m處時,霧滴體積中徑VMD在23.5至50.8 μm之間,采樣點均方根誤差RMSE為0.056 4 mg/cm2,最大相對測量誤差7.95%,因為采樣點距離噴嘴口較遠,霧滴粒徑很小,一方面該粒徑下霧滴鋪展性較差,使得氣液混合介電系數(shù)低于試驗標定數(shù)值,另一方面液膜較薄,蒸發(fā)因素影響顯著。
系統(tǒng)模擬值與吸光度實測值在噴霧距離1.5、3、4.5 m處的霧滴沉積量測量對比,系統(tǒng)模擬值均小于吸光度實測值,這與采集板的表面材料屬性相關(guān)性較大,霧滴易在其表面形成彈跳、飛濺,而霧滴相對容易在濾紙表面附著。另外,霧滴的蒸發(fā)也是重要的影響因素,需對系統(tǒng)采集頻率進行校正,減少系統(tǒng)測量誤差。
綜上所述,本文所設(shè)計的霧滴采集系統(tǒng)可以適用于300 μm粒徑范圍內(nèi)不同霧滴大小的沉積量測定,滿足霧滴噴霧質(zhì)量檢測的應(yīng)用需求。
1)本文理論推導(dǎo)了霧滴沉積量與叉指型采集系統(tǒng)參數(shù)的回歸關(guān)系和計算方程,進一步證明了利用變介電常數(shù)駐波率原理進行霧滴沉積量測量的可行性。
2)針對叉指型霧滴采集系統(tǒng)測試頻率與極板間距進行了深入研究,借助HFSS三維電磁仿真軟件,對4種不同間距的極板進行了仿真與電場特性分析,最終確定了極板的間距,并闡釋了銅極板內(nèi)部靜電屏蔽的機理。
3)從實驗室標定與應(yīng)用測試結(jié)果可以得出,設(shè)計的叉指型霧滴采集系統(tǒng)在300 μm粒徑范圍內(nèi)具有可行性,參照吸光度法與系統(tǒng)測量法的均方根誤差RMSE最大為0.076 7 mg/cm2及其最大相對測量誤差不超過7.95%,分析表明,霧滴沉積趨勢結(jié)果基本一致,可以用于霧滴沉積量的測量。
4)提出的利用駐波率法叉指型霧滴采集系統(tǒng)可實現(xiàn)對溫室中霧滴沉積量的實時檢測,具有較高的可靠性,同時對于大田霧滴噴霧質(zhì)量的檢測及研究霧滴分布特性與規(guī)律(如霧滴分布變異系數(shù)、有效幅寬等測量等方面)具有較大的實際意義。
[1] Qin W C, Xue X Y, Zhou L X, et al. Effects of spraying parameters of unmanned aerial vehicle on droplets deposition distribution of maize canopies[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(5): 50-56.
[2] Wang S, Dorr G J, Khashehchi M, et al. Performance of selected agricultural spray nozzles using particle image velocimetry[J]. Journal of Agricultural Science & Technology, 2015, 17(3): 601-613.
[3] 莽璐,祁力鈞,冀榮華,等. 溫室自動變量施藥系統(tǒng)設(shè)計[J].中國農(nóng)業(yè)大學(xué)學(xué)報,2009,14(4):114-118.
Mang Lu, Qi Lijun, Ji Ronghua, et al. Design of variable rate spray system in greenhouse[J]. Journal of China Agricultural University, 2009, 14(4): 114-118. (in Chinese with English abstract)
[4] 廖娟,臧英,周志艷,等. 作物航空噴施作業(yè)質(zhì)量評價及參數(shù)優(yōu)選方法[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(增刊2):38-46.
Liao Juan, Zang Ying, Zhou Zhiyan, et al. Quality evaluation method and optimization of operating parameters in crop aerial spraying technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp.2): 38-46. (in Chinese with English abstract)
[5] 邱白晶,閆潤,馬靖,等. 變量噴霧技術(shù)研究進展分析[J].農(nóng)業(yè)機械學(xué)報,2015,46(3):59-72.
Qiu Baijing, Yan Run, Ma Jing, et al. Research progress analysis of variable rate sprayer technology[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(3): 59-72. (in Chinese with English abstract)
[6] 張京,何雄奎,宋堅利,等. 無人駕駛直升機航空噴霧參數(shù)對霧滴沉積的影響[J]. 農(nóng)業(yè)機械學(xué)報,2012,43(12):94-96.
Zhang Jing, He Xiongkui, Song Jianli, et al. Influence of spraying parameters of unmanned aircraft on droplets deposition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(12): 94-96. (in Chinese with English abstract)
[7] Wang Z H, Wang F P, Fan J R, et al. The spraying field characteristics and distribution of deposition of droplets of electrostatic oiler[J]. Journal of Engineering and Technology Research, 2016, 8(4): 31-46.
[8] 陳盛德,蘭玉彬,李繼宇,等. 小型無人直升機噴霧參數(shù)對雜交水稻冠層霧滴沉積分布的影響[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(17):40-46.
Chen Shengde, Lan Yubin, Li Jiyu, et al. Effect of spray parameters of small unmanned helicopter on distribution regularity of droplet deposition in hybrid rice canopy[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(17): 40-46. (in Chinese with English abstract)
[9] 王昌陵,何雄奎,王瀟楠,等. 無人植保機施藥霧滴空間質(zhì)量平衡測試方法[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(11):54-61.
Wang Changling, He Xiongkui, Wang Xiaonan, et al. Testing method of spatial pesticide spraying deposition quality balance for unmanned aerial vehicle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(11): 54-61. (in Chinese with English abstract)
[10] 張瑞瑞,陳立平,蘭玉彬,等. 航空施藥中霧滴沉積傳感器系統(tǒng)設(shè)計與實驗[J]. 農(nóng)業(yè)機械學(xué)報,2014,45(8):123-127.
Zhang Ruirui, Chen Liping, Lan Yubin, et al. Development of a deposit sensing system for aerial spraying application[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(8): 123-127. (in Chinese with English abstract)
[11] Zhu H P, Salyani M, Fox R D. A portable scanning system for evaluation of spray deposit distribution[J]. Co-mputers and Electronics in Agriculture, 2011, 76(1): 38-43.
[12] Salyani M, Serdynski J. Development of a sensor for spray deposition assessment[J]. Transactions of the Asae, 1990, 33(5): 1464.
[13] 王景旭,祁力鈞,夏前錦. 靶標周圍流場對風(fēng)送噴霧霧滴沉積影響的CFD模擬及驗證[J]. 農(nóng)業(yè)工程學(xué)報,2015,31(11):46-53.
Wang Jingxu, Qi Lijun, Xia Qianjin. CFD simulation and validation of trajectory and deposition behavior of droplets around target affected by air flow field in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 46-53. (in Chinese with English abstract)
[14] 高志濤,劉衛(wèi)平,趙燕東,等. 多層土壤剖面復(fù)合傳感器設(shè)計與性能分析[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(1):108-117.
Gao Zhitao, Liu Weiping, Zhao Yandong, et al. Design and performance analysis of composite sensor for multilayer soil profile[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 108-117. (in Chinese with English abstract)
[15] Giles D K, Downey D, Crowe T G. Digital device and technique for sensing distribution of spray desposition[J]. Transactions of the Asae, 2005, 48(6): 2085-2093.
[16] 祁力鈞,馬偉. 一種作物根區(qū)土壤肥藥注施靶標在線預(yù)測定點方法:CN104076711A[P]. 2014-10-01.
[17] 劉賀,趙燕東. 基于駐波原理的短探針小麥莖水分傳感器[J].農(nóng)業(yè)工程學(xué)報,2011,27(11):140-144.
Liu He, Zhao Yandong. Wheat stem moisture sensor using short probes based on SWR principle[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2011, 27(11): 140-144. (in Chinese with English abstract)
[18] 岳志勤,姚志明,宋巖,等. 同軸電纜轉(zhuǎn)接中特性阻抗的錯位補償計算方法[J]. 現(xiàn)代應(yīng)用物理,2014,5(1):64-70.
Yue Zhiqin, Yao Zhiming, Song Yan, et al. Calculation of impedance compensation for design of coaxial cable connectors[J]. Modern Applied Physics, 2014, 5(1): 64-70. (in Chinese with English abstract)
[19] 趙燕東,高超,張新,等. 基于駐波率原理的植物莖體水分無損檢測方法研究[J]. 農(nóng)業(yè)機械學(xué)報,2016,47(1):310-316.
Zhao Yandong, Gao Chao, Zhang Xin, et al. Non-destruc-tive measurement of plant stem water content based on standing wave ratio[J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(1): 310-316. (in Chinese with English abstract)
[20] Topp G C, Davis J L, Annan A P. Electromagnetic determination of soil water content using TDR: I. Applications to wetting fronts and steep gradients1[J]. Soil Science Society of America Journal, 1982, 46(4): 672-678.
[21] 白陳祥. 基于駐波原理的喬木莖干含水率檢測方法研究[D].北京:北京林業(yè)大學(xué),2008.
Bai Chenxiang. The Study on Measurement of Stem Water Content Based on Standing Wave Theory[D]. Beijing: Beijing Forestry University, 2008. (in Chinese with English abstract)
[22] 王海蘭,張新,盛文溢,等. 基于TDT原理的灌木水分傳感器探頭設(shè)計與實驗[J]. 農(nóng)業(yè)機械學(xué)報,2014,45(5):259-264.
Wang Hailan, Zhang Xin, Sheng Wenyi, et al. Experiment research on shrubs moisture sensor probe structure by TDT principle[J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(5): 259-264. (in Chinese with English abstract)
[23] Singh A K, Gangwar R K, Kanaujia B K. Wideband and compact slot loaded annular ring microstrip antenna using L-probe proximity-feed for wireless communications[J]. International Journal of Microwave & Wireless Technologies, 2015, 1(7): 1-9.
[24] 王巧利. 基于介電原理的淺層土壤水分測量方法研究[D].北京:北京林業(yè)大學(xué),2015.
Wang Qiaoli. Topsoil Moisture Measurement Using a Directric Constant Method[D]. Beijing: Beijing Forestry University, 2015. (in Chinese with English abstract)
[25] 徐士鳴,劉歡,吳曦,等. KI/LiCl/LiBr-水-乙醇三元體系電導(dǎo)率特性研究[J]. 大連理工大學(xué)學(xué)報,2017,57(1):23-28.
Xu Shiming, Liu Huan, Wu Xi, et al. Study of conductivity charcteristics of ternary solutions KI/LiCl/Li Br-water-ethanol[J]. Journal of Dalian University of Technology, 2017, 57(1): 23-28. (in Chinese with English abstract)
[26] 傅澤田,祁力鈞,王秀. 農(nóng)藥噴施技術(shù)的優(yōu)化[M]. 北京:中國農(nóng)業(yè)科學(xué)技術(shù)出版社,2002.
[27] 邱白晶,王立偉,蔡東林,等. 無人直升機飛行高度與速度對噴霧沉積分布的影響[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(24):25-32.
Qiu Baijing, Wang Liwei, Cai Donglin, et al. Effects of flight altitude and speed of unmanned helicopter on spray deposition uniform[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(24): 25-32. (in Chinese with English abstract)
[28] Qin W C, Xue X Y, Cui L F, et al. Optimization and test for spraying parameters of cotton defoliant sprayer[J]. International Journal of Agricultural & Biological Engineering, 2016, 9(4): 63-72.
[29] 祁力鈞,杜政偉,冀榮華,等. 基于GPRS的遠程控制溫室自動施藥系統(tǒng)設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(23):51-57.
Qi Lijun, Du Zhengwei, Ji Ronghua, et al. Design of remote control system for automatic sprayer based on GPRS in greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 51-57. (in Chinese with English abstract)
[30] Xue X Y, Tu K, Qin W C, et al. Drift and deposition of ultra-low altitude and low volume application in paddy field[J]. International Journal of Agricultural & Biological Engineering, 2014, 7(4): 23-28.
[31] 王沛,祁力鈞,李慧,等. 植物葉片表面結(jié)構(gòu)對霧滴沉積的影響分析[J]. 農(nóng)業(yè)機械學(xué)報,2013,44(10):75-79.
Wang Pei, Qi Lijun, Li Hui, et al. Influence of plant leafsurface structures on droplet deposition[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(10): 75-79. (in Chinese with English abstract)
[32] 李明,趙春江,李道亮,等. 日光溫室黃瓜葉片濕潤傳感器校準方法[J]. 農(nóng)業(yè)工程學(xué)報,2010,26(2):224-230.
Li Ming, Zhao Chunjiang, Li Daoliang, et al. Calibration method of leaf wetness sensor for cucumber in solar greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 224-230. (in Chinese with English abstract)
Design and experiment of pesticide droplet deposition detection system based on principle of standing wave ratio
Wu Yalei1, Qi Lijun1※, Zhang Ya2, Gao Chunhua1, Li Shuai3, Elizabeth Musiu1
(1. College of Engineering, China Agricultural University, Beijing 100083, China; 2. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China; 3. Department of Mechanical Engineering; North China Electric Power University, Baoding 071051, China)
In order to realize the rapid acquisition of droplet deposition after application, this study proposed an interdigitated droplet collecting board structure based on standing wave ratio principle. The purpose of this study was to quickly and effectively obtain the characteristics and regularity of the droplet deposition distribution. On one hand, the system could reduce the experiment cost, the difficulty of operation and the complexity of the experiment. On the other hand, the system was important to evaluate the quality of pesticide application and improve the utilization rate of pesticide. Optimized droplet deposition detection technology could solve the problem of single measurement method and low efficiency of droplet deposition distribution in field, which was a goal pursued by scholars in this research field. Based on the principles of standing wave ratio and sensor network technology, the real-time detection system of droplet deposition on the ground was designed. The droplet distribution characteristics of the electric field were explored by the method of simulation, and then the optimal parameters of the interdigitated droplet collecting board were obtained. At the same time, combined with the greenhouse self-propelled sprayer system, the application test and verification test were carried out to obtain the distribution characteristics of droplet deposition accurately and quickly. The real-time detection system of droplet deposition in the greenhouse could be realized by using the method of standing wave ratio, and the reliability was very high. At the same time, the system had great practical significance in the field of droplet spray quality detection and regularity research. In order to verify the rationality of the interdigitated droplet collecting board structure, the electromagnetic simulation of the system was carried out by using the three-dimensional electromagnetic simulation software HFSS (high frequency structure simulator). The device took the STM32 single chip microcomputer as its core to build the ZigBee network, and the signal of the droplet collection sensor was transmitted to the remote terminal based on LabView2014 through the RS232 serial port, which realized the real-time monitoring of the droplet deposition. The results of the HFSS model showed that the electrostatic shielding appeared inside the interdigitated droplet collection board. The electromagnetic coupling could be realized by the droplets between the boards, which could be used to detect the droplet deposition. The sensitivity of the system would be decreased with the board spacing broadening. The regression equation of the relationship between the output voltage of the detection system and the deposition amount of the reagent solution was established through the calibration experiment. The determination coefficients under 2 different dielectric constants were 0.982 1 and 0.997 6 respectively. The 3W-ZW10 type self-propelled sprayer application test in greenhouse showed that the maximum relative error rate of the simulated value of the deposition amount of the system at the sampling point was not more than 7.95%. The RMSE (root mean square error) of the measured value was 0.076 7 mg/cm2. The detection accuracy of droplet deposition was high. The droplet deposition amount detection system can be used for rapid measurement of field droplet deposition rate based on the principle of standing wave ratio. From the laboratory calibration and application test results, it can be concluded that the design of the interdigitated droplet collection system is feasible within the range of 300 μm particle size. The proposed real-time detection method of droplet deposition in greenhouse based on the standing wave ratio is suitable for the detection of the droplet spray quality and the characteristics of droplet distribution. This research can provide reference for the measurement of droplet deposition.
design; computer simulation; spraying; standing wave ratio principle; interdigitated droplet collection board probe; droplets deposition quantity measurement; HFSS simulation
10.11975/j.issn.1002-6819.2017.15.008
TP212.9; S491
A
1002-6819(2017)-15-0064-08
2017-03-03
2017-07-16
科技部國家重點研發(fā)計劃項目“地面與航空高工效施藥技術(shù)及智能化裝備”(2016YFD0200700);科技部國家重點研發(fā)計劃項目“現(xiàn)代果園智能化精細生產(chǎn)管理技術(shù)裝備研發(fā)”(2017YFD0701400)
吳亞壘,男,博士生,研究方向為主要從事植保機械研究。北京中國農(nóng)業(yè)大學(xué)工學(xué)院,100083。Email:kevin_wuyalei@cau.edu.cn
※通信作者:祁力鈞,男,博士,教授,研究方向為從事植保機械研究。北京 中國農(nóng)業(yè)大學(xué)工學(xué)院,100083。Email:qilijun@cau.edu.cn