朱 芳,崔照領(lǐng),宮心鵬,尚素霜,張香玲
(1.邯鄲市第一醫(yī)院,河北 邯鄲 056000;2.石家莊市第六醫(yī)院,河北 石家莊 050000)
TCDD暴露對(duì)小鼠在位子宮內(nèi)膜hMLH1表達(dá)的影響及其甲基化程度的研究
朱 芳1,崔照領(lǐng)2,宮心鵬2,尚素霜1,張香玲1
(1.邯鄲市第一醫(yī)院,河北 邯鄲 056000;2.石家莊市第六醫(yī)院,河北 石家莊 050000)
目的探討自胚胎期至成年期氯代二惡英(TCDD)暴露后小鼠子宮內(nèi)膜組織、hMLH1的表達(dá)及錯(cuò)配修復(fù)基因1(hMLH-1)基因啟動(dòng)子區(qū)CpG島甲基化程度。方法選60只C57BL/6雌性小鼠以2:1與30只C3H雄性小鼠隨機(jī)合籠交配,見(jiàn)到陰道栓為受孕當(dāng)日,60只已孕母鼠于受孕第8天(胎兒期)以鼻飼法暴露TCDD,且被隨機(jī)分為對(duì)照組(TCDD:0μg/kg)及實(shí)驗(yàn)組(TCDD:3μg /kg),實(shí)驗(yàn)組所產(chǎn)雌性子鼠于出生后21天(青春期)再次分別暴露TCDD,每組均選12只雌性子鼠(體重6.40±0.20g),依據(jù)暴露劑量分為A組:0μg/kg,B組:3μg/kg,C組:10μg /kg。實(shí)驗(yàn)各組于出生后49天(成年期)再次暴露TCDD(3μg/kg),出生后70天再次給予TCDD 3μg/kg同時(shí)行子宮內(nèi)膜移植術(shù)構(gòu)建小鼠子宮內(nèi)膜異位癥模型,術(shù)后3、6、9周各組再次追加暴露TCDD(3μg/kg),術(shù)后12周脫臼處死雌性子鼠。免疫組化SP法檢測(cè)在位內(nèi)膜組織中hMLH1的表達(dá)。甲基化特異性PCR(MSP)方法檢測(cè)各組hMLH1基因啟動(dòng)子區(qū)CpG島的甲基化程度。結(jié)果hMLH1在對(duì)照組中的表達(dá)與A組相比無(wú)顯著性差異 (t=0.561,P>0.05),但其他各組間兩兩比較有顯著性差異,其中A組表達(dá)高于B組(t=3.056,P<0.05),B組表達(dá)高于C組(t=2.228,P<0.05)。各組hMLH1基因啟動(dòng)子區(qū)CpG島甲基化程度比較:對(duì)照組與A組比較無(wú)顯著性差異(χ2=1.339,P>0.05),其他各組間兩兩比較有顯著性差異,其中A組低于B組(χ2=4.444,P<0.05),而 B組低于C組(χ2=6.316,P<0.05)。結(jié)論自胚胎期至成年期持續(xù)暴露TCDD有可能使hMLH1基因啟動(dòng)子區(qū)CpG島發(fā)生超甲基化改變,導(dǎo)致hMLH1在組織中表達(dá)下降,從而影響成熟期子宮內(nèi)膜的錯(cuò)配修復(fù)基因的功能,這些可能促進(jìn)了成年期子宮內(nèi)膜異位癥的發(fā)生與發(fā)展。
氯代二惡英;在位內(nèi)膜;錯(cuò)配修復(fù)基因1(hMLH1);超甲基化
子宮內(nèi)膜異位癥簡(jiǎn)稱(chēng)內(nèi)異癥(endometriosis,EMs)是臨床常見(jiàn)的雌激素依賴(lài)性良性疾病,可導(dǎo)致女性痛經(jīng)、月經(jīng)失調(diào)、不孕、慢性盆腔痛等,同時(shí)也具有“侵襲、轉(zhuǎn)移”以及惡變的可能。二惡英類(lèi)是特殊的氯化三環(huán)芳烴類(lèi)有機(jī)化合物, 毒性極強(qiáng),包括多氯二苯并對(duì)二惡英(poly chloro dibenzo-para-dioxin,PCDD)和多氯二苯并呋喃(poly chlorodibenzo furan,PCDF)共210種。其中2,3,7,8-氯代二惡英(2,3,7,8 tetra chloro dibenzo-para-dioxin,2,3,7,8-TCDD或TCDD)為此類(lèi)代表物,研究也較多[1]。TCDD暴露可以通過(guò)多種方式調(diào)節(jié)促進(jìn)內(nèi)異癥的發(fā)生與發(fā)展[2-5]。表觀遺傳學(xué)是在基因序列不發(fā)生變化的情況下,調(diào)控基因的信息通過(guò)化學(xué)修飾或調(diào)節(jié)作用,影響和調(diào)節(jié)基因的功能和特性,并且可以通過(guò)細(xì)胞分裂和增殖周期遺傳給后代,DNA甲基化調(diào)節(jié)是最常見(jiàn)的表觀遺傳學(xué)作用[6]。TCDD具有表觀遺傳學(xué)的甲基化調(diào)節(jié)作用[7],可使小鼠內(nèi)異癥模型在位內(nèi)膜中PR亞型——PRB出現(xiàn)超甲基化的表現(xiàn),可能促進(jìn)了內(nèi)異癥的發(fā)生與發(fā)展[8],進(jìn)一步闡明內(nèi)異癥為遺傳表觀學(xué)疾病[9]。目前研究表明,錯(cuò)配修復(fù)基因中hMLH1的超甲基化在眾多疾病的發(fā)生、發(fā)展中起到關(guān)鍵作用。本研究旨在研究不同發(fā)育階段的小鼠暴露TCDD后,其在位內(nèi)膜hMLH1的表達(dá)及hMLH1基因啟動(dòng)子區(qū)CpG島甲基化程度的情況,探討TCDD對(duì)內(nèi)異癥發(fā)病的影響及其機(jī)制。
1.1實(shí)驗(yàn)動(dòng)物與試劑
選60只體重18~22g的成熟雌性無(wú)特殊病原體(specific pathogen free,SPF)級(jí)C57BL/6小鼠;30只體重20~24g成熟雄性SPF級(jí)C3H小鼠(購(gòu)于北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司)。2,3,7,8-TCDD為標(biāo)準(zhǔn)品(純度>99%,ED-901-C,Cambridge Isotope Labe)。
1.2實(shí)驗(yàn)方法及內(nèi)容
1.2.1 實(shí)驗(yàn)分組
60只C57BL/6雌性小鼠與30只C3H雄性小鼠以2:1隨機(jī)合籠交配,以見(jiàn)到陰道栓為受孕日,60只已孕母鼠于受孕第8天(胎兒期)以鼻飼法暴露TCDD,且被隨機(jī)分為對(duì)照組(TCDD:0μg/kg)及實(shí)驗(yàn)組(TCDD:3μg/kg),實(shí)驗(yàn)組所產(chǎn)雌性子鼠于出生后21天(青春期)再次分別暴露TCDD,每組均選12只雌性子鼠(體重6.40±0.20g),依據(jù)暴露劑量分為A組:0μg/kg,B組:3μg /kg,C組:10μg/kg。實(shí)驗(yàn)各組于出生后49天(成年期)再次暴露TCDD(3μg/kg),出生后70天再次給予TCDD(3μg/kg),同時(shí)行子宮內(nèi)膜移植術(shù)構(gòu)建小鼠子宮內(nèi)膜異位癥模型,術(shù)后3、6、9周各組再次追加暴露TCDD(3μg/kg),術(shù)后12周脫臼處死雌性子鼠。取其子宮角,中性福爾馬林固定,石蠟包埋。在位內(nèi)膜組織石蠟切片,厚度4μm,每例標(biāo)本切片至少5張。
1.2.2動(dòng)物建模術(shù)
采用自體子宮內(nèi)膜移植法建立小鼠EMs模型。在無(wú)菌條件下,將一側(cè)子宮角分成3塊,分別縫合在小鼠卵巢,腹膜和腹部皮下,每塊大小約2mm×2mm。
判斷建模成功的標(biāo)準(zhǔn)為①肉眼觀:移植的子宮內(nèi)膜存活,移植物的體積增大,周?chē)h(huán)豐富,可見(jiàn)內(nèi)含清亮液體的小囊泡;②鏡下觀:病理檢查見(jiàn)異位灶有子宮內(nèi)膜腺體和間質(zhì)細(xì)胞,其間可有炎性細(xì)胞浸潤(rùn)。
1.3異位病灶的形成和檢測(cè)
于建模術(shù)后12周處死小鼠,根據(jù)大體外觀和鏡下病理組織形態(tài)學(xué)鑒定子宮內(nèi)膜異位病灶的形成,將異位種植物及其周?chē)尺B的組織取下,制成石蠟塊,蘇木素伊紅(hematoxylin and eosin staining kit,HE)染色,用于病理組織形態(tài)學(xué)的鑒定和評(píng)估。
1.4指標(biāo)檢測(cè)
免疫組化SP檢測(cè)在位內(nèi)膜中hMLH1的表達(dá)及甲基化特異性PCR檢測(cè)在位內(nèi)膜組織中hMLH1基因啟動(dòng)子區(qū)CpG島甲基化程度。
1.5實(shí)驗(yàn)步驟
1.5.1免疫組織化學(xué)染色法(SP法)
組織切片脫蠟、水化,微波爐間斷加熱抗原修復(fù)30個(gè)循環(huán),3%過(guò)氧化氫甲醇溶液消除內(nèi)源性過(guò)氧化物酶,PBS溶液清洗5min,重復(fù)3次。山羊血清封閉20min,甩干,勿洗。加一抗(鼠單克隆抗體hMLH1為1:50),37℃水浴箱孵育4h,PBS溶液清洗5min,重復(fù)3次。加二抗,室溫15min,PBS溶液清洗5min,重復(fù)3次。HRP標(biāo)記的鏈霉親和素,室溫10min,PBS溶液清洗5min,重復(fù)3次。DAB顯色,顯微鏡下觀察。蘇木素復(fù)染2min,水洗,乙醇脫干,封片。以PBS液代替一抗染色,染色結(jié)果陰性為對(duì)照組。
免疫組化結(jié)果判定:高倍視野(400×)下隨機(jī)選取切片中5個(gè)不重疊的區(qū)域,計(jì)算單位面積中陽(yáng)性區(qū)域平均光密度( optical density,OD)來(lái)反映蛋白的相對(duì)含量。
1.5.2甲基化特異性PCR(methylation-specific PCR,MS-PCR)
酚-氯仿法提取石蠟組織中DNA并測(cè)定其DNA純度用于甲基化特異性PCR。
PCR擴(kuò)增引物設(shè)計(jì)參照有關(guān)文獻(xiàn)[10]:
hMLH1 FM 5′-ACGTAGACGTTTTATTAGGGTCGC-3′
hMLH1 RM 5′-TCCGACCCGAATAAACCCAA-3′ 57℃
hMLH1 FUM 5′-TTTTGATGTAGATGTTTTATTAGGGTTGT-3′
hMLH1 RUM 5′-ACCACCTCATCATAACTACCCACA-3′ 58℃
F代表上游,R代表下游,U代表非甲基化,M代表甲基化。
引物由上海生工生物工程股份有限公司合成。
1.5.3 MSP步驟
1.5.3.1亞硫酸氫鈉修飾提取DNA DNA 20μL加去離子水(dd·H2O)24.5μL,加3mol/L NaOH 5.5μL,37℃,15min。加入 3mol/L NaHSO3(pH 5.0) 280μL +新鮮配置的10mmol/L C6H6O215μL,55℃溫浴18h(過(guò)夜)。
透析方法:500mmol/L NaAC,4℃,4h; 0.5mmol/L C6H6O24℃,4h;0.5mmol/L NaAc,4℃過(guò)夜;dd H2O 4℃,4h,3次,最后一次4℃過(guò)夜。透析完畢,沉淀DNA(NaAc 和乙醇),TE緩沖液20μL溶解DNA,置于-20℃保存。
1.5.3.2反應(yīng)體系及條件 25μL,10μmol/L引物各1μL;模板2μL;10mmol/L dNTP 0.5μL;5U/μL Taq DNA聚合酶0.5μL;10×PCR反應(yīng)緩沖液2.5μL;25mmol/L MgCl21.5μL;上樣染料;優(yōu)化劑;穩(wěn)定劑;滅菌去離子水。震蕩混勻后短暫離心,加少許礦物油于PCR儀擴(kuò)增。擴(kuò)增條件:95℃變性3min (95℃ 45s ,各自的退火溫度50s,72℃ 60s) 35個(gè)循環(huán);72℃ 延伸14min。
1.6統(tǒng)計(jì)學(xué)方法
2.1子宮內(nèi)膜移植術(shù)成功構(gòu)建的小鼠內(nèi)異癥模型
研究發(fā)現(xiàn)隨暴露劑量的增加異位灶外觀由小囊泡發(fā)展為大囊泡,內(nèi)有大量液體積聚,表面張力較大腹腔組織粘連嚴(yán)重(見(jiàn)圖1、圖2)。數(shù)據(jù)統(tǒng)計(jì)結(jié)果顯示B組種植成功率顯著高于對(duì)照組(χ2= 9.430,P<0.05),對(duì)照組中皮下、腹膜及卵巢異位種植成功率無(wú)顯著差異(P>0.05)。A組中皮下和卵巢的異位種植成功率有顯著差異(χ2=6.750,P<0.05),皮下和腹膜,腹膜和卵巢的異位種植成功率無(wú)顯著差異(均P>0.05)。B組中卵巢部位種植成功率顯著高于皮下種植成功率(χ2=6.316,P<0.05),皮下與腹膜,腹膜與卵巢種植成功率無(wú)顯著差異(均P>0.05)。C組中卵巢部位的異位種植成功率顯著高于皮下種植成功率(χ2=8.710,P<0.05),皮下與腹膜,腹膜與卵巢的異位種植成功率無(wú)顯著差異(均P>0.05),見(jiàn)表1。
2.2各組別在位子宮內(nèi)膜組織中hMLH1的表達(dá)
小鼠在胎兒期及生后不同的發(fā)育階段暴露于TCDD并且造模成功后,采用免疫組織化學(xué)方法觀察其在位子宮內(nèi)膜組織中hMLH1的表達(dá),免疫組化結(jié)果顯示hMLH1主要在子宮內(nèi)膜腺體細(xì)胞的胞核中表達(dá),見(jiàn)圖3。采用多個(gè)樣本均數(shù)比較的方差分析,hMLH1在四組的表達(dá)具有顯著性差異,經(jīng)兩兩比較,hMLH1在對(duì)照組中的表達(dá)與A組相比無(wú)顯著性差異 (t=0.561,P=0.071>0.05),但其他各組間兩兩比較有顯著性差異,其中A組表達(dá)高于B組(t=3.056,P=0.000<0.05),B組表達(dá)高于C組(t=2.228,P=0.000<0.05),見(jiàn)表2。
圖1子宮內(nèi)膜移植術(shù)成功構(gòu)建的小鼠內(nèi)異癥模型中囊泡及腹腔粘連
Fig.1 Bubbles and abdominal adhesion in mouse endometriosis model established successfully by endometrium transplatation
圖2子宮內(nèi)膜移植術(shù)成功構(gòu)建的小鼠內(nèi)異癥模型中異位的內(nèi)膜腺體(SP×400)
Fig.2 Ectopic endometrial glands in mouse endometriosis model established successfully by endometrium transplatation (SP×400)
表1 各組不同部位異位內(nèi)膜種植成功率的比較[n(%)]
注:a為皮下與卵巢;b為皮下與腹膜;c為腹膜與卵巢;*為B組與對(duì)照組。
對(duì)照組A組B組C組
圖3 hMLH1在各組中的表達(dá)(SP×400)
Fig.3 Expression of hMLH1 in different groups (SP×400)
2.3 hMLH1基因啟動(dòng)子區(qū)CpG島甲基化程度
小鼠在胎兒期及生后不同的發(fā)育階段暴露于TCDD并且造模成功后,采用甲基化特異PCR技術(shù)檢測(cè)其在位子宮內(nèi)膜組織中hMLH1的甲基化程度,見(jiàn)圖4。采用多個(gè)樣本率比較的卡方檢驗(yàn),各組hMLH1基因啟動(dòng)子區(qū)CpG島甲基化程度比較:對(duì)照組與A組比較無(wú)顯著性差異(χ2=1.339,P=1.000>0.05),其他各組間兩兩比較有顯著性差異,其中A組低于B組(χ2=4.444,P=0.037<0.05),而 B組低于C組(χ2=6.316,P=0.012<0.05),見(jiàn)表3。
組別例數(shù)(n)hMLH1tP對(duì)照組120.5512±0.0031A組120.5350±0.00710.5610.071B組120.2562±0.00783.0560.000C組120.1212±0.00672.2280.000
表3各組hMLH1的甲基化程度[n(%)]
Table 3 Methylation of hMLH1 in different groups[n(%)]
組別例數(shù)(n)甲基化hMLH1非甲基化hMLH1χ2P對(duì)照組1211(91.67)1(8.33)A組122(16.67)10(83.33)1.3391.000B組127(58.33)5(41.67)4.4440.037C組1212(100.00)0(0.00)6.3160.012
圖4 各組hMLH1的甲基化程度
3.1 TCDD的甲基化調(diào)節(jié)作用與錯(cuò)配修復(fù)基因hMLH1的超甲基化
表觀遺傳學(xué)(epigenetics)是指DNA序列不發(fā)生改變的情況下,調(diào)控基因的信息通過(guò)化學(xué)修飾基因DNA和組蛋白, 蛋白質(zhì)與蛋白質(zhì)、RNA干擾、DNA與其它分子之間相互作用影響和調(diào)節(jié)基因的功能和特性, 并且具有可復(fù)性的遺傳給后代。其重要方面就是DNA的啟動(dòng)子區(qū)中CpG島的甲基化,一般是指S-腺苷蛋氨酸(SAM)作為甲基供體與基因啟動(dòng)子區(qū)CpG島(二核苷酸島)胞嘧啶環(huán)第5碳原子以共價(jià)鍵的形式結(jié)合,形成了5-甲基胞嘧啶。環(huán)境污染物可通過(guò)表觀遺傳學(xué)中甲基化調(diào)節(jié)作用導(dǎo)致人類(lèi)腫瘤的發(fā)生[11]。已有研究證明了TCDD的甲基化調(diào)節(jié)作用[12]。TCDD并非ERα和ERβ的直接受體,但它卻與ER活動(dòng)相關(guān)的分子功能水平緊密相關(guān),比如影響AhR受體與ER之間的作用[13]。另外也可能與PI3K/Akt、IGF-1、 PTEN信號(hào)旁路有關(guān)[14]。隨著環(huán)境基因組學(xué)的應(yīng)用和發(fā)展,有關(guān)其作用機(jī)制方面的具體研究正逐步深入。我們一系列研究表明自胚胎期至成年期持續(xù)增強(qiáng)TCDD暴露劑量,其在位子宮內(nèi)膜DNMT-1的表達(dá)逐漸增強(qiáng),且于PR-B基因啟動(dòng)子區(qū)CpG島甲基化程度呈正相關(guān),于PR-B表達(dá)呈負(fù)相關(guān),從而表明了TCDD有可能通過(guò)DNMT-1所介導(dǎo)的甲基化作用使PR-B表達(dá)下降,導(dǎo)致局部子宮內(nèi)膜的生物學(xué)功能以及其對(duì)激素的反應(yīng)發(fā)生了改變,從而促進(jìn)了內(nèi)異癥的發(fā)生與發(fā)展[9]。
錯(cuò)配修復(fù)基因(mismathe repair,MMR)是一組修復(fù)DNA堿基錯(cuò)配、增強(qiáng)DNA復(fù)制忠實(shí)性、維持基因組穩(wěn)定性和降低自發(fā)性突變的具有高度保守功能的管家基因。目前已克隆出hMSH2、hMLH1、hPSM1和hPSM2四種MMR基因,一旦此基因發(fā)生突變失去其修復(fù)功能,則DNA復(fù)制時(shí)的錯(cuò)誤就不能及時(shí)修復(fù),形成微衛(wèi)星不穩(wěn)定性(MSI),促進(jìn)疾病的發(fā)生、發(fā)展[15]。hMLH1定位于人類(lèi)染色體3P21,含19個(gè)外顯子,是錯(cuò)配修復(fù)基因中最為重要一種,其cDNA有2268bp的開(kāi)放閱讀框架,可編碼756個(gè)氨基酸,在堿基錯(cuò)配修復(fù)過(guò)程中發(fā)揮著解旋及切開(kāi)錯(cuò)配堿基的關(guān)鍵作用[16]。其缺失與多種惡性腫瘤有關(guān),而其缺失的主要原因?yàn)榛騿?dòng)子區(qū)超甲基化[17]。最近有研究表明,隨著病情發(fā)展,在慢性胃炎、非典型增生及胃癌患者血清及組織中hMLH甲基化程度呈逐漸上升趨勢(shì),而hMLH蛋白表達(dá)呈逐漸下降趨勢(shì),這對(duì)胃癌的早期診斷及對(duì)疾病預(yù)后判斷具有重要意義[18],另外在結(jié)直腸癌發(fā)病、尤其對(duì)Lynch綜合征的預(yù)篩方面起到重要作用[19-20],而進(jìn)一步有研究指出Lynch綜合征相關(guān)的子宮內(nèi)膜癌中K-ras 基因密碼子12或13的熱點(diǎn)突變與hMLH的超甲基化有關(guān),這有望避免對(duì)散發(fā)子宮內(nèi)膜癌患者進(jìn)行Lynch綜合征全基因測(cè)序的高額代價(jià)[21]。另有研究其在鼻咽癌等疾病中也起到了重要作用[22]。
3.2 hMLH1的超甲基化與婦科腫瘤及子宮內(nèi)膜異位癥的相關(guān)研究
目前國(guó)內(nèi)外研究表明,多種婦科惡性腫瘤與hMLH1突變有關(guān)[23]。Kobayashi等[24]研究發(fā)現(xiàn)MMR的超甲基化與原發(fā)子宮內(nèi)膜癌合并卵巢癌發(fā)病有關(guān),尤其在Lynch綜合征相關(guān)的子宮內(nèi)膜癌中研究更為深入[25]。 子宮內(nèi)膜異位癥雖然為良性疾病,但卻具有 “轉(zhuǎn)移、侵襲” 等惡性腫瘤的行為特點(diǎn)。且子宮內(nèi)膜屬于不穩(wěn)定細(xì)胞,生理狀態(tài)下增生活躍,錯(cuò)配幾率高。單等收集23例卵巢子宮內(nèi)膜異位組織進(jìn)行hMLH1啟動(dòng)子區(qū)的甲基化程度研究,其結(jié)果顯示hMLH1啟動(dòng)子區(qū)的甲基化發(fā)生率明顯高于正常子宮內(nèi)膜組織,從而推測(cè)hMLH1啟動(dòng)子區(qū)的超甲基化有可能與子宮內(nèi)膜異位癥的發(fā)生與發(fā)展有關(guān)[26]。Ren等[27]對(duì)29例內(nèi)異癥惡變卵巢癌組織、20例內(nèi)異癥病灶及其對(duì)應(yīng)在位內(nèi)膜組織中hMLH1的表達(dá)及其啟動(dòng)子區(qū)的甲基化程度進(jìn)行研究發(fā)現(xiàn),內(nèi)異癥惡變卵巢癌組織hMLH1的表達(dá)低于內(nèi)異癥異位內(nèi)膜及正常對(duì)照內(nèi)膜組織,而其啟動(dòng)子區(qū)的甲基化程度卻明顯升高。其相對(duì)應(yīng)的在位內(nèi)膜也呈現(xiàn)相一致的變化 ,而內(nèi)異癥組織及正常內(nèi)膜組織中hMLH1的表達(dá)及甲基化程度卻無(wú)顯著差異,從而推測(cè)hMLH1的異常甲基化有可能是內(nèi)異癥惡變的早期改變,其有望成為內(nèi)異癥惡變的早期分子診斷工具。Fuseya等[28]的研究也發(fā)現(xiàn)卵巢子宮內(nèi)膜異位癥的惡變與hMLH1的缺失相關(guān)。以上研究表明子宮內(nèi)膜異位癥的發(fā)病是一種與hMLH1突變相關(guān)的表觀遺傳學(xué)疾病[29]。
綜上所述,通過(guò)本實(shí)驗(yàn)中TCDD暴露建立的小鼠子宮內(nèi)膜異位癥模型中,其胎兒期及青春期均未暴露過(guò)TCDD(對(duì)照組)與自胚胎期開(kāi)始至成年期持續(xù)暴露TCDD(實(shí)驗(yàn)組)相比,其在位內(nèi)膜中hMLH1的表達(dá)明顯下降,而其甲基化程度卻逐步提高,表明持續(xù)暴露于TCDD后,其在位內(nèi)膜組織中hMLH1基因超甲基化導(dǎo)致其表達(dá)下降,這有可能是TCDD通過(guò)其甲基化調(diào)節(jié)作用誘導(dǎo)子宮內(nèi)膜異位癥發(fā)病的機(jī)制之一。其具體作用機(jī)制有待于基礎(chǔ)研究的進(jìn)一步深入。
[1]Huang T, Tian C G, Zhang K,etal. Gridded atmospheric emission inventory of 2,3,7,8-TCDD in China[J]. Atmos Environ, 2015, 108:41-48.
[2]Rier S E, Turner W E, Martin D C,etal. Serum levels of TCDD and dioxin-like chemicals in Rhesus monkeys chronically exposed to dioxin: correlation of increased serum PCB levels with endometriosis[J]. Toxicol Sci, 2001, 59(1):147-159.
[3]Rier S, Foster W G. Environmental dioxins and endometriosis[J]. Semin Reprod Med,2003,21(2):145-154.
[4]Martínez-Zamora M A, Mattioli L, Parera J,etal. Increased levels of dioxin-like substances in adipose tissue in patients with deep infiltrating endometriosis[J].Hum Reprod,2015, 30(5):1059-1068.
[5]Bruner-Tran K L, Gnecco J, Ding T,etal. Exposure to the environmental endocrine disruptor TCDD and human reproductive dysfunction: translating lessons from murine models[J]. Reprod Toxicol,2017,68:59-71.
[6]Perotti A, Rossi V, Mutti A,etal. Methy-sens Comet assay and DNMTs transcriptional analysis as a combined approach in epigenotoxicology[J]. Biomarkers,2015,20(1):64-70.
[7]Ma J, Chen X, Liu Y,etal. Ancestral TCDD exposure promotes epigenetic transgenerational inheritance of imprinted gene Igf2: Methylation status and DNMTs[J].Toxicol Appl Pharmacol,2015,289(2):193-202.
[8]朱芳,崔照領(lǐng),黃向華.TCDD暴露對(duì)子宮內(nèi)膜異位癥模型小鼠在位內(nèi)膜組織PR亞型和DNMT-1表達(dá)的影響[J].河北醫(yī)藥,2015,37(3):334-338.
[9]Borghese B, Zondervan K T, Abrao M S,etal. Recent insights on the genetics and epigenetics of endometriosis[J].Clin Genet, 2017,91(2):254-264.
[10]Veganzones S, Maestro M L, Rafael S,etal.Combined methylation of p16 and hMLH1 (CMETH2) discriminates a subpopulation with better prognosis in colorectal cancer patients with microsatellite instability tumors[J]. Tumour Biol,2015,36(5):3853-3861.
[11]Pogribny I P, Rusyn I. Environmental toxicants, epigenetics, and cancer[J].Adv Exp Med Biol,2013,754:215-232.
[12]Yamada T, Hirata A, Sasabe E,etal. TCDD disrupts posterior palatogenesis and causes cleft palate[J]. J Craniomaxillofac Surg,2014,42(1):1-6.
[13]Gao Z, Bu Y, Liu X,etal. TCDD promoted EMT of hFPECs via AhR, which involved the activation of EGFR/ERK signaling[J]. Toxicol Appl Pharmacol,2016,298:48-55.
[14]Zama A M, Uzumcu M. Targeted genome-wide methylation and gene expression analyses reveal signaling pathways involved in ovarian dysfunction after developmental EDC exposure in rats[J]. Biol Reprod,2013,88(2): 52.
[15]Prié D, Friedlander G.Genetic disorders of renal phosphate transport[J]. N Engl J Med,2010,362(25):2399-2409.
[16]Kunkel T A, Erie D A. DNA mismatch repair[J]. Ann Rev Biochem,2005,74:681-710.
[17]Markowitz S, Grady W. Methods and compositions for detecting cancers associated with methylation of hMLH1 promoter DNA:US8669060[P/OL].2014-02-11[2017-02-27].http://patft.uspto.gov/netacgi/nph-Parser?Sect1=PTO2&Sect2=HITOFF&p=1&u=%2Fnetahtml%2FPTO%2Fsearch-bool.html&r=1&f=G&l=50&co1=AND&d=PTXT&s1=%22Methods+compositions+detecting+cancers+associated+methylation+hMLH1+promoter+DNA%22&OS="Methods+compositions+detecting+cancers+associated+methylation+hMLH1+promoter+DNA"&RS="Methods+compositions+detecting+cancers+associated+methylation+hMLH1+promoter+DNA".
[18]Liu L, Yang X. Implication of Reprimo and hMLH1 gene methylation in early diagnosis of gastric carcinoma[J].Int J Clin Exp Pathol,2015, 8(11):14977-14982.
[19]Hodjat M, Rahmani S, Khan F,etal. Environmental toxicants, incidence of degenerative diseases, and therapies from the epigenetic point of view[J]. Arch Toxicol, 2017,91(7):2577-2597.
[20]Newton K, Jorgensen N M, Wallace A J,etal. Tumour MLH1 promoter region methylation testing is an effective prescreen for Lynch Syndrome (HNPCC)[J].J Med Genet,2014,51(12):789-796.
[21]Cohen J G, Wiedemeyer R, Karlan B Y,etal. A KRAS hot spot mutation correlates with MLH1 methylation in endometrial carcinomas with microsatellite instability:a potential triage tool for Lynch syndrome evaluation[J]. Gynecol Oncol,2014,133(Suppl 1):79-80.
[22]付蕾,盛劍秋,孫自勤,等.遺傳性非息肉病性結(jié)直腸癌患者h(yuǎn)MLH1和hMSH2基因的突變規(guī)律[J].中華醫(yī)學(xué)雜志,2008,88(28):1983-1985.
[23]Lancaster J M, Powell C B, Chen L M,etal. Society of Gynecologic Oncology statement on risk assessment for inherited gynecologic cancer predispositions[J].Gynecol Oncol,2015,136(1):3-7.
[24]Kobayashi Y, Nakamura K, Nomura H,etal. Clinicopathologic analysis with immunohistochemistry for DNA mismatch repair protein expression in synchronous primary endometrial and ovarian cancers[J].Int J Gynecol Cancer,2015,25(3):440-446.
[25]Billingsley C C, Cohn D E, Mutch D G,etal.Clinical implications for MSI, MLH1 methylation analysis and IHC in Lynch screening for endometrial cancer patients: an analysis of 940 endometrioid endometrial cancer cases from the GOG 0210 study[J].Gynecol Oncol,2015,137(Suppl 1):4-5.
[26]單莉莉,岳瑛,肖天慧,等.子宮內(nèi)膜異位癥與hMLH1啟動(dòng)子的甲基化[J].實(shí)用婦產(chǎn)科雜志, 2010,26(6):454-456.
[27]Ren F, Wang D, Jiang Y,etal. Epigenetic inactivation of hMLH1 in the malignant transformation of ovarian endometriosis[J].Arch Gynecol Obstet,2012,285(1):215-221.
[28]Fuseya C, Horiuchi A, Hayashi A,etal. Involvement of pelvic inflammation-related mismatch repair abnormalities and microsatellite instability in the malignant transformation of ovarian endometriosis[J]. Hum Pathol,2012,43(11):1964-1972.
[29]Forte A, Cipollaro M, Galderisi U. Genetic, epigenetic and stem cell alterations in endometriosis: new insights and potential therapeutic perspectives[J].Clin Sci (Lond),2014,126(2):123-138.
[專(zhuān)業(yè)責(zé)任編輯:楊筱鳳]
Influence of TCDD exposure on hMLH1 expression in eutopic endometrium and hypermethylation study in mice
ZHU Fang1, CUI Zhao-ling2, GONG Xin-peng2, SHANG Su-shuang1, ZHANG Xiang-ling1
(1.TheFirstHospitalofHandan,HebeiHandan056000,China;2.TheSixthHospitalofShijiazhuang,HebeiShijiazhuang050000,China)
ObjectiveTo explore the expression of hMLH1 in eutopic endometrium of mice exposed to TCDD from embryonic stage to adulthood and to study hypermethylation of CpG island in promoter region of hMLH-1 gene.MethodsSixty C57BL/6 female mice were mated with 30 C3H male mice at ratio 2:1 randomly. The day on which pessulum was seen was taken as gestational day. On the 8th gestational day (fetal stage), 60 pregnant mice were exposed to TCDD with nasal feeding method, and divided into control group (exposed in TCDD with 0μg/kg) and experimental group (exposed in TCDD with 3μg/kg). Female offsprings of mice in the experimental group were exposed to TCDD again on the 21st day after birth (puberty stage), and according to different exposure dose divided into group A with exposure dose of 0μg/kg, group B with dose of 3μg/kg and group C with dose of 10μg/kg with 12 female mices (6.40±0.20g of weight) in each group. Mices in the experimental group were exposed to TCDD at 3μg/kg on 49th day and on 70th day after birth, mouse endometriosis model was established through endometrium transplantation. Mices were exposed to TCDD again at 3, 6 and 9 weeks after transplantation and killed by cervical dislocation at 12 weeks after surgery. Expression of hMLH1 in endometrium was detected with SP immunohistochemical method and methylation of CpG island in promoter region of hMLH1 gene was detected using methylation-specific PCR (MS-PCR) in each group.ResultsDifference in expression of hMLH1 between the control group and group A was not significant (t=0.561,P>0.05). Pairwise comparison carried out in other groups showed significant difference. Expression level in group A was higher than that in group B (t=3.056,P<0.05), and that in group B was higher than that in group C (t=2.228,P<0.05). Comparison of methylation of CpG island in promoter region of hMLH1 gene among groups showed that there was no significant difference between the control group and group A (χ2=1.339,P>0.05), but pairwise comparison of methylation in other groups found significant difference and methylation in group A was lower than that in group B (χ2=4.444,P<0.05) and methylation in group B was lower than that in group C (χ2=6.316,P<0.05).ConclusionPersistent exposure to TCDD from embryonic period to adulthood perhaps triggers methylation of CpG islands in promoter region of hMLH1 gene, resulting in decrease of hMLH1expression and influencing function of mismatch repair gene in mature endometrium, which may promote occurrence and development of endometriosis in adulthood.
TCDD; eutopic endometrium; mismatch repair gene 1 hMLH1; hypermethylation
2017-02-27
朱 芳(1983—),女,主治醫(yī)師,碩士,主要從事子宮內(nèi)膜異位癥及婦科腫瘤臨床工作。
崔照領(lǐng),副主任醫(yī)師。
10.3969/j.issn.1673-5293.2017.09.008
R711.7
A
1673-5293(2017)09-1060-05