胡恒宇,韋安培,劉少梅,李 靜,趙東風(fēng)
(1.臨沂大學(xué)資源環(huán)境學(xué)院,山東 臨沂 276000;2.中國(guó)石油大學(xué)(華東)化學(xué)工程學(xué)院,山東 青島 266580)
石油烴厭氧降解產(chǎn)甲烷研究進(jìn)展
胡恒宇1,韋安培1,劉少梅1,李 靜1,趙東風(fēng)2
(1.臨沂大學(xué)資源環(huán)境學(xué)院,山東 臨沂 276000;2.中國(guó)石油大學(xué)(華東)化學(xué)工程學(xué)院,山東 青島 266580)
隨著油藏的開采大量殘余原油留存地下,通過微生物作用使殘余原油(石油烴)降解產(chǎn)甲烷已成為油藏深度開發(fā)利用的新方法。油藏微生物由諸多菌群組成,這些菌群協(xié)同作用實(shí)現(xiàn)石油烴的厭氧降解。為進(jìn)一步提高石油烴的降解效率,總結(jié)了降解石油烴的厭氧微生物菌群及其代謝特性,并對(duì)微生物厭氧降解石油烴產(chǎn)甲烷的代謝途徑進(jìn)行了比較。
殘余原油;石油烴;厭氧降解;甲烷
數(shù)百萬年來油藏內(nèi)部進(jìn)行著原油厭氧降解產(chǎn)甲烷過程,而隨著油藏的開采大量殘余原油留存地下,通過微生物作用使殘余原油(石油烴)降解產(chǎn)甲烷已成為油藏深度開發(fā)利用的新方法。油藏微生物由諸多菌群組成,這些菌群協(xié)同作用實(shí)現(xiàn)石油烴的降解,石油烴降解過程中涉及到的反應(yīng)步驟多、反應(yīng)速率影響因素多,代謝方式也是多種多樣,而殘余原油中可以供微生物利用的營(yíng)養(yǎng)物質(zhì)和厭氧產(chǎn)生的毒害物質(zhì)的數(shù)量是影響降解效率的關(guān)鍵因素[1]。目前,研究者多通過外加碳源、氮源、磷源、微量元素、維生素、絡(luò)合劑等來激活微生物,從而提高石油烴的降解效率。石油烴降解的終端產(chǎn)物是甲烷,而電子受體(硝酸鹽、四價(jià)錳、三價(jià)鐵、硫酸鹽等)的耗盡是甲烷產(chǎn)生的基礎(chǔ)。產(chǎn)甲烷古菌會(huì)和其它菌群形成互營(yíng)共生關(guān)系,最終使石油烴降解并接受末端電子產(chǎn)生甲烷[2]。為進(jìn)一步提高石油烴的降解效率,作者總結(jié)了降解石油烴的厭氧微生物菌群及其代謝特性,并對(duì)微生物厭氧降解石油烴產(chǎn)甲烷的代謝途徑進(jìn)行了比較。
高溫、高壓、高地層水礦化度的厭氧環(huán)境使得微生物的生存環(huán)境異??量蹋驮谌藗冋J(rèn)為在這種環(huán)境下微生物很難生長(zhǎng)時(shí),不同功能的厭氧微生物菌群相繼被發(fā)現(xiàn)和分離[3]。80年代后期,Vogel等證明了石油烴的厭氧降解[4];Lovley等[5]分離得到了高效降解甲苯的GS-15菌株,是第一株以三價(jià)鐵為電子受體的菌株;2年后,Aeckersberg等[6]首次分離到以硫酸鹽為電子受體的還原菌Hxd3,它們能夠利用長(zhǎng)鏈飽和烴;隨后,多種厭氧降解電子受體(硝酸鹽、硫酸鹽、三價(jià)鐵、二氧化碳、錳離子等)被大量發(fā)現(xiàn)[7-12]。近年來,人們?cè)絹碓秸J(rèn)識(shí)到石油烴降解產(chǎn)甲烷過程是多種菌群協(xié)同作用的結(jié)果,涉及到的菌群有發(fā)酵菌、硫酸鹽/硝酸鹽還原菌、厭氧產(chǎn)甲烷菌等[13],降解過程主要涉及4種反應(yīng):第一,在各種還原菌群的共同作用下石油烴失去電子發(fā)生氧化反應(yīng)產(chǎn)甲烷;第二,乙酸失去電子發(fā)生氧化反應(yīng)產(chǎn)甲烷;第三,乙酸分解產(chǎn)甲烷;第四,二氧化碳接受電子還原產(chǎn)甲烷。其中,二氧化碳接受電子還原是產(chǎn)甲烷的主要反應(yīng)[14],長(zhǎng)鏈烷烴通過復(fù)合菌群的共同作用產(chǎn)生乙酸、二氧化碳、氫氣,最終在產(chǎn)甲烷古菌和其它硫酸鹽/硝酸鹽還原菌的協(xié)同作用下產(chǎn)生甲烷和其它氣體[15-16]。
硫酸鹽還原菌是一個(gè)復(fù)雜的生物菌群,存在于大部分油藏中。硫酸鹽還原菌以硫酸鹽作為電子受體進(jìn)行無氧呼吸[17]。根據(jù)rRNA序列分析,可將其分為4類:革蘭氏陰性嗜溫菌、革蘭氏陽性芽孢菌、嗜熱細(xì)菌、嗜熱古細(xì)菌。有學(xué)者研究革蘭氏陰性嗜溫菌的演化歷史時(shí)發(fā)現(xiàn),硫酸鹽還原菌的共同祖先是一些光養(yǎng)生物,在漫長(zhǎng)的演變過程中,這些光養(yǎng)生物逐漸失去光合能力演變成異氧細(xì)菌[18]。研究表明,Desulfovibrionaceae 和Desulfobacteriaceae 已經(jīng)出現(xiàn)很大分化,Desulfobacteriaceae是原始的細(xì)菌,包括1個(gè)δ-Proteobacteria,而Desulfovibrionaceae卻沒有δ-Proteobacteria[19-20]。部分厭氧降解石油烴的硫酸鹽還原菌[21]列于表1。
產(chǎn)甲烷古菌因天然氣方面的巨大作用而受到研究者的廣泛關(guān)注,加上近年來石油烴厭氧降解產(chǎn)甲烷成為研究熱點(diǎn),人們開始通過研究產(chǎn)甲烷古菌來揭示石油烴厭氧降解產(chǎn)甲烷過程。研究發(fā)現(xiàn),產(chǎn)甲烷古菌和其它菌群通過協(xié)同作用經(jīng)厭氧發(fā)酵將長(zhǎng)鏈有機(jī)物降解成短鏈的無機(jī)物或有機(jī)物,然后再降解產(chǎn)生甲烷[41-42],這期間伴隨著其它降解產(chǎn)物的生成,如氫氣和二氧化碳;產(chǎn)甲烷古菌處在厭氧降解產(chǎn)甲烷的最后環(huán)節(jié)[43-44]。
表1 部分厭氧降解石油烴的硫酸鹽還原菌
Tab.1 Some sulfate-reducing bacteria capable of anaerobic degradation of petroleum hydrocarbon
產(chǎn)甲烷古菌廣泛存在于土壤、底泥、地?zé)岘h(huán)境、油井、海底沉積物中[45],有3種類型:(1)氫營(yíng)養(yǎng)型:伊萬諾夫甲烷桿菌[46]、熱自養(yǎng)甲烷桿菌[47]、布氏甲烷桿菌和嗜熱嗜堿甲烷桿菌[48]、熱自養(yǎng)甲烷球菌[49]、石油甲烷盤菌屬[50]、耐鹽甲烷卵圓形菌[51];(2)甲基營(yíng)養(yǎng)型:鹽水甲烷嗜鹽菌[52-53]、斯氏甲烷八疊球菌[54-55];(3)乙酸營(yíng)養(yǎng)型:馬氏八疊球菌[56]。從產(chǎn)甲烷古菌的系統(tǒng)分類和降解產(chǎn)物可以判斷其具體生活方式和屬性情況[22],產(chǎn)甲烷古菌的系統(tǒng)分類和降解產(chǎn)物如表2所示。
表2 產(chǎn)甲烷古菌系統(tǒng)分類及其降解產(chǎn)物
Tab.2 System classification and degradation product of Methanogenus
研究表明,當(dāng)缺乏硫酸鹽和硝酸鹽電子受體時(shí),烷烴仍然可以通過富集培養(yǎng)的菌群厭氧降解生成二氧化碳和甲烷。Foght[57]認(rèn)為芳烴厭氧降解產(chǎn)甲烷是以氯酸鹽、高氯酸鹽或錳離子為電子受體的,如圖1所示。
從圖1可以看出,芳烴厭氧降解產(chǎn)甲烷過程基本上涉及到了石油烴厭氧降解產(chǎn)甲烷的主要過程,如延胡索酸加成反應(yīng)、羥基化反應(yīng)、甲基化反應(yīng)、羧基化反應(yīng)等[57]。
2.1 延胡索酸加成反應(yīng)
圖1 芳烴厭氧降解產(chǎn)甲烷過程
Kniemeyer等[34]提出烴降解的一個(gè)主要途徑是生成芳香基或烷基琥珀酸鹽,是通過延胡索酸鹽上的雙鍵碳被烴上的碳原子加成來實(shí)現(xiàn)的。例如,在己烷降解過程中,延胡索酸鹽雙鍵碳原子上被己烷的第二個(gè)碳原子結(jié)合,生成了(1-甲基戊基)琥珀酸鹽(MPS);通過氫同位素標(biāo)記方法證實(shí)了延胡索酸加成反應(yīng),并檢驗(yàn)到了琥珀酸鹽的生成。在間二甲苯的降解過程中,延胡索酸和苯環(huán)上的甲基發(fā)生加成反應(yīng),生成苯甲基琥珀酸這一短暫性的中間產(chǎn)物,然后脫氫產(chǎn)生中間產(chǎn)物苯甲酰輔酶A(圖2)。在多環(huán)芳烴的降解過程中,由于多環(huán)芳烴2-甲基萘的甲基C-H解離能約為359.2 kJ·mol-1,2-甲基萘的甲基加到延胡索酸的雙鍵碳上產(chǎn)生琥珀酸,經(jīng)過β-氧化產(chǎn)生中間代謝產(chǎn)物2-萘酸,再經(jīng)過一系列苯環(huán)還原反應(yīng),最終產(chǎn)生二氧化碳[8,22,58]。
圖2 延胡索酸加成反應(yīng)代謝途徑
2.2 羥基化反應(yīng)
芳烴的另一種主要代謝途徑為羥基化反應(yīng)。有學(xué)者在研究乙苯降解時(shí)提出,羥基化反應(yīng)發(fā)生在乙苯的亞甲基上,生成1-苯基乙醇,是由于羥基結(jié)合于芳烴的烷基鏈或苯環(huán)上。還有學(xué)者認(rèn)為苯氧化為苯酚就是在脫氫酶的作用下,羥基進(jìn)攻苯環(huán)發(fā)生羥基化反應(yīng)的過程[59-62]。
2.3 甲基化反應(yīng)和羧基化反應(yīng)
有學(xué)者在研究萘的代謝反應(yīng)時(shí)提出了甲基化反應(yīng)代謝途徑,在添加碳酸鹽激活劑的情況下,實(shí)現(xiàn)了萘的甲基化作用生成2-甲基萘,而這一作用途徑與一氧化碳脫氫酶催化的反應(yīng)途徑不同,從而加快了萘的代謝[63]。還有學(xué)者提出了可能的羧基化代謝途徑(圖3)[64]。
圖3 羧基化代謝途徑
石油烴厭氧降解產(chǎn)甲烷過程涉及到的反應(yīng)步驟很多,影響反應(yīng)速率的因素也非常多,代謝途徑也多種多樣,為提高降解效率,研究者通過加入碳源、氮源、磷源、微量元素、維生素、絡(luò)合劑等來激活微生物,這已是目前的研究熱點(diǎn)。今后,還應(yīng)在如下方面進(jìn)行深入研究,探討石油烴厭氧降解產(chǎn)甲烷過程,深度開發(fā)利用油藏。(1)通過油藏物性的分析、地層條件的分析、地層水分析,探討環(huán)境條件如壓力、溫度、pH值和礦化度對(duì)微生物的代謝和生長(zhǎng)的影響。(2)特定油藏條件下,厭氧降解產(chǎn)甲烷混合菌的篩選,建立生物反應(yīng)器模擬地層環(huán)境,以石油烴為唯一碳源,通過富集培養(yǎng)石油烴降解產(chǎn)甲烷微生物,采用新技術(shù)確定微生物混合菌的組成及特征并且構(gòu)建克隆文庫。(3)通過研究營(yíng)養(yǎng)激活劑(如碳源、氮源、磷源、微量元素)來提高石油烴厭氧降解產(chǎn)甲烷的效率,尤其是表面活性劑、絡(luò)合劑之間的協(xié)同作用。(4)利用氣相色譜、液相色譜分析石油烴的組分,考察石油烴的利用情況,利用GC-MS、NMR、IR分析石油烴厭氧降解產(chǎn)甲烷過程中的代謝中間產(chǎn)物的變化,同時(shí)用高級(jí)烷烴同位素示蹤的方法確定石油烴厭氧降解機(jī)理。(5)考察石油烴在降解反應(yīng)前后的性質(zhì)變化,尤其是運(yùn)動(dòng)黏性、密度及界面張力,提出能解決實(shí)際問題的工藝途徑。
[1] 汪衛(wèi)東,王靜,耿雪麗,等.儲(chǔ)層殘余油生物氣化技術(shù)現(xiàn)狀與展望[J].石油地質(zhì)與工程,2012,26(1):78-81.
[2] 王俊,俞理,黃立信.油藏生物氣研究進(jìn)展[J].特種油氣藏,2010,17(5):8-12.
[3] ROLING W F,HEAD I M,LARTER S R.The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs:perspectives and prospects[J].Research in Microbiology,2003,154(5):321-328.
[4] CHAKRABORTY R,COATES J D.Anaerobic degradation of monoaromatic hydrocarbons[J].Applied Microbiology and Biotechnology,2004,64(4):437-446.
[5] LOVLEY D R,BAEDECKER M J,LONERGAN D J,et al.Oxidation of aromatic contaminants coupled to microbial iron reduction[J].Nature,1989,339(6222):297-300.
[6] AECKERSBERG F,BAK F,WIDDEL F.Anaerobic oxidation of saturated hydrocarbons to CO2by a new type of sulfate-reducing bacterium[J].Archives of Microbiology,1991,156(1):5-14.
[7] HEIDER J,SPORMANN A M,BELLER H R,et al.Anaerobic bacterial metabolism of hydrocarbons[J].FEMS Microbiology Reviews,1998,22(5):459-473.
[8] SPORMANN A M,WIDDEL F.Metabolism of alkylbenzenes,alkanes,and other hydrocarbons in anaerobic bacteria[J].Biodegradation,2000,11(2):85-105.
[9] WIDDEL F,BOETIUS A,RABUS R.Anaerobic Biodegradation of Hydrocarbons Including Methane//The Prokaryotes[M].New York:Springer,2006:1028-1049.
[10] WIDDEL F,RABUS R.Anaerobic biodegradation of saturated and aromatic hydrocarbons[J].Current Opinion in Biotechnology,2001,12(3):259-276.
[11] GROSSI V,CRAVO-LAUREAU C,GUYONEAUD R,et al.Metabolism ofn-alkanes andn-alkenes by anaerobic bacteria:a summary[J].Organic Geochemistry,2008,39(8):1197-1203.
[12] MBADINGA S M,WANG L Y,ZHOU L,et al.Microbial communities involved in anaerobic degradation of alkanes[J].International Biodeterioration and Biodegradation,2011,65(1):1-13.
[13] GIEG L M,DUNCAN K E,SUFLITA J M.Bioenergy productionviamicrobial conversion of residual oil to natural gas[J].Applied and Environmental Microbiology,2008,74(10):3022-3029.
[14] JONES D M,HEAD I M,GRAY N D,et al.Crude-oil biodegradationviamethanogenesis in subsurface petroleum reservoirs[J].Nature,2008,451(7175):176-180.
[15] PARKES J.Cracking anaerobic bacteria[J].Nature,1999,401(6750):217-218.
[16] ZENGLER K,RIELMOW H H,ROSSELLO-MORA R,et al.Methane formation from long-chain alkanes by anaerobic microorganisms[J].Nature,1999,401(6750):266-269.
[17] CASTRO H F,WILLIAMS N H,OGRAM A.Phylogeny of sulfate-reducing bacteria(1)[J].FEMS Microbiology Ecology,2000,31(1):1-9.
[18] WOESE C R.Bacterial evolution backgroud[J].Microbiology,1987,51(2):221-271.
[19] DEVEREUX R,HE S H,DOYLE C L,et al.Diversity and origin ofDesulfovibriospecies:phylogenetic definition of a family[J].Journal Bacteriology,1990,172(7):3609-3619.
[20] WIDDEL F,BAK F.Gram-Negative Mesophilic Sulfate-Reducing Bacteria//The Prokaryotes[M].New York:Springer,1992:3352-3378. [21] 胡恒宇,顧貴洲,張強(qiáng),等.殘余油微生物氣化產(chǎn)甲烷菌群的研究進(jìn)展[J].化學(xué)與生物工程,2014,31(4):9-14.
[22] 周蕾.厭氧烴降解產(chǎn)甲烷菌系的組成及其代謝產(chǎn)物的特征[D].上海:華東理工大學(xué),2012.
[23] RABUS R,NORDHAUS R,LUDWIG W,et al.Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium[J].Applied and Environmental Microbiology,1993,59(5):1444-1451.
[24] BELLER H R,SPORMANN A M,SHARMA P K,et al.Isolation and characterization of a novel toluene-degrading,sulfate-reducing bacterium[J].Applied and Environmental Microbiology,1996,62(4):1188-1196.
[25] HARMS G,ZENGLER K,RABUS R,et al.Anaerobic oxidation ofo-xylene,m-xylene,and homologous alkylbenzenes by new types of sulfate-reducing bacteria[J].Applied and Environmental Microbiology,1999,65(3):999-1004.
[26] KNIEMEYER O,FISCHER T,WILKES H,et al.Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium[J].Applied and Environmental Microbiology,2003,69(2):760-768.
[27] MORASCH B,SCHINK B,TEBBE C C,et al.Degradation ofo-xylene andm-xylene by a novel sulfate-reducer belonging to the genusDesulfotomaculum[J].Archives of Microbiology,2004,181(6):407-417.
[28] OMMEDAL H,TORSVIK T.Desulfotignumtoluenicumsp. nov.,a novel toluene-degrading,sulphate-reducing bacterium isolated from an oil-reservoir model column[J].International Journal of Systematic and Evolutionary Microbiology,2008,57(Pt12):2865-2869.
[29] GALUSHKO A,MINZ D,SCHINK B,et al.Anaerobic degradation of naphthalene by a pure culture of a novel type of marine sulphate-reducing bacterium[J].Environmental Microbiology,1999,1(5):415-420.
[30] AECKERSBERG F,RAINEY F A,WIDDEL F.Growth,natural relationships,cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions[J].Archives of Microbiology,1998,170(5):361-369.
[31] SO C M,YOUNG L Y.Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes[J].Applied and Environmental Microbiology,1999,65(7):2969-2976.
[32] CRAVO-LAUREAU C,GROSSI V,RAPHEL D,et al.Anaerobicn-alkane metabolism by a sulfate-reducing bacterium,Desulfatibacillumaliphaticivoransstrain CV2803T[J].Applied and Environmental Microbiology,2005,71(7):3458-3467.
[33] DAVIDOVA I A,DUNCAN K E,CHOI O K,et al.Desulfoglaebaalkanexedensgen. nov.,sp. nov.,ann-alkane-degrading,sulfate-reducing bacterium[J].International Journal of Systematic and Evolutionary Microbiology,2006,56(Pt12):2737-2742.
[34] KNIEMEYER O,MUSAT F,SIEVERT S M,et al.Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria[J].Nature,2007,449(7164):898-901.
[35] HIGASHIOKA Y,KOJIMA H,NAKAGAWA T,et al.A noveln-alkane-degrading bacterium as a minor member ofp-xylene-degrading sulfate-reducing consortium[J].Biodegradation,2009,20(3):383-390.
[36] RABUS R,FUKUI M,WILKES H,et al.Degradative capacities and 16S rRNA-targeted whole-cell hybridization of sulfate-reducing bacteria in an anaerobic enrichment culture utilizing alkylbenzenes from crude oil[J].Applied and Environmental Microbiology,1996,62(10):3605-3613.
[37] RUETER P,RABUS R,WILKES H,et al.Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria[J].Nature,1995,372(6505):455-458.
[38] SO C M,YOUNG L Y.Initial reactions in anaerobic alkane degradation by a sulfate reducer,strain AK-0l[J].Applied and Environmental Microbiology,1999,65(12):5532-5540.
[39] CRAVO-LAUREAU C,MATHERON R,JOULIAN C,et al.Desulfatibacillumalkenivoranssp. nov.,a noveln-alkene-degrading,sulfate-reducing bacterium,and emended description of the genusDesulfatibacillum[J].International Journal of Systematic and Evolutionary Microbiology,2004,54(Pt5):1639-1642.
[40] MUSAT F,GALUSHKO A,JACOB J,et al.Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria[J].Environmental Microbiology,2009,11(1):209-219.
[41] 程海鷹,肖生科,馬光東,等.營(yíng)養(yǎng)注入后油藏微生物群落16S rRNA基因的T-RFLP對(duì)比分析[J].石油勘探與開發(fā),2006,33(3):356-359,373.
[42] FERRY J G.Methane:small molecule,big impact[J].Science,1997,278(5342):1413-1414.
[43] 龍勝祥,陳純芳,李辛子,等.中國(guó)石化煤層氣資源發(fā)展前景[J].石油與天然氣地質(zhì),2011,32(3):481-488.
[44] LOWE D C.Global change:a green source of surprise[J].Nature,2006,439(7073):148-149.
[45] 傅霖,辛明秀.產(chǎn)甲烷菌的生態(tài)多樣性及工業(yè)應(yīng)用[J].應(yīng)用與環(huán)境生物學(xué)報(bào),2009,15(4):574-578.
[46] BELYAEV S S,WOLKIN R,KENEALY W R,et al.Methanogenic bacteria from the bondyuzhskoe oil field:general characterization and analysis of stable-carbon isotopic fractionation[J].Applied and Environmental Microbiology,1983,45(2):691-697.
[47] IVANOV M V,BELYAEV S S,ZYAKUN A M,et al.Microbiological methane formation in oil field development[J].Geokhimiya,1983,11:1647-1654.
[48] DAVYDOVA-CHARAKHCH′YAN I A,KUZNETSOVA V G,MITYUSHINA L L,et al.Methane-forming bacilli from oil fields of Tartaria and Western Siberia[J].Microbiology(English Translation of Mikrobiologiya),1993,61(2):202-207.
[49] NILSEN R K,TORSVIK T.Methanococcusthermolithotrophicusisolated from North Sea oil field reservoir water[J].Applied and Environmental Microbiology,1996,62(2):728-731.
[50] OLLIVIER B,CAYOL J L,PATEL B K,et al.Methanoplanuspetroleariussp. nov.,a novel methanogenic bacterium from an oil-producing well[J].FEMS Microbiology Letters,1997,147(1):51-56.
[51] OLLIVIER B,FARDEAU M L,CAYOL J L,et al.Methanocalculushalotoleransgen. nov.,sp. nov.,isolated from an oil-producing well[J].International Journal Systematic Bacteriology,1998,48(3):821-828.
[52] OBRAZTSOVA A Y,SHIPIN O V,BEZRUKOVA L V,et al.Properties of the coccoid methylotrophic methanogen,Methanococcoideseuhalobiussp. nov.[J].Mikrobiology (English Translation of Mikrobiologiya),1987,56:523-527.
[53] DAVIDOVA I A,HANNSEN H J M,STAMS A J M,et al.Taxonomic description ofMethanococcoideseuhalobiusand its transfer to theMethanohalophilusgenus[J].Antonie van Leeuwenhoek,1997,71(4):313-318.
[54] NI S S,BOONE D R.Isolation and characterization of a dimethyl sulfide-degrading methanogen,MethanolobussiciliaeHI350,from an oil well,characterization ofM.siciliaeT4/MT,and emendation ofM.siciliae[J].International Journal of Systematic Bacteriology,1991,41(3):410-416.
[55] NI S,WOESE C R,ALDRICH H C,et al.Transfer ofMethanolobussiciliaeto the genusMethanosarcina,naming itMethanosarcinasiciliae,and emendation of the genusMethanosarcina[J].Internationa Journal Systematic Bacteriology,1994,44(2):357-359.
[56] OBRAZTSOVA A Y,TSYBAN V E,LAUNNA-VICHUS K S,et al.Biological properties ofMethanosarcinanot utilizing carbonic acid and hydrogen[J].Microbiology(English Translation of Mikrobiologiya),1987,56:807-812.
[57] FOGHT J.Anaerobic biodegradation of aromatic hydrocarbons:pathways and prospects[J].Journal Molecular Microbiology and Biotechnology,2008,15(2/3):93-120.
[58] RABUS R,WILKES H,BEHRENDS A,et al.Anaerobic initial reaction ofn-alkanes in a denitrifying bacterium:evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical inn-hexane metabolism[J].Journal of Bacteriology,2001,183(5):1707-1715.
[59] RABUS R,HEIDER J.Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulfate-reducing bacteria[J].Archives of Microbiology,1998,170(5):377-384.
[60] CHAKRABORTY R,COATES J D.Hydroxylation and carboxylation——two crucial steps of anaerobic benzene degradation byDechloromonasstrain RCB[J].Applied and Environmental Microbiology,2005,71(9):5427-5432.
[61] JOHNSON H A,PELLETIER D A,SPORMANN A M.Isolation and characterization of anaerobic ethylbenzene dehydrogenase,a novel Mo-Fe-S enzyme[J].Journal of Bacteriology,2001,183(15):4536-4542.
[62] COATES J D,CHAKRABORTY R,McLNERNEY M J.Anaerobic benzene biodegradation——a new era[J].Research in Microbiology,2002,153(10):621-628.
[63] SAFINOWSKI M,MECKENSTOCK R U.Methylation is the initial reaction in anaerobic naphthalene degradation by a sulfate-reducing enrichment culture[J].Environmental Microbiology,2006,8(2):347-352.
[64] SO C M,PHELPS C D,YOUNG L Y.Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium,strain Hxd3[J].Applied and Environmental Microbiology,2003,69(7): 3892-3900.
Research Progress in Methane-Producing byAnaerobic Degradation of Petroleum Hydrocarbon
HU Heng-yu1,WEI An-pei1,LIU Shao-mei1,LI Jing1,ZHAO Dong-feng2
(1.CollegeofResourcesandEnvironment,LinyiUniversity,Linyi276000,China;2.CollegeofChemicalEngineering,ChinaUniversityofPetroleum,Qingdao266580,China)
Withtheexploitationofoilreservoirs,alargeamountofresidualcrudeoilareleft.Residualcrudeoil(petroleumhydrocarbon)canbedegradedtoproducemethanebymicroorganisms,whichhasbecomeanovelapproachfordepthexploitationandutilizationofoilreservoirs.Oilreservoirmicroorganismsaremadeupofmanymicrobialcommunities,whichcanprovidesynergisticeffectstoachieveanaerobicdegradationofpetroleumhydrocarbon.Toimprovedegradationefficiency,wesummarizeanaerobicmicrobialcommunitieswithpetroleumhydrocarbonbiodegradabilityandtheirmetabolicproperties.Wealsocomparethemetabolicpathwaysofmethane-producingbyanaerobicdegradationofpetroleumhydrocarbon.
residualcrudeoil;petroleumhydrocarbon;anaerobicdegradation;methane
臨沂大學(xué)校級(jí)博士科研項(xiàng)目(LYDX2016BS063)
2017-03-11
胡恒宇(1983-),男,黑龍江佳木斯人,博士,講師,研究方向:石油烴的微生物降解,E-mail:hhyu01@163.com。
10.3969/j.issn.1672-5425.2017.08.004
TE357.4
A
1672-5425(2017)08-0016-06
胡恒宇,韋安培,劉少梅,等.石油烴厭氧降解產(chǎn)甲烷研究進(jìn)展[J].化學(xué)與生物工程,2017,34(8):16-21.