常琛朝,程?hào)|會(huì),2?,錢(qián)康
(1.長(zhǎng)安大學(xué),環(huán)境科學(xué)與工程學(xué)院,710054,西安;2.長(zhǎng)安大學(xué) 旱區(qū)地下水文與生態(tài)效應(yīng)教育部重點(diǎn)實(shí)驗(yàn)室,710054,西安)
渭河咸陽(yáng)段非飽和層狀沉積物中水分分布特征
常琛朝1,程?hào)|會(huì)1,2?,錢(qián)康1
(1.長(zhǎng)安大學(xué),環(huán)境科學(xué)與工程學(xué)院,710054,西安;2.長(zhǎng)安大學(xué) 旱區(qū)地下水文與生態(tài)效應(yīng)教育部重點(diǎn)實(shí)驗(yàn)室,710054,西安)
層狀結(jié)構(gòu)是河流相松散沉積物中最常見(jiàn)的沉積結(jié)構(gòu),通常表現(xiàn)出一些特有的水力學(xué)性質(zhì),對(duì)水分運(yùn)動(dòng)過(guò)程及沉積物的持水性能產(chǎn)生影響。本文通過(guò)對(duì)渭河陜西咸陽(yáng)段河漫灘一個(gè)層狀沉積物剖面的含水率分布特征進(jìn)行原位觀測(cè),討論層狀沉積物中含水率的分布特征,及其與粒度和毛細(xì)壁壘效應(yīng)的關(guān)系。結(jié)果表明:在以水平層理和交錯(cuò)層理為主的粗細(xì)相間的層狀河流沉積物中,天然含水率也呈干潤(rùn)相間的層狀分布特征,各層含水率的大小主要與粒度成負(fù)相關(guān);沉積物粗細(xì)相間的層狀分布為毛細(xì)壁壘的形成提供條件,在降雨入滲和土壤水蒸發(fā)過(guò)程中,毛細(xì)壁壘效應(yīng)對(duì)水分運(yùn)動(dòng)的控制會(huì)導(dǎo)致細(xì)粒層中含水率高于粗粒層。層狀松散沉積物中水分的這種分布規(guī)律,為理解土壤持水性能提供了新的思路,對(duì)研究土壤含水率與降雨入滲、蒸發(fā)等水文過(guò)程的關(guān)系具有重要意義。
河流沉積物; 層狀結(jié)構(gòu); 含水率; 毛細(xì)壁壘
層狀結(jié)構(gòu)是河流相松散沉積物中最常見(jiàn)的沉積結(jié)構(gòu),也廣泛分布于冰川、風(fēng)和湖泊等地質(zhì)營(yíng)力作用下的沉積物中,是沉積物非均質(zhì)的一種重要形式。這種類(lèi)型的沉積物表現(xiàn)出一些特有的水力學(xué)性質(zhì),如滲透系數(shù)各向異性,介面效應(yīng)和毛細(xì)壁壘效應(yīng)等。這些特性對(duì)水分的入滲和蒸發(fā),污染物的遷移和轉(zhuǎn)化以及水土保持等方面均有重要影響[1]。
層狀介質(zhì)的入滲與均質(zhì)介質(zhì)入滲有很大差異,持水能力也顯著不同,因此,層狀介質(zhì)中復(fù)雜的水分入滲運(yùn)動(dòng)受到水文地質(zhì)及環(huán)境研究者的廣泛關(guān)注。層狀介質(zhì)中水分運(yùn)動(dòng)存在一種被稱(chēng)為毛細(xì)壁壘效應(yīng)的現(xiàn)象[2],即在非飽和層狀沉積物中,當(dāng)細(xì)粒介質(zhì)層上覆于相對(duì)較粗的介質(zhì)層時(shí),粗粒層阻礙水分向下運(yùn)動(dòng),而使細(xì)粒層持有更多的水分[2-3]。只有當(dāng)水分在細(xì)粒層積累使界面處吸力達(dá)到某一特定值,通常認(rèn)為達(dá)到下伏粗粒層的進(jìn)水值,水分才會(huì)開(kāi)始進(jìn)入下部粗粒層[4]。由于毛細(xì)壁壘效應(yīng)阻礙水分下滲,因此會(huì)增加上覆細(xì)粒層的含水率[5-6]。毛細(xì)壁壘效應(yīng)的強(qiáng)弱以上覆細(xì)粒層持水能力增量大小為標(biāo)志,在相同水分入滲條件下,相鄰2層介質(zhì)粒徑差異越明顯,則上覆細(xì)粒層持水能力增量越大,毛細(xì)壁壘效應(yīng)越強(qiáng)[7-8]。Stormont等[9]的試驗(yàn)也得出同樣結(jié)論,并用定量方法計(jì)算出毛細(xì)壁壘效應(yīng)使細(xì)粒介質(zhì)含水率的增加量;但是,目前毛細(xì)壁壘效應(yīng)的大部分研究是室內(nèi)簡(jiǎn)單層狀介質(zhì)入滲實(shí)驗(yàn)取得的,對(duì)于野外天然層狀沉積物的研究很少。
筆者通過(guò)一個(gè)天然河流相非飽和松散層狀沉積物中含水率、介質(zhì)粒度、密度等性質(zhì)的原位測(cè)定,研究天然狀態(tài)下層狀松散沉積物中水分分布特征及其與各層沉積物粒度的關(guān)系,在此基礎(chǔ)上分析天然層狀沉積物中毛細(xì)壁壘效應(yīng)對(duì)水分分布的控制作用。
試驗(yàn)場(chǎng)地位于渭河陜西咸陽(yáng)段的一處河漫灘上,地理位置為 E 108°49′47″,N 34°22′39″。該地區(qū)年平均氣溫13.2 ℃,年均降雨量540 mm左右,60%左右的降雨發(fā)生在7、8和9月[10],而年均潛在蒸發(fā)量500 mm左右,屬于典型的半干旱地區(qū)[11]。渭河在該地發(fā)育寬廣的河漫灘,均具有明顯的層狀沉積特征,灘面較平坦,表層為粉砂,下為含礫石的細(xì)、中砂。河漫灘開(kāi)墾指數(shù)高,以建造堤壩和河灘公園為主[12]。河漫灘地下水位埋深<4 m[13]。
實(shí)測(cè)剖面是在該河漫灘一個(gè)人工挖掘的陡坎基礎(chǔ)上改造而成的,剖面保留完整且層理特征明顯,具有典型的河流沉積特征。沿陡坎坡面向前挖掘4.0 m左右形成一個(gè)高度為1.42 m的垂直沉積物剖面,以避免陡坎坡面的側(cè)壁效應(yīng)對(duì)剖面測(cè)量產(chǎn)生影響。剖面上水平層理和交錯(cuò)層理構(gòu)成典型的河漫灘二元沉積結(jié)構(gòu)。根據(jù)肉眼可辨識(shí)的層面,將剖面上的沉積物分為11個(gè)層系,除上部擾動(dòng)層外,從上到下按英文字母順序命名,依次從A到K(圖1)。同一層中不同取樣點(diǎn)用該層字母加數(shù)字下標(biāo)進(jìn)行標(biāo)記。最底部K層是以粗砂為主的水平層理,其上部J層和I層中有明顯的“上截下斜”的交錯(cuò)層理特征,層系界面為平面且彼此不平行。G~D層具有近似水平的層理,層系界面呈曲面且紋層與之一致。剖面上部的A、B和C層為水平層理,層中的層理產(chǎn)狀與層面產(chǎn)狀基本相同。有些層會(huì)形成尖滅,如G層左側(cè)和J層。
黑圓點(diǎn)為含水率測(cè)量和取樣的位置,在三角形標(biāo)記的位置除含水率測(cè)量和取樣外還進(jìn)行了吸力測(cè)量。圖中的大寫(xiě)字母和數(shù)字下標(biāo)為測(cè)量和取樣位置編號(hào)。圖中鐵鍬長(zhǎng)度為1 m。Black dots denote positions of water content measurement and sampling,and the suction was measured additionally on the position denoted by triangle; the capital letters and numbers in subscripts denote the numbering of measurement and sampling locations.The length of shovel is 1 m. 圖1 研究剖面的沉積結(jié)構(gòu)Fig.1 Layer sedimentary structure on the profile
2.1 試驗(yàn)設(shè)計(jì)
在所選剖面上測(cè)量A~K層各取樣點(diǎn)天然含水率、粒度分布和密度。另外,J層與上部 I層及下部K層的粒度差異明顯,具備形成毛細(xì)壁壘的條件,且J層厚度較大,便于測(cè)量探頭的安裝;因此在I層(I1和I2)、K層(K3)和J層(J1、J2、J3、J4、J5和J6)進(jìn)行沉積物的吸力測(cè)量。
2.2 試驗(yàn)方法及數(shù)據(jù)來(lái)源
2015年12月4日在渭河灘進(jìn)行試驗(yàn),此前至少20 d左右沒(méi)有降雨或降雪過(guò)程。含水率測(cè)量采用土壤含水率傳感器(EC-5,Decagon Devinces Inc,USA),測(cè)量精度為0.001 cm3/cm3,測(cè)量誤差為±0.01 cm3/cm3。吸力測(cè)量采用土壤水勢(shì)傳感器(MPS-6,Decagon Devinces Inc,USA),測(cè)量精度為0.1 kPa,測(cè)量誤差為±2 kPa。含水率和吸力測(cè)量數(shù)據(jù)均采用在線(xiàn)采集和儲(chǔ)存系統(tǒng)(EM50,Eecagon Devinces Inc,USA)。在野外測(cè)量前72 h,先在室內(nèi)將水勢(shì)傳感器預(yù)埋在含水率0.05 cm3/cm3左右(與野外介質(zhì)的含水率相當(dāng))的細(xì)砂中并達(dá)到平衡,這樣大大減少野外測(cè)量時(shí)水勢(shì)傳感器與介質(zhì)之間的平衡時(shí)間。在野外原位測(cè)量吸力時(shí),13 h即達(dá)到平衡。為方便討論,筆者將吸力單位轉(zhuǎn)化為cmH2O(1 kPa=10.2 cmH2O)。野外測(cè)量時(shí),設(shè)置的吸力測(cè)量頻率為1次/20 min,在野外連續(xù)測(cè)量15 h,取平衡后吸力實(shí)測(cè)值的平均值作為該測(cè)量點(diǎn)的吸力值。在吸力測(cè)量結(jié)束時(shí),進(jìn)行含水率原位測(cè)量,測(cè)量頻率為每2 min1次,每個(gè)測(cè)量點(diǎn)連續(xù)測(cè)量10 min,取平衡后含水率隨時(shí)間無(wú)變化的值作為該取樣點(diǎn)實(shí)測(cè)含水率。
密度采用重量法測(cè)定。在測(cè)量位置上用體積為98.18 cm3的環(huán)刀取原狀樣品,每個(gè)位置取2個(gè)共40個(gè)樣品,裝袋密封,在實(shí)驗(yàn)室烘干后稱(chēng)量求其密度。另外,利用篩分法,將不同篩孔直徑的標(biāo)準(zhǔn)篩固定于振篩機(jī)上,篩分完成后通過(guò)稱(chēng)量得到樣品的粒度分布。
3.1 粒度和密度分布
研究剖面各層沉積物中值粒徑(d50)在0.16~0.39 mm之間,總體上各層介質(zhì)呈現(xiàn)粗細(xì)相間的特征。粒度相差較大的相鄰層分別為D層(粗)和E層(細(xì))、G層(細(xì))和H層(粗)、J層(細(xì))和K層(粗)(圖2)。剖面中最粗層為H層,最細(xì)層位于J層底部。
觀測(cè)剖面上密度變化范圍介于1.32~1.53 g/cm3之間。與相鄰層中值粒徑大小相間相對(duì)應(yīng),各層密度也存在大小相間分布的特征;但趨勢(shì)與粒徑變化趨勢(shì)相反,粗粒層密度較小,而與其相鄰的細(xì)粒層密度相對(duì)較大(圖2)。
3.2 吸力特征
所測(cè)9個(gè)采樣點(diǎn)(圖1)的吸力范圍為98~122 cm H2O,相鄰層的吸力值相差并不大。9個(gè)吸力測(cè)量點(diǎn)實(shí)測(cè)吸力與含水率如表1。介質(zhì)的含水率與吸力的關(guān)系可用水土特征曲線(xiàn)描述,不同介質(zhì)的水土特征曲線(xiàn)在同一吸力下對(duì)應(yīng)不同的含水率,如采樣點(diǎn)J1和J6,吸力相等,含水率卻不相同,分別為0.012 cm3/cm3和0.110 cm3/cm3。
3.3 含水率分布
剛挖掘出的新鮮剖面表觀呈現(xiàn)濕潤(rùn)特征,含水率分層現(xiàn)象不明顯。經(jīng)過(guò)不到30 min的風(fēng)干后,剖面表層可以觀察到明顯的顏色差異,含水率測(cè)定結(jié)果表明深色層(A、C、E、G和I)的含水率均高于相鄰的淺色層(B、D、F、H和K)(圖2)。剖面圖像整體呈現(xiàn)干潤(rùn)相間的特征(圖1)。在剖面20個(gè)取樣點(diǎn)中,I層左側(cè)取樣點(diǎn)I1含水率最高,為0.148 cm3/cm3,而最底部K層3個(gè)取樣點(diǎn)含水率最低,均為0.01 cm3/cm3。相鄰2層含水率差別較大的為取樣點(diǎn)I1和J1,含水率相差0.136 cm3/cm3,J4和K2相差0.117 cm3/cm3,J5和J6相差0.1 cm3/cm3。
A-K are corresponding to the points in Fig.1.圖2 沉積物剖面各層含水率、中值粒徑和密度Fig.2 Water content,median grain size and bulk density in each layer of the sediments profile
表1 剖面中I、J和K層實(shí)測(cè)吸力值與實(shí)測(cè)含水率Tab.1 Measured suction and water content for the samples in the layer I,J and K
注:以上3組取樣點(diǎn)分別對(duì)應(yīng)圖1中3組垂向吸力實(shí)測(cè)點(diǎn)。Note:3 sampling points belong to 1 group,and each of them corresponds to actual measuring point denoted by triangle in Fig.1.
圖2中含水率與中值粒徑(d50)隨土層深度變化趨勢(shì)相反,為更加定量的描述二者的關(guān)系,對(duì)剖面20個(gè)取樣點(diǎn)(圖1)所測(cè)得的含水率和d50數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,可得含水率大小與d50成負(fù)相關(guān)關(guān)系(圖3),密度該規(guī)律本質(zhì)上與土壤非飽和理論一致,反映含水率和介質(zhì)粒度的相互關(guān)系。在天然層狀沉積物中,假設(shè)沉積物各層水分運(yùn)動(dòng)已達(dá)平衡,即總水頭(位置水頭與吸力水頭之和)相等,相鄰2層界面附近位置水頭忽略不計(jì),即認(rèn)為相鄰層吸力水頭相等。由水土特征曲線(xiàn)可得,同一吸力下,細(xì)介質(zhì)含水率必然高于粗介質(zhì)含水率,也即處于平衡狀態(tài)時(shí)的層狀沉積物中,相鄰2層細(xì)粒層含水率大,粗粒層含水率小,這就是相鄰層含水率差別較大的原因之一。
圖3 樣品中值粒徑與含水率的關(guān)系Fig.3 Relationship between median grain size and corresponding water content for all the samples
即使在同一層內(nèi),由于沉積物粒徑的變化也會(huì)引起含水率的變化。取樣點(diǎn)J1、J2和J4位于同一層面,從圖4樣品的粒度分布曲線(xiàn)可以看出,3個(gè)樣品由細(xì)到粗為J4、J2、J1,含水率依次為0.127、0.061、0.012 cm3/cm3,介質(zhì)越細(xì),含水率越高。
圖4 J1、J2和J4取樣點(diǎn)處樣品的粒度分布曲線(xiàn)Fig.4 Cumulative grainsize distribution curve of three sediment samples (J1,J2 and J4)
4.1 “毛細(xì)壁壘”效應(yīng)對(duì)水分分布的控制作用
層狀沉積物中各層含水率受介質(zhì)粒度的影響外,層狀結(jié)構(gòu)本身也是控制水分分布的另一重要因素。天然狀態(tài)下,上細(xì)下粗的層狀結(jié)構(gòu)為毛細(xì)壁壘的形成提供了條件。在水分入滲時(shí),水分不易穿越下伏粗粒層下滲,而是在上覆細(xì)層積累[4]。這時(shí)候的下伏粗粒層充當(dāng)“毛細(xì)壁壘”,阻礙水分的流動(dòng)[14]。Iqbal[7]的研究指出,相鄰2層粒度差異越明顯,毛細(xì)壁壘效應(yīng)越強(qiáng),上覆細(xì)粒層持水量越多。
毛細(xì)壁壘效應(yīng)對(duì)天然沉積物水分分布的控制可通過(guò)相同粒度層含水率不同來(lái)論述。取樣點(diǎn)中的J2和G具有相同的粒度分布,但含水率卻不同,分別為0.06和0.08 cm3/cm3。它們?cè)诟髯缘拿?xì)壁壘結(jié)構(gòu)中是位于上部的細(xì)層,下伏粗層分別是K1和H,在入滲情況下,水分在細(xì)層J2中積累,其吸力隨含水率的增加而減小,達(dá)到K1的進(jìn)水值時(shí),水分才會(huì)開(kāi)始進(jìn)入K1層[4]。由中值粒徑可以判斷K1比H更細(xì)(表2),因此K1的進(jìn)水值更高。與G相比J2可以更早的達(dá)到相應(yīng)下層的進(jìn)水值,壁壘效果更弱,水分在J2層的積累量更少,含水率更低。一般情況下,在上細(xì)下粗結(jié)構(gòu)中,如果上覆細(xì)粒層為同種介質(zhì),對(duì)應(yīng)于下伏粗粒層介質(zhì)越細(xì)的含水率越低,這與Stormont等[8]通過(guò)土柱試驗(yàn)研究毛細(xì)壁壘效應(yīng)的結(jié)果一致。
表2 取樣點(diǎn)J2、K1、G、 H處的含水率與d50Tab.2 Water content and median grain size of four sediment samples (J2,K1,G and H)
J1和J3均位于毛細(xì)壁壘的粗層,與之相對(duì)的上覆細(xì)粒層分別為I1和I2。取樣點(diǎn)J1和J3粒徑分布相同,含水率大小卻不相等(表3),在入滲情況下,水分會(huì)先在上覆細(xì)層I1和I2中積累。由于I1比I2更細(xì),因此水分在I1層積累達(dá)到比I2層更高的含水率,才能使吸力等于下伏粗層的進(jìn)水值(下伏粗層J1和J3的進(jìn)水值相等),水分才會(huì)開(kāi)始下滲。對(duì)于J1和I1這一毛細(xì)壁壘結(jié)構(gòu),水分更難進(jìn)入下伏粗層J1,因此與J3相比,J1含水率更低。一般情況下,在上細(xì)下粗結(jié)構(gòu)中,如果下伏粗層為同種介質(zhì),上覆細(xì)粒層越細(xì),所對(duì)應(yīng)的粗粒層含水率越低。
表3 取樣點(diǎn)I1、 J1、I2、J3處的含水率與d50Tab.3 Water content and median grain size of four sediment samples (I1,J1,I2 and J3)
用粒度與毛細(xì)壁壘效應(yīng)共同解釋天然層狀沉積物中水分分布,與實(shí)際測(cè)量結(jié)果吻合。在天然層狀沉積物中,各層沉積物粒度大小和毛細(xì)壁壘效應(yīng)共同控制含水率分布。
4.2 毛細(xì)壁壘結(jié)構(gòu)中粗粒層和細(xì)粒層的相對(duì)性
同一種介質(zhì),即可充當(dāng)毛細(xì)壁壘結(jié)構(gòu)中的粗粒層,也可在另一毛細(xì)壁壘中充當(dāng)細(xì)粒層。如圖5所示,取樣點(diǎn)F和I3的概率累積曲線(xiàn)基本重合,可視為相同粒徑分布的介質(zhì),F(xiàn)層在E層和F層構(gòu)成的毛細(xì)壁壘中為下伏粗層,I3層在I3層和J5層構(gòu)成的毛細(xì)壁壘結(jié)構(gòu)中為上覆細(xì)層;因此,粒徑分布相同的2層,由于在毛細(xì)壁壘結(jié)構(gòu)中充當(dāng)?shù)慕巧煌?,含水率也?huì)不同。
圖5 E、I3、F和 J5取樣點(diǎn)樣品的粒度分布曲線(xiàn)Fig.5 Cumulative grainsize distribution curve of sediment samples at E,I3,F and J5
4.3 不同水文過(guò)程的毛細(xì)壁壘效應(yīng)分析
野外層狀沉積物中水分運(yùn)動(dòng)主要與降雨入滲和土壤水蒸發(fā)這2個(gè)水文過(guò)程有關(guān)。天然水分分布是在不同水文過(guò)程中,在沉積物粒度及層狀結(jié)構(gòu)的影響下,水分運(yùn)動(dòng)達(dá)到平衡后的結(jié)果。
已有室內(nèi)實(shí)驗(yàn)通過(guò)模擬降雨來(lái)觀察簡(jiǎn)單層狀沉積物中降雨強(qiáng)度和時(shí)間對(duì)毛細(xì)壁壘效應(yīng)的影響[15]?;诖耍覀冞M(jìn)一步分析降雨時(shí)野外復(fù)雜層狀沉積物中毛細(xì)壁壘效應(yīng)對(duì)水分運(yùn)動(dòng)的影響。降雨入滲時(shí),由于沉積物各層粒度粗細(xì)相間的特征,一定存在相鄰2層上細(xì)下粗的結(jié)構(gòu)。當(dāng)水分從上覆細(xì)粒層入滲時(shí),下伏粗粒層形成水分運(yùn)動(dòng)的壁壘,使水分在細(xì)層積累。界面處吸力水頭達(dá)到粗粒層的進(jìn)水值時(shí),水分才會(huì)開(kāi)始進(jìn)入粗層。當(dāng)水流至下一個(gè)上細(xì)下粗結(jié)構(gòu),也會(huì)出現(xiàn)相同的水分入滲特點(diǎn)。這與Zornberg等[6]對(duì)降雨時(shí)毛細(xì)壁壘效應(yīng)的描述一致。雖然他用細(xì)粒層和粗粒層滲透系數(shù)的不同來(lái)解釋下伏粗粒層對(duì)水分的阻礙作用,但本質(zhì)上與進(jìn)水值的原理一致。野外層狀沉積物中水分天然分布正是入滲平衡后的結(jié)果,水力學(xué)性質(zhì)不同的兩層形成的毛細(xì)壁壘效應(yīng),阻礙水分的重分布過(guò)程,使得細(xì)粒層出現(xiàn)較高的含水率[16]。
沉積物蒸發(fā)過(guò)程為水分向上運(yùn)動(dòng)的過(guò)程,此時(shí)上粗下細(xì)的層狀結(jié)構(gòu)是毛細(xì)壁壘形成的基礎(chǔ)。已有室內(nèi)研究發(fā)現(xiàn),上砂下黏型層狀介質(zhì)的土壤累積蒸發(fā)量小于上黏下砂型層狀土壤[17],也有研究者通過(guò)土柱實(shí)驗(yàn)發(fā)現(xiàn)土柱中粗介質(zhì)夾層存在可顯著減少蒸發(fā)量,主要原因?yàn)樯洗窒录?xì)層狀結(jié)構(gòu)中的毛細(xì)壁壘效應(yīng)抑制了水分的蒸發(fā)作用[18-19]。在野外層狀沉積物的水分蒸發(fā)過(guò)程中,水分從下伏細(xì)粒層開(kāi)始向上運(yùn)動(dòng),上覆粗粒層作為水分運(yùn)動(dòng)的壁壘,抑制了水分的蒸發(fā),且蒸發(fā)過(guò)程散失的水分主要來(lái)源于粗粒介質(zhì)[17]。在一定程度上,野外層狀沉積物粗細(xì)相間的結(jié)構(gòu)能夠減少水分的蒸發(fā),提高沉積物的持水性。
渭河咸陽(yáng)段河流松散沉積物具有明顯的粗細(xì)相間的層狀特征,水分分布也呈現(xiàn)干層與濕層相間的層狀分布特征,各層含水率的大小與粒度成負(fù)相關(guān)。另外,沉積物粗細(xì)相間的層狀特征為毛細(xì)壁壘的形成提供條件,使水分分布也受到毛細(xì)壁壘效應(yīng)的控制。在降雨入滲和土壤水蒸發(fā)過(guò)程中,毛細(xì)壁壘對(duì)水分運(yùn)動(dòng)的控制會(huì)導(dǎo)致細(xì)粒層持有更多的水分。降雨入滲時(shí),毛細(xì)壁壘會(huì)阻礙水分入滲,而蒸發(fā)過(guò)程中,毛細(xì)壁壘也會(huì)阻礙蒸發(fā)??傮w上層狀松散沉積物中水分的分布,受粒度和沉積結(jié)構(gòu)二者共同控制。層狀松散沉積物中這種水分分布規(guī)律,為垃圾填埋場(chǎng)防滲系統(tǒng),土壤再利用及水土保持工程的設(shè)計(jì)提供了新的思路。
[1] 程?hào)|會(huì),錢(qián)康,常琛朝.水分入滲條件下層狀非飽和松散沉積物中的毛細(xì)壁壘效應(yīng)研究[J].水文地質(zhì)工程地質(zhì),2016,43 (4):20.CHENG Donghui,QIAN Kang,CHANG Chenchao.Capillary barrier effects during the infiltration process in layered unsaturated unconsolidated sediments [J].Hydrogeology & Engineering Geology,2016,43 (4):20.
[2] STORMONT C J.The effect of constant anisotropy on capillary barrier performance [J].Water Resources Research,1995,31(3):783.
[3] NAHLAWI H,BOUAZZA A,KODIKARA J.Surface water infiltration in a 1-dimensional soil-geotextile column [C]∥Proceedings of the 10th Australia New Zealand Conference on Geomechanics,Brisbane,Australia.2007:21.
[4] HILLEL D,BAKER R S.A descriptive theory of fingering during infiltration into layered soils[J].Soil Science,1988,146(146):207.
[5] MCCARTNEY J S,ZORNBERG J G.Effects of infiltration and evaporation on geosynthetic capillary barrier performance [J].Canadian Geotechnical Journal,2010,47(11):1201.
[6] ZORNBERG J G,BOUAZZA A,MCCARTNEY J S.Geosynthetic capillary barriers:Current state of knowledge [J].Geosynthetics International,2010,17(5):273.
[7] IQBAL M Z.Effects of layered heterogeneity in subsurface geologic materials on solute transport under field conditions:A case study from northeastern Iowa,USA [J].Hydrogeology Journal,2000,8(3):257.
[8] STORMONT J C,ANDERSON C E.Capillary barrier effect from underlying coarser soil layer [J].Journal of Geotechnical & Geoenvironmental Engineering,1999,125(8):641.
[9] STORMONT J C,MORRIS C E.Method to estimate water storage capacity of capillary barriers [J].Journal of Geotechnical & Geoenvironmental Engineering,1999,125(10):918.
[10] 周曉紅,趙景波,王國(guó)祥.渭河高陵段河漫灘沉積物指示的洪水演變[J].干旱地區(qū)農(nóng)業(yè)研究,2007,25(5):226.ZHOU Xiaohong,ZHAO Jingbo,WANG Guoxiang.The sediment of floodplain instruction flood change in Gaoling part of the Weihe River [J].Agricultural Research in the Arid Areas,2007,25(5):226.
[11] 劉聞.基于模型的水文模擬及徑流響應(yīng)分析:以渭河流域關(guān)中段為例[D].西安:西北大學(xué),2014:10.LIU Wen.Hydrological simulation and runoff response analysis based on SWAT Model:a case study of Weihe River in Guanzhong area [D].Xi′an:Northwest University,2014:10.
[12] ??〗?,趙景波,馬莉,等.西安北郊渭河河漫灘沉積與洪水事件[J].地理研究,2010,29(8):1484.NIU Junjie,ZHAO Jingbo,MA Li,et al.The research on the sediment of floodplain and flood events of Weihe River in the northern suburbs of Xi′an [J].Geographical Research,2010,29(8):1484.
[13] 董艷慧,周維博,卜卿,等.RBF網(wǎng)絡(luò)在西安渭濱地下水位埋深預(yù)測(cè)中的應(yīng)用[J].節(jié)水灌溉,2012(12):66.DONG Yanhui,ZHOU Weibo,BU Qing,et al.Aplication of RBF neural network to forecast depth of groundwater level in Weibin River wellhead [J].Water Saving Irrigation,2012(12):66.
[14] HANKS R J,BOWERS S A.Numerical solution of the moisture flow equation for infiltration into layered soils[J].Soil Science Society of America Journal,1962,26(6):530.
[15] MANCARELLA D,SIMEONE V.Capillary barrier effects in unsaturated layered soils,with special reference to the pyroclastic veneer of the Pizzo d′Alvano,Campania,Italy[J].Bulletin of Engineering Geology and the Environment,2012,71(4):791.
[16] ZETTL J D,BARBOUR S L,HUANG Mingbin,et al.Influence of textural layering on field capacity of coarse soils[J].Canadian Journal of Soil Science,2011,91(2):133.
[17] HUANG Mingbin,BRUCH P G,BARBOUR S L.Evaporation and water redistribution in layered unsaturated soil profiles[J].Vadose Zone Journal,2013,12(1).doi:10.2136/vzj2012.0108.
[18] SHOKRI N,LEHMANN P,OR D.Evaporation from layered porous media[J].Journal of Geophysical Research Atmospheres,2010,115(B6):258.
[19] 任利東,黃明斌.砂性層狀土柱蒸發(fā)過(guò)程實(shí)驗(yàn)與數(shù)值模擬[J].土壤學(xué)報(bào),2014(6):1282.REN Lidong,HUANG Mingbin.Experiment and numerical simulation of soil evaporation from layered sandy soil columns[J].Acta Pedologica Sinica,2014(6):1282.
Water content distribution of unsaturated layered sediments of Weihe River in Xianyang section
CHANG Chenchao1,CHENG Donghui1,2,QIAN Kang1
(1.School of Environment Science and Engineering,Chang′an University,710054,Xi′an,China; 2.Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region (Chang′an University),Ministry of Education,710054,Xi′an,China)
[Background] Layer structure is the most common sedimentary structure in alluvial unconsolidated sediments,which usually exhibits special hydraulic properties to influence water flow and water retention ability.In this paper,a situ investigation on the water content distribution,grain-size and bulk density for a layered sediment profile was conducted at the floodplain of Weihe River in Xianyang,in the center of Shaanxi,then the effects of the grain-size and the capillary barriers on natural water content were discussed.[Methods] The experiment site outcrop was mapped into 11 macro layers having different texture and structures.With each layer,well developed laminations were observed.We investigated the characteristics of water content and its corresponding influence factors including soil bulk density,grain-size and matric suction in each layer,based on sampling analysis and the measurement of EC-5 Small Soil Moisture Sensor and MPS-6 Calibrated Water Potential Sensor.Firstly,we analyzed the relationship between grain-size and water content in each layer,based on this,the effect of capillary barriers on water content was discussed.Then,we analyzed the influence of capillary barriers in the process of precipitation infiltration and soil water evaporation.[Results] The results illustrated that in the layered alluvial sediments with alternating layers of coarse and fine sands,natural water content exhibited in a layered distribution on a form of interbedding high and low water content.The magnitude of the water content was negatively correlated with the grain-size,and was positively correlated with the bulk density.The water content of site outcrop was between 0.010 cm3/cm3-0.148 cm3/cm3,the median size ranged from 0.16 mm to 0.39 mm and the bulk density ranged from 1.32 g/cm3to 1.53 g/cm3.The results also demonstrated that the layered sediments with alternating layers of coarse and fine sands formed the capillary barriers in the process of water flow,therefore by which the water content distribution was controlled.In both process of precipitation infiltration and soil water evaporation,the capillary barriers effects will lead to the water content in fine layer obviously higher than that in coarse layer.[Conculsions] In conclusion,capillary barriers become a significant factor to control water flow in unsaturated soils.At the process of precipitation infiltration,capillary barriers have the effect on permeability reduction,which can be used in designing landfill anti-seepage system,optimized drainage layers and so on.Additionally,insights are potentially useful for designing mulching strategies and capillary barriers aimed at reducing evaporative losses,increasing water retention ability of soil,which is significantly important in arid and semi-arid regions.
alluvial sediments; layer structure; water content; capillary barriers
2016-09-06
2017-06-17
項(xiàng)目名稱(chēng):中央高?;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金“點(diǎn)狀入滲條件下層狀沉積物中水分運(yùn)動(dòng)的毛細(xì)壁壘和穿透效應(yīng)”(310829162015)
常琛朝(1991—),女,碩士研究生。主要研究方向:地下水環(huán)境。E-mail:452293490@qq.com
?通信作者簡(jiǎn)介:程?hào)|會(huì)(1969—),男,教授。主要研究方向:地下水資源與環(huán)境。E-mail:chdhbsh@chd.edu.cn
S152.7
A
2096-2673(2017)04-0104-07
10.16843/j.sswc.2017.04.013