李靖靖, 郭 林, 許文儉(. 鄭州工程技術(shù)學(xué)院 化工與食品學(xué)院,河南 鄭州 450044; 2. 鄭州大學(xué) 化學(xué)與分子工程學(xué)院,河南 鄭州 450000)
·研究簡報·
新型熊果酸單糖苷的簡便合成
李靖靖1, 郭 林1, 許文儉2*
(1. 鄭州工程技術(shù)學(xué)院 化工與食品學(xué)院,河南 鄭州 450044; 2. 鄭州大學(xué) 化學(xué)與分子工程學(xué)院,河南 鄭州 450000)
以熊果酸為原料,經(jīng)芐基化反應(yīng)制得熊果酸芐酯(2); 2與三氯乙酰亞胺酯經(jīng)糖苷化反應(yīng)制得酯保護(hù)的熊果酸-3-糖苷(4a~4d); 4a~4d依次脫去芐基和苯甲?;铣闪?個熊果酸-3-糖苷(6a~6d,其中6c為新化合物),其結(jié)構(gòu)經(jīng)1H NMR,13C NMR和MS(ESI)表征。
熊果酸; 三萜; 單糖苷; 糖苷化反應(yīng); 簡便合成
熊果酸(UA)又名烏索酸,α-香樹脂醇,是一種弱酸性五環(huán)三萜類化合物。UA易溶于二氧六環(huán)、吡啶,微溶于苯、氯仿、乙醚,不溶于水和石油醚[1]。UA具有多種生物活性,如抗癌和抗腫瘤等[2-5]。UA能夠抑制腫瘤細(xì)胞增殖,有誘導(dǎo)細(xì)胞凋亡的作用,對腫瘤細(xì)胞表現(xiàn)出較強的細(xì)胞毒性。此外,UA在體外對革蘭氏陽性菌、陰性菌和酵母菌均有抑制活性,能顯著降低大鼠的正常體溫,并具有安定[6]、抗炎[7-8]、免疫調(diào)節(jié)[9]和抗艾滋病病毒[10-11]等作用。
UA水溶性較差,在動物體內(nèi)的生物利用度較低。通過化學(xué)修飾的方法,改善UA的水溶性,進(jìn)而提高其生物活性和生物利用度,一直是UA系列衍生物研發(fā)的重要方向和熱點。
活性天然化合物的糖基化修飾是糖化學(xué)研究的重要領(lǐng)域。一般情況下,化合物引入糖基可以改善溶解性,提高生物利用度[12-13]。近年來研究表明,先導(dǎo)藥物經(jīng)糖基修飾后,不僅能延長藥物作用時間,還能實現(xiàn)靶向釋藥,降低毒副作用,甚至可能擴(kuò)增修飾前藥物的活性[14]。
UA的糖苷在自然界中較少[15-16],3-位和28-位均連有糖基的UA糖苷雖已從天然產(chǎn)物中分離得到[17-18],但種類較少。天然UA糖苷具有良好的抗腫瘤[19-20]和抗艾滋病病毒活性[21-22]。但由于它們性質(zhì)非常相近,天然產(chǎn)物中含量較低,純化合物的分離比較困難,對進(jìn)一步研究該類化合物的生物活性,闡明其生物代謝過程產(chǎn)生了阻礙。
Scheme 1
目前,合成糖苷最常用的方法為:Koenigs-Knorr法、相轉(zhuǎn)移催化法和三氯乙酰亞胺酯法[23-25]。Koenigs-Knorr法需使用有毒、易爆的汞鹽或銀鹽作催化劑,反應(yīng)條件苛刻,后處理相對比較繁瑣。相轉(zhuǎn)移催化法需要使用特定的相轉(zhuǎn)移催化劑,成本較高。三氯乙酰亞胺酯法合成的糖苷立體選擇性好、產(chǎn)率高,在寡糖和糖苷合成中得到了廣泛應(yīng)用。
本文以UA為原料,經(jīng)芐基化反應(yīng)制得熊果酸芐酯(2); 2與三氯乙酰亞胺酯(3a~3d)經(jīng)糖苷化反應(yīng)制得酯保護(hù)的熊果酸-3-糖苷(4a~4d); 4a~4d依次脫去芐基和苯甲?;铣闪?個熊果酸-3-糖苷(6a~6d, Scheme 1),其中6c為新化合物,其結(jié)構(gòu)經(jīng)1H NMR,13C NMR和MS(ESI)表征。
1 實驗部分
1.1 儀器與試劑
WK-1B型數(shù)字熔點儀;Bruker AM-600 MHz型核磁共振儀(DMSO-d6為溶劑,TMS為內(nèi)標(biāo));Esquire LC型質(zhì)譜儀(ESI源)。
UA,廣西天星植物科技有限公司,生產(chǎn)批號100414,含量99%; 3a~3d按文獻(xiàn)[25-26]方法合成,其余所用試劑均為分析純。
1.2 合成
(1) 2的合成
將UA 1.0 g(2.2 mmol)溶解于THF(14 mL)中,加入K2CO30.50 g(3.6 mmol),攪拌0.5 h;緩慢滴加BnBr 0.36 mL(3.0 mmol),滴畢,于室溫反應(yīng)過夜(TLC檢測)。過濾,濾液濃縮,殘余物經(jīng)硅膠柱層析(洗脫劑A:石油醚/乙酸乙酯=8/1,V/V)純化得白色粉末2 0.99 g,產(chǎn)率83%, Rf0.55;1H NMRδ: 7.33(m, 5H, ArH), 5.51(t,J=3.0 Hz, 1H, 12-H), 5.07(dd,J=17.8 Hz, 12.6 Hz, 2H, PhCH2), 3.54(dd,J=10.3 Hz, 4.8 Hz, 1H, 3-H), 2.72(dd,J=14.0 Hz, 4.2 Hz, 1H, 18-H), 1.13, 0.99, 0.92, 0.90, 0.88, 0.78, 0.61(s, 3H, Me);13C NMRδ: 177.5, 139.7, 136.4, 128.4, 128.0,127.9, 122.5, 79.0, 65.9, 55.2, 47.6, 46.7, 45.9, 41.7, 41.4, 39.2, 38.7, 38.4, 37.0, 33.9, 33.1, 32.7, 32.4, 30.7, 28.1, 27.6, 27.2, 25.9, 23.6, 23.4, 23.0, 18.3, 16.9, 15.6, 15.3; MS(ESI)m/z: 1 115.9{[2M+Na]+}。
(2) 4a~4d的合成(以4d為例)
在反應(yīng)瓶中加入2 1.0 g(1.8 mmol), 2,3,4-三-O-苯甲?;?β-吡喃阿拉伯糖基三氯乙酰亞胺酯(3d)1.2 g(2.0 mmol)和無水CH2Cl2 30 mL,攪拌使其溶解;加入4?分子篩2.5 g,于室溫攪拌30 min;于-10 ℃緩慢滴加1%三氟甲磺酸三甲基硅醇酯(TMSOTf)的無水CH2Cl2(1.8 mL)溶液,滴畢,反應(yīng)至終點(TLC檢測)。加入Et3N 0.50 mL淬滅反應(yīng),過濾,濾液濃縮后經(jīng)硅膠柱層析(洗脫劑:A)純化得白色泡沫狀固體3-O-(2, 3, 4-三-O-苯甲酰基-α-吡喃阿拉伯糖)熊果酸芐酯(4d)1.7 g,產(chǎn)率92%, Rf0.65;1H NMRδ: 8.09~7.26(m, 20H, ArH), 5.96(dd,J=8.8 Hz, 6.5 Hz, 1H, 2′-H), 5.88(m, 1H, 4′-H), 5.72(dd,J=8.9 Hz, 3.5 Hz, 1H, 3′-H), 5.49(t,J=3.0 Hz, 1H, 12-H), 5.06(dd,J=19.9 Hz, 12.6 Hz, 2H, PhCH2), 4.79(d,J=6.6 Hz, 1H, 1′-H), 4.33 (dd,J=12.9 Hz, 3.8 Hz, 1H, 5′-1-H), 3.87(m, 1H, 5′-2-H), 3.45(dd,J=11.0 Hz, 4.9 Hz, 1H, 3-H), 2.63(dd,J=10.1 Hz, 3.2 Hz, 1H, 18-H), 1.11, 0.92, 0.90, 0.86, 0.79, 0.66, 0.58(s, 21H, Me); MS(ESI)m/z: 1 013.5{[2M+Na]+}。
用類似的方法合成4a~4c。
(3) 5a~5d的合成(以5d為例)
在反應(yīng)瓶中加入4d 1.0 mg(1.0 mmol)和混合溶劑(MeOH/CH2Cl2,V/V)60 mL,攪拌使其溶解;加入10%Pd/C 0.16 g,常壓通入H2(20 mL·min-1),回流反應(yīng)3 h。過濾,濾液減壓濃縮得白色泡沫狀固體熊果酸3-O-(2,3,4-三-O-苯甲?;?α-L-吡喃阿拉伯糖)苷(5d)0.90 g,產(chǎn)率99%, Rf0.36;1H NMRδ: 8.07~7.18(m, 15H, ArH), 5.98(dd,J=8.8 Hz, 6.4 Hz, 1H, 2′-H), 5.87(m, 1H, 4′-H), 5.74(dd,J=8.8 Hz, 3.5 Hz, 1H, 3′-H), 5.51(brs, 1H, 12-H), 4.78(d,J=6.3 Hz, 1H, 1′-H), 4.33(dd,J=13.0 Hz, 3.9 Hz, 1H, 5′-1-H), 3.87(dd,J=13.0 Hz, 1.9 Hz, 1H, 5′-2-H), 3.16(dd,J=11.1 Hz, 4.8 Hz, 1H, 3-H), 2.80(dd,J=9.9 Hz, 2.61 Hz, 1H, 18-H), 1.10, 0.92, 0.90, 0.87, 0.77, 0.70, 0.62(s, 21H, Me); MS(ESI)m/z: 923.8{[2M+Na]+}。
用類似的方法合成5a~5c。
(4) 6a~6d的合成(以6d為例)
將5d 0.20 g(0.22 mmol)溶解于混合溶劑(MeOH/CH2Cl2=2/1,V/V)60 mL中,加入NaOMe 80 mg(1.5 mmol),于室溫反應(yīng)過夜。用稀醋酸溶液中和反應(yīng)液,濃縮后經(jīng)硅膠柱層析(洗脫劑B:氯仿/甲醇=9/1,V/V)純化得白色粉末熊果酸3-O-α-L-吡喃阿拉伯糖苷(6d)0.12 g,產(chǎn)率86%, m.p.243~245 ℃, Rf0.56;1H NMRδ: 5.27(d,J=6.7 Hz, 1H, 1′-H), 5.22(t,J=3.6 Hz, 1H, 12-H), 3.82(dd,J=12.2 Hz, 3.4 Hz, 1H), 3.80~3.79(m, 1H), 3.58~3.49(m, 3H), 3.14(dd,J=11.4 Hz, 4.14 Hz, 1H, 3-H), 2.19(d,J=11.0 Hz, 1H, 18-H), 1.11(s, 3H), 1.04(s, 3H), 0.96(s, 3H), 0.84(s, 3H), 0.84(s, 3H), 0.87(d,J=6.5 Hz, 3H), 0.78(d,J=11.2 Hz, 1H, 5-H);l3C NMRδ: 175.0, 139.6, 126.9, 107.1, 90.7, 74.3, 72.8, 69.5, 66.4, 57.0, 54.4, 48.0, 42.2, 40.8, 40.4, 40.2, 39.9, 38.1, 37.8, 34.3, 31.8, 29.2, 28.6, 27.0, 25.3, 24.4, 24.1, 21.6, 19.3, 17.8, 17.7, 17.0, 16.1; MS(ESI)m/z: 611.0{[2M+Na]+}。
用類似的方法合成白色粉末6a~6c。
熊果酸3-O-β-D-吡喃葡萄糖苷(6a): 產(chǎn)率68%, m.p.223~224 ℃, Rf0.39;1H NMRδ: 5.22(t, 1H, 12-H), 4.32(d,J=7.8 Hz, 1H, 1′-H), 3.83(dd,J=11.8 Hz, 2.2 Hz, 1H, 6′-1-H), 3.67(dd,J=12.0 Hz, 5.2 Hz, 1H, 6′-2-H), 3.30~3.17(m, 5H, 3,3′,4′,5′-H), 2.20(d,J=11.4 Hz, 1H, 18-H), 1.11(s, 3H), 1.06(s, 3H), 0.97(s, 6H, Me), 0.90(d,J=5.8 Hz, 3H), 0.85(s, 6H), 0.78(d,J=12.4 Hz, 1H, 5-H);13C NMRδ: 178.9(C28), 137.0(C13), 126.2(C12), 103.8(C1′), 88.0(C3), 75.4, 74.8, 72.8, 68.8, 59.9, 54.2, 51.5, 46.7, 45.0, 40.4, 37.9, 37.5, 37.2, 37.0, 35.2, 34.9, 31.4, 28.9, 27.8, 26.3, 25.7, 24.2, 22.5, 21.5, 21.2, 18.7, 16.4, 14.9, 14.8, 14.1, 13.1; MS(ESI)m/z: 641.5{[2M+Na]+}。
熊果酸3-O-β-D-吡喃半乳糖苷(6b): 產(chǎn)率65%, m.p.236~238 ℃, Rf0.40;1H NMRδ: 5.48(t,J=12.0 Hz, 1H, 12-H), 4.93(d,J=7.6 Hz, 1H, 1′-H), 4.57(d,J=3.2 Hz, 1H), 4.48~4.43(m, 3H), 4.16(dd,J=9.6 Hz, 3.4 Hz, 1H), 4.11(t,J=6.2 Hz, 1H), 3.41(dd,J=11.8 Hz, 4.4 Hz, 1H), 2.62(d,J=11.6 Hz, 1H), 2.32~2.20(m, 2H), 2.12(m, 1H), 1.57(t,J=8.0 Hz, 1H), 1.31(s, 3H), 1.26(s, 3H), 1.01(s, 3H), 1.00(d,J=5.8 Hz, 3H), 0.96(d,J=5.2 Hz, 3H), 0.96(s, 3H), 0.85(s, 3H), 0.80(d,J=11.8 Hz, 1H);13C NMRδ: 178.7, 138.9, 127.6, 106.2, 88.0, 75.0, 73.7, 71.2, 68.2, 60.4, 55.1, 47.2, 45.8, 45.6, 41.4, 40.9, 38.7, 38.3, 38.2, 36.4, 33.4, 32.9, 32.5, 32.2, 30.3, 27.8, 27.3, 25.7, 25.6, 23.5, 23.0, 22.7, 17.9, 16.9, 16.6, 15.2; MS(ESI)m/z: 641{[2M+Na]+}。
熊果酸3-O-β-D-吡喃木糖苷(6c): 產(chǎn)率77%, m.p.203~205 ℃, Rf0.69;1H NMRδ: 5.46(brs, 1H, 12-H), 4.98(d,J=7.5 Hz, 1H, 1′-H), 4.53(dd,J=11.2 Hz, 4.9 Hz, 1H, 5′-1-H), 4.25~4.15(m, 2H), 4.03(t,J=7.8 Hz, 1H), 3.79(t,J=10.4 Hz, 1H), 3.44(brd,J=10.3 Hz, 1H, 18-H), 3.35(dd,J=11.2 Hz, 3.8 Hz, 1H, 3-H), 1.69, 1.43, 1.31, 1.02, 0.95, 0.94, 0.54(s, 21H, Me);13C NMRδ: 180.4, 139.9, 128.5, 101.8, 77.3, 76.6, 73.2, 69.5, 65.5, 55.9, 48.1, 46.7, 46.5, 42.2, 42.0, 39.7, 39.6, 38.8, 37.0, 34.3, 33.3, 33.3, 33.2, 31.0, 28.3, 28.2, 26.8, 26.2, 23.8, 23.8, 23.7, 18.5, 17.4, 17.0, 15.5; MS(ESI)m/z: 611.5{[2M+Na]+}。
通過三氯乙酰亞胺酯法合成6a~6d,產(chǎn)物總產(chǎn)率提高至65%~77%,高于文獻(xiàn)[27-28]報道產(chǎn)率。
糖苷類化合物具有α和β兩種構(gòu)型,即C1-位上的雜原子在糖環(huán)平面的下方或上方。其構(gòu)型主要通過H1和H2的偶合常數(shù)和二維圖譜確認(rèn)[1]。在糖的六元環(huán)中,β型糖的H1和H2均處于a鍵,它們之間的偶合常數(shù)Ja-a相對較大(通常為7~13),而α型糖H1和H2分別處于e鍵和a鍵,它們之間的偶合常數(shù)Je-a相對較小(通常為2~6),所以根據(jù)1H NMR分析可以大概了解產(chǎn)物的構(gòu)型。6a~6d的J1-2分別為7.8 Hz, 7.6 Hz, 7.5 Hz和6.7 Hz,這說明6a~6c中的糖苷鍵的構(gòu)型為β構(gòu)型,6d中的糖苷鍵為α構(gòu)型。
此外,我們還注意到,采用三氯乙酰亞胺酯法進(jìn)行糖苷化反應(yīng),糖給體反應(yīng)前后的構(gòu)型能夠保持不變,其可能原因為:構(gòu)型與強催化劑TMSOTf有較大關(guān)系,糖苷化反應(yīng)時無鄰基參與,與糖受體的結(jié)構(gòu)和性質(zhì)關(guān)系不大,主要生成的產(chǎn)物為熱力學(xué)穩(wěn)定產(chǎn)物。
[1] 吳立軍. 天然藥物化學(xué)[M].北京:人民衛(wèi)生出版社,2003.
[2] Hsu H Y, Yang J J, Lin C C. Effects of oleanolic acid and ursolic acid on inhibiting tumor growth and enhancing the recover of hematopoietic system posirrodiation in mice[J].Cancer Letter,1997,111:7-13.
[3] Ma C M, Cai S Q, Cui J R,etal. The cytotoxic activity of ursolic acid derivatives [J].European Journal of Medicinal Chemistry,2005,40:582-589.
[4] Wang P, Li C X, Zang J,etal. Synthesis of two bidesmosidic ursolic acid saponins bearing a 2,3-branched trisaccharide residue[J].Carbohydr Res,2005,340:2086-2096.
[5] Hsu Y L, Kuo P L, Lin C C. Proliferative inhibition cell-cycle dysregulation and induction of apoptosis by ursolic acid in human non-small cell lung cancer A549 cells [J].Life Sciences,2004,75:2303-2316.
[6] 李開泉,陳武,熊筱娟,等. 烏索酸的化學(xué)、藥理及臨床應(yīng)用進(jìn)展[J].中成藥,2002,24:709-711.
[7] Micelia N, Tavianoa M F, Giuffridab D,etal. Anti-inflammatory activity of extract and fractions from nepeta sibthorpii bentham[J].Journal of Ethnophamacology,2005,97:261-266.
[8] Costa V B, Coube C S, Marinho B G,etal. Anti-inflammatory and analgesic activity of bouchea fluminensis[J].Fitoterapia,2003,74:364-371.
[9] Raphael T J, Kuttan G. Effect of naturally occurring triterpenoids glycyrrhizic acid,ursolic acid,oleanolic acid and nomilin on the immune system[J].Phytomedicine,2003,10:483-489.
[10] Quere L, Wenger T, Schramm H. Triterpenes as potential dimerization inhibitors of HIV-1 protease[J].Biochemical and Biophysical Reseach Communications,1996,227:484-488.
[11] Kashiwada Y, Nagao T, Hashimoto A,etal. Anti-AIDS agents 38:Anti-HIV activity of 3-O-acyl ursolic acid derivatives [J].Journal of Natural Products,2000,63:1619-1621.
[12] Whistler L R. Methods in Carbohydrate Chemistry [M].New York:Academic Press,1962.
[13] Kenneth K, Natasha R. Plant glycosyltransferases[J].CurrOpin Plant Bio,2001,4:219-224.
[14] Rohr J, Thiericke R. Angucycline group antibiotics [J].Nat Prod Rep,1992,9:103-137.
[15] Almeida A P, Miranda M M F S, Simoni I C,etal. Flavonol monoglycosides isolated from the antiviral fractions of persea americana(lauraceae) leaf infusion[J].Phytother Res,1998,12:562-567.
[16] Kamel H, Shaker M, Bernhardt M,etal. Triterpenoid saponins from Fagonia indica[J].Phytochemistry,1999,51:1049-1053.
[17] Toshio M, Melek F R, El-Gindi O D,etal. Saponins from fagonia arabica[J].Phytochemistry,1996,41(4):1175-1179.
[18] Miyase T, Shiokawa K I, Zhang D M,etal. Aralia saponins I-XI triterpene saponins from the roots of aralia decaisneana[J].Phytochemistry,1996,41:1411-1418.
[19] Deng S, Yu B, Lou Y,etal. First total synthesis of an exceptionally potent antitumor saponin OSW-1[J]. Org Chem, 1999,64:202-208.
[20] Baglin I, Poumaroux A, Nour M,etal. New ursolic and betulinic derivatives as potential cytotoxic agents[J].Journal of Enzyme Inhibition and Medicinal Chemistry,2003,18:111-117.
[21] Cheng M, Wang Q, Sang H,etal. Total synthesis of methyl protodioscin:A potent agent with antitumor activity[J].J Org Chem,2003,68:3658-3662.
[22] Zou C C, Hou S J, Shi Y,etal. The synthesis of gracillin and dioscin:Two typical representatives of spirostanol glycosides[J].Carbohydr Res,2003,338:721-727.
[23] Takashi M, Hideki M, Keisuke S. New glycosidation reaction 1:Combinational use of Cp2ZrCl2-AgClO4for activation of glycosyl fluorides and application to highlyβ-selective gylcosidation of D-mycinose[J].Tetrahedron Letters,1988,29:3567-3570.
[24] Li Y F, Yang M, Yuan L,etal. Antidepressant effect of quercetin-3-O-apiosyl (1→2)-[rhamnosyl(1→6)]-glucoside in mice[J].Chin J Pharmacol Toxicol,2000,14:125-127.
[25] Schmidt R R, Michel J. Facile synthesis ofα-andβ-O-glycosyl imidates:Preparation of glycosides and disaccharides[J].Angew Chem Int En Engl,1980,19:731-732.
[26] Schmidt R R, Kinzy W. Anomeric-oxygen activation for glycoside synthesis:The trichloroacetimidate method[J].Adv Carbohydr Chem Biochem,1994,50:121-125.
[27] 朱建勤,陳搖暉,王少戎,等. 熊果酸半乳糖苷偶聯(lián)物的合成及保肝活性[J].高等學(xué)?;瘜W(xué)學(xué)報,2013,34:1660-1666
[28] Guo T, Wu S, Guo S, Bai L,etal. Synthesis and evaluation of a series of oleanolic acid saponins asα-glucosidase andα-amylase inhibitors[J].Arch Pharm Chem Life Sci,2015,348:615-628.
熱烈祝賀《合成化學(xué)》再次入選中國科學(xué)引文數(shù)據(jù)庫
經(jīng)過中國科學(xué)引文數(shù)據(jù)庫(Chinese Science Citation Database,簡稱CSCD)的定量遴選、學(xué)科專家評審和中國科學(xué)引文數(shù)據(jù)庫來源期刊遴選委員會的評議,《合成化學(xué)》再次被中國科學(xué)引文數(shù)據(jù)庫(2017-2018年度)收錄。
《合成化學(xué)》編輯部
Facile Synthesis of Novel Ursolic Acid Monoglycosides
LI Jing-jing1, GUO Lin1, XU Wen-jian2*
(1. College of Chemical Engineering and Food Science, Zhengzhou Institute of Engineering Technology, Zhengzhou 450044, China; 2. College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, China)
Ursonic acid benzyl ester(2) was obtained by benzylation from ursolic acid. Ester protected ursolic acid-3-glucosides(4a~4d) were obtained by glycosylation reaction of 2 with trichloroacetimidate. Four ursolic acid-3-monoglycosides(6a~6d) were synthesized by deprotection of benzyl and benzoyl from 4a~4d, respectively. Among them, 6c was a novel compound. The structures were characterized by1H NMR,13C NMR and MS(ESI).
ursolic acid; triterpenoid; single glycoside; glycosylation; facile synthesis
2016-12-02;
2017-04-13
鄭州市科技局科技攻關(guān)項目(X2009SP0430-1)
李靖靖(1962-),女,漢族,河南南陽人,教授,主要從事有機(jī)化學(xué)和高分子化學(xué)的教學(xué)與研究工作。 E-mail: 112533418@qq.com
許文儉,博士,教授, E-mail: wjxu@zzu.edu.cn
O625.52; O629
A
10.15952/j.cnki.cjsc.1005-1511.2017.08.16300