程占超,侯 丹,馬艷軍,高 健
(國(guó)際竹藤中心 國(guó) 家林業(yè)局竹藤科學(xué)與技術(shù)重點(diǎn)開放實(shí)驗(yàn),北京100102)
毛竹生長(zhǎng)素反應(yīng)因子基因的生物信息學(xué)分析及差異表達(dá)
程占超,侯 丹,馬艷軍,高 健
(國(guó)際竹藤中心 國(guó) 家林業(yè)局竹藤科學(xué)與技術(shù)重點(diǎn)開放實(shí)驗(yàn),北京100102)
生長(zhǎng)素反應(yīng)因子(ARF)基因家族在植物的生長(zhǎng)發(fā)育中起至關(guān)重要的作用。關(guān)于毛竹Phyllostachys edulis ARF基因家族在花器官中生物信息學(xué)分析未見報(bào)道。以毛竹花器官為材料,采用生物信息學(xué)的方法,對(duì)毛竹中ARF基因進(jìn)行篩選,并對(duì)其系統(tǒng)進(jìn)化關(guān)系、保守基序及在花器官中的差異表達(dá)模式進(jìn)行了初步的分析。結(jié)果表明:毛竹全基因組中含有44個(gè)ARF基因,分為Ⅰ,Ⅱ,Ⅲ類。與擬南芥Arabidopsis thaliana和水稻Oryza sativa分別比較,發(fā)現(xiàn)毛竹與水稻存在11個(gè)姐妹同源基因?qū)Α4送?,PheARF13,PheARF14和PheARF35在花芽、雌蕊和幼胚中高量表達(dá),同時(shí)PheARF2,PheARF30,PheARF14,PheARF13,PheARF35,PheARF7,PheARF37,PheARF38在雌蕊和幼胚中高量表達(dá),推測(cè)這些基因可能在花發(fā)育和種子發(fā)育中發(fā)揮重要的作用。圖3表1參32
林木育種學(xué);毛竹;生長(zhǎng)素應(yīng)答因子;花發(fā)育
植物生長(zhǎng)激素能夠調(diào)節(jié)或者影響植物不同的生理過程,比如頂端優(yōu)勢(shì)、側(cè)根萌發(fā)、導(dǎo)管分化、胚胎發(fā)育和芽的伸長(zhǎng),也可以促進(jìn)細(xì)胞的分裂、延伸和分化[1]。在分子水平上,生長(zhǎng)素能夠特異性地調(diào)節(jié)基因的表達(dá)[2]。生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)相關(guān)的3類主要蛋白是Aux/IAAs,ARFs和SCF復(fù)合體[3-4]。作為生長(zhǎng)素信號(hào)途徑一個(gè)重要的成員,ARFs基因能夠通過結(jié)合生長(zhǎng)素啟動(dòng)子上的AuxRE來調(diào)控生長(zhǎng)素反應(yīng)基因的表達(dá)[5]。這些ARFs基因調(diào)控不同的發(fā)育過程,比如頂芽形成,導(dǎo)管組織的形成,胚胎、花和果實(shí)的形成[6]。一個(gè)經(jīng)典的ARF蛋白,結(jié)構(gòu)相對(duì)簡(jiǎn)單,大部分蛋白的分子量為70~130 kD,含有3個(gè)保守的結(jié)構(gòu)域,它們分別是N末端DNA結(jié)合結(jié)構(gòu)域(DBD),中間區(qū)域(MR)和C末端二聚體結(jié)構(gòu)域(CTD)。不同的結(jié)構(gòu)域也決定ARF不同的功能,DBD在信號(hào)轉(zhuǎn)導(dǎo)中起著鑒別作用,CTD可以使ARF之間形成二聚體,而MR則起著轉(zhuǎn)錄激活或抑制的功能[7]。ULMASOV等[8]鑒定出第1個(gè)ARF基因,即AtARF1,先后在擬南芥Arabidopsis thaliana和水稻Oryza sativa中鑒定出23和25個(gè)ARF基因[9-10]。ARFs大部分在植物中發(fā)現(xiàn),比如在雙子葉、單子葉、裸子和蕨類植物中都有發(fā)現(xiàn),但是在動(dòng)物和微生物中至今沒有發(fā)現(xiàn)。因此,ARFs是植物中特有的一類轉(zhuǎn)錄因子[11]。ARF的生物學(xué)功能主要來自擬南芥ARF基因功能缺失的表型,到目前為止,已經(jīng)發(fā)現(xiàn)很多ARF基因及其功能,比如ARF3和ARF7[12-14]。研究表明:擬南芥arf3的突變體會(huì)出現(xiàn)花蕊基部和頂端的發(fā)育不良,說明ARF3在調(diào)節(jié)花器官發(fā)育上起作用;缺失ARF7,導(dǎo)致上胚軸的向光性和下胚軸的向地性功能的消失。這2個(gè)ARF基因有著不同的功能,很少在功能上出現(xiàn)冗余現(xiàn)象。毛竹Phyllostachys edulis與水稻、玉米Zeamays等同屬于禾本科Gramineae單子葉植物,但是,毛竹營(yíng)養(yǎng)生長(zhǎng)周期長(zhǎng),開花時(shí)期不確定,開花后死亡,導(dǎo)致竹林面積減少,對(duì)經(jīng)濟(jì)發(fā)展和生態(tài)環(huán)境造成重大損失和破壞,竹子開花的調(diào)控機(jī)制一直是竹類植物研究中的難點(diǎn)和熱點(diǎn)。目前,ARF家族基因在模式植物擬南芥、水稻、玉米中已有研究,而毛竹ARF家族基因在花器官和幼胚發(fā)育上鮮有報(bào)道。本研究通過生物信息學(xué)的方法,根據(jù)毛竹的基因組,鑒定ARF基因家族,進(jìn)行進(jìn)化樹分析、基序分析、基因差異表達(dá)模式分析,為研究ARF基因在毛竹花和種子發(fā)育過程中的功能奠定基礎(chǔ)。
1.1 實(shí)驗(yàn)材料
毛竹開花實(shí)驗(yàn)地位于廣西壯族自治區(qū)桂林市南嶺山系的西南部。該毛竹林屬于自然生長(zhǎng)狀態(tài),基本無人為干擾。以毛竹的花器官為材料,進(jìn)行解剖,分離出花芽、苞片、穎片、稃片、雄蕊、雌蕊和幼胚以及未開花的成熟葉片,建立8個(gè)樣本進(jìn)行轉(zhuǎn)錄組高通量測(cè)序。
1.2 方法
1.2.1 毛竹中PheARF家族成員的檢索 從擬南芥基因組數(shù)據(jù)庫(http://www.arabidopsis.org/)和水稻基因組數(shù)據(jù)庫(http://rice.plantbiology.msu.edu/index.html)中分別檢索擬南芥和水稻中ARF蛋白序列;毛竹ARF相關(guān)蛋白序列從毛竹基因組數(shù)據(jù)庫(http://www.bamboogdb.org/index.jsp)中獲得。毛竹PheARF家族蛋白的序列號(hào),開放閱讀框的長(zhǎng)度、氨基酸數(shù)目、分子質(zhì)量和等電點(diǎn)在表1中提供。毛竹ARF分子量及等電點(diǎn)數(shù)據(jù)通過ExPASY(http://web.expasy.org/compute_pi/)獲得。
1.2.2 進(jìn)化樹分析 用ClustalX 1.83(http://www.clustal.org/)[15]軟件對(duì)蛋白全長(zhǎng)的多序列比對(duì)進(jìn)行分析,進(jìn)化樹分析前去掉比對(duì)序列的差異和不明確序列。用no-rooted neighbor-joining方法通過 MEGA 6.0(http://www.megasoftware.net/mega.html)[16]構(gòu)建系統(tǒng)進(jìn)化樹。
1.2.3 基序分析 MEME version 4.11.2(http://meme-suite.org/)[17]在線工具鑒定候選蛋白序列的保守區(qū)域,公式為any,maximum number ofmotifs=20,minimum width≥6和maximum width≤200。
1.2.4 表達(dá)量分析 將花芽、苞片、穎片、稃片、雄蕊、雌蕊和幼胚以及未開花的成熟葉片的FPKM值輸入到Cluster 3.0,用Java TreeView生成熱點(diǎn)圖[18]。
2.1 毛竹PheARF家族序列鑒定
通過23個(gè)擬南芥和25個(gè)水稻ARF蛋白序列檢索毛竹基因組數(shù)據(jù)庫,共得到44個(gè)ARF蛋白(表1)。從表1可以看出,ARF家族的蛋白的等電點(diǎn)為5.22~9.23,蛋白序列的長(zhǎng)度為192~1 257個(gè)氨基酸,分子量的大小為31.70~139.07 kD。
表1 毛竹中ARF成員數(shù)量及其屬性Table 1 Properties and numbers of ARF identified from Phyllostachys edulis
2.2 毛竹PheARF家族進(jìn)化分析
系統(tǒng)進(jìn)化結(jié)果顯示:44個(gè)基因之間相似性比較高(圖1)。將44個(gè)毛竹的ARF蛋白列同23個(gè)擬南芥和25個(gè)水稻的蛋白序列同時(shí)比對(duì),發(fā)現(xiàn)可以將這3個(gè)物種的ARF分為三大類,分別為Ⅰ,Ⅱ和Ⅲ。其中有13個(gè)基因分布在Ⅰ類,17個(gè)基因分布在Ⅱ類,還有14個(gè)基因?qū)儆冖箢?。大部分的PheARFs包含3個(gè)經(jīng)典的結(jié)構(gòu)域:DBD,結(jié)構(gòu)域Ⅱ和AUX/IAA家族結(jié)構(gòu)域。有11個(gè)與水稻的同源關(guān)系較近的基因?qū)Γ篛sAR25/PheARF30(Ⅱ),OsARF16/PheARF40(Ⅱ),OsARF19/PheARF31(Ⅱ),OsARF15/PheARF37(Ⅲ),OsARF2/PheARF14(Ⅲ),OsARF14/PheARF39(Ⅲ),OsARF3/PheARF2 6(Ⅲ),OsARF13/ PheARF38(Ⅲ),OsARF8/PheARF16(Ⅲ),OsARF10/PheARF10(Ⅲ)和OsARF18/PheARF18(Ⅲ)。這些基因大部分出現(xiàn)在Ⅱ類和Ⅲ類中,說明這2類的基因相對(duì)比較保守。
2.3 毛竹PheARF基序分析
為了進(jìn)一步了解毛竹ARF保守區(qū)域的結(jié)構(gòu),通過MEME在線工具構(gòu)建基序分析圖,結(jié)果如圖2所示。毛竹ARF成員含有的基序結(jié)構(gòu)不一,大概有20個(gè)不同的基序組成。其中每個(gè)基因都包含不同種類的基序,大部分的基序?yàn)?~17個(gè)。大部分的PheARF基因都包含Motif1~8,Motif10,Motif11,Motif14,Motif18和Motif20等,這些基序出現(xiàn)的次數(shù)較多,而Motif13,Motif16和Motif17等基序在這些基因中不常見。從進(jìn)化角度來看,同源關(guān)系較近的Ⅰ,Ⅱ,Ⅲ類的基因在基序的長(zhǎng)度和種類較為相似,比如Ⅰ類的 PheARF4,PheARF9和 PheARF32等,Ⅱ類的 PheARF22,PheARF31和 PheARF33等,Ⅲ類的PheARF17,PheARF18和PheARF37等。以上結(jié)果說明大部分的毛竹ARF家族基因是相當(dāng)保守的。
2.4 毛竹PheARF基因在花器官中差異表達(dá)分析
為了研究毛竹PheARF基因在花器官發(fā)育中的作用和調(diào)控機(jī)制,進(jìn)一步分析PheARF基因在花芽、苞片、穎片、稃片、雌蕊、雄蕊、幼胚和未開花的葉中表達(dá)分析。結(jié)果表明:PheARF12,PheARF13,PheARF14,PheARF15,PheARF24,PheARF35,PheARF43,PheARF23和PheARF32在花芽中高量表達(dá),說明這些ARF基因可能在開花初期起著重要的調(diào)控作用(圖3)。在雄蕊中,PheARF9,PheARF29,PheARF31, PheARF10, PheARF4, PheARF22, PheARF11, PheARF25, PheARF40, PheARF8,PheARF39,PheARF1,PheARF44,PheARF45,PheARF42和PheARF41高量表達(dá),但是這些基因在幼胚中表達(dá)量極低。PheARF2,PheARF30,PheARF14,PheARF13,PheARF35,PheARF7,PheARF37和PheARF38在雌蕊中表達(dá)量較高,同時(shí)在幼胚中也高量表達(dá),說明這些基因同時(shí)調(diào)控毛竹雌蕊形成和幼胚的發(fā)育。PheARF13,PheARF14和PheARF35同時(shí)在花芽、雌蕊和幼胚中高表達(dá),這3個(gè)基因可能既調(diào)控開花又能控制花的發(fā)育。此外,PheARF5,PheARF18,PheARF27,PheARF10和PheARF4在穎片和稃片中都高量表達(dá),可能調(diào)節(jié)稃片和穎片的發(fā)育。
圖1 毛竹、水稻和擬南芥ARF的系統(tǒng)進(jìn)化樹分析Figure 1 Phylogenetic analyses of the ARF proteins in Phyllostachys edulis,Oryza sativa and Arabidopsis thaliana
生長(zhǎng)素是植物器官發(fā)育和模式形態(tài)形成和發(fā)育非常重要的信號(hào)分子。生長(zhǎng)素轉(zhuǎn)導(dǎo)途徑中最重要的2類家族分別為ARFs和Aux/IAAs[19]。在發(fā)育過程中,ARFs能直接地調(diào)控下游靶基因的表達(dá)[6,20],但大部分的ARF和Aux/IAA都是以家族的形式存在,所以它們?cè)谥参矬w內(nèi)的調(diào)控機(jī)制是相當(dāng)復(fù)雜的[21-23]。ARFs基因也參與生殖過程[24]。木瓜Carica papaya和番茄Solanum lycopersicum的ARFs基因家族的分析和鑒定揭示了該家族基因在花和果實(shí)的發(fā)育過程中具有調(diào)控作用[25-26]。
在本研究中,通過生物信息學(xué)工具,檢索44個(gè)毛竹的ARF基因。在擬南芥和水稻中的ARF基因分別為23和25個(gè)。ARF基因家族在不同植物中成員數(shù)量不同,這可能與植物體內(nèi)的基因組復(fù)制有關(guān)[27],而基因數(shù)量多少由該基因復(fù)制事件的頻率決定。毛竹基因組為2 G左右[28],大于水稻和擬南芥的基因組。以上分析表明:毛竹ARF基因復(fù)制事件的頻繁發(fā)生有可能導(dǎo)致毛竹ARF家族成員數(shù)量增多。通過系統(tǒng)進(jìn)化分析,毛竹ARF家族基因大致分為3個(gè)亞組(圖1),亞組內(nèi)的基因相似性比較高,但是亞組之間相似性不高,或許在基因功能上也有差異。毛竹與擬南芥和水稻的ARF家族的系統(tǒng)進(jìn)化關(guān)系表明,毛竹與水稻之間有11對(duì)同源基因?qū)?,這些基因?qū)Χ紝儆冖蝾惡廷箢?,一方面說明毛竹的ARF家族與水稻有很高的同源性(圖1),另一方面說明毛竹ARF家族Ⅱ類和Ⅲ類的基因保守性很高。
圖2 毛竹ARF保守基序分析Figure 2 Distribution of conserved motifs in Phylloastachys edulis ARF proteins identified using MEME search tool
研究人員對(duì)水稻和擬南芥的ARF基因進(jìn)行了廣泛地研究[29-31]。ARF基因在花和種子發(fā)育中起著非常重要的作用,為研究毛竹的開花及種子發(fā)育提供了許多有用的信息。據(jù)報(bào)道,擬南芥的AtARF3和AtARF4參與花的發(fā)育,在花中高量表達(dá)[32]。與AtARF3和AtARF4同源的毛竹PheARF14和PheARF37在幼胚和雌蕊中都高量表達(dá),說明2個(gè)毛竹ARF基因可能與AtARF3和AtARF4基因功能相似,推測(cè)它們?cè)诿窕ê头N子發(fā)育過程中起著關(guān)鍵的作用。
圖3 毛竹PheARF基因在不同花器官中表達(dá)模式分析Figure 3 Expression analysis of PheARF genes among different flower organs of Phyllostachys edulis
[1] DAVIES P J.Plant Hormones:Physiology,Biochemistry and Molecular Biology[M].Dordrecht:Kluwer Academic Publishers,2013.
[2] THEOLOGISA.Rapid gene regulation by auxin[J].Ann Rev Plant Physiol,1986,37(1):407-438.
[3] GUILFOYLE T J,ULMASOV T,HAGEN G.The ARF family of transcription factors and their role in plant hormoneresponsive transcription[J].Cell Mol Life Sci,1998,54(7):619-627.
[4] SHEN Chenjia,YUE Runqing,SUN Tao,et al.Genome-wide identification and expression analysis of auxin response factor gene family in Medicago truncatula[J].Front Plant Sci,2015,6(11):3932-3935.
[5] TIWARISB,HAGEN G,GUILFOYLE T.The roles of auxin response factor domains in auxin-responsive transcription[J].Plant Cell,2003,15(2):533-543.
[6] GUILFOYLE T J,HAGEN G.Auxin response factors[J].Curr Opin Plant Biol,2007,10(5):453-460.
[7] RAMOS JA,ZENSER N,LEYSER O,et al.Rapid degradation of auxin/indoleacetic acid proteins requires conserved amino acids of domainⅡand is proteasome dependent[J].Plant Cell,2001,13(10):2349-2360.
[8] ULMASOV T,HAGEN G,GUILFOYLE T J.ARF1,a transcription factor that binds to auxin response elements[J]. Science,1997,276(5320):1865-1868.
[9] HAGEN G,GUILFOYLE T.Auxin-responsive gene expression:genes,promoters and regulatory factors[J].Plant Mol Biol,2002,49(3/4):373-385.
[10] REMINGTON D L,VISION T J,GUILFOYLE T J,et al.Contrasting modes of diversification in the Aux/IAA andARF gene families[J].Plant Physiol,2004,135(3):1738-1752.
[11] LISCUM E,REED JW.Genetics of Aux/IAA and ARF action in plant growth and development[J].Plant Mol Biol, 2002,49(3/4):387-400.
[12] SESSIONSR.Arabidopsis (Brassicaceae)flower development and gynoecium patterning in wild type and ettin mutants[J].Am JBot,1997,84(9):1179-1179.
[13] HARDTKE C S,BERLETH T.The Arabidopsis gene MONOPTEROS encodes a transcription factormediating embryo axis formation and vascular development[J].EMBO J,1998,17(5):1405-1411.
[14] HARPER R M,STOWE-EVANSE L,LUESSE D R,et al.The NPH4 locus encodes the auxin response factor ARF7, a conditional regulator of differential growth in aerial Arabidopsis tissue[J].Plant Cell,2000,12(5):757-770.
[15] THOMPSON JD,GIBSON T J,PLEWNIAK F,et al.The CLUSTAL_X windows interface:flexible strategies formultiple sequence alignment aided by quality analysis tools[J].Nucl Acids Res,1997,25(24):4876-4882.
[16] TAMURA K,STECHER G,PETERSON D,et al.MEGA6:molecular evolutionary genetics analysis version 6.0[J]. Mol Biol Evol,2013,30(12):2725-2729.
[17] BAILEY T L,ELKAN C.The value of prior knowledge in discoveringmotifs with MEME[C].Proc Third Int Conf Intel SystMol Biol,California:AAAIPress,1995:21-29.
[18] SALDANHA A J.Java Treeview-extensible visualization ofmicroarray data[J].Bioinformatics,2004,20(17):3246-3248.
[19] FARCOTE,LAVEDRINE C,VERNOUX T.Amodular analysis of the auxin signalling network[J].PloSOne,2015, 10(3):864-865.
[20] ULMASOV T,MURFETT J,HAGEN G,et al.Aux/IAA proteins repress expression of reporter genes containing natural and highly active synthetic auxin response elements[J].Plant Cell,1997,9(11):1963-1971.
[21] 王壘,陳勁楓,婁麗娜,等.黃瓜果實(shí)中 ARF和 Aux/IAA基因?qū)ν庠醇に氐膽?yīng)答[J].西北植物學(xué)報(bào),2011,31(6):1127-1131.
WANG Lei,CHEN Jinfeng,LOU Lina,et al.Expression analysis about some ARF and Aux/IAA family members in fruits of cucumberwith exogenous hormones[J].Acta Bot Boreal-Occident Sin,2011,31(6):1127-1131.
[22] 史夢(mèng)雅,李陽,張巍,等.生長(zhǎng)素反應(yīng)因子作用機(jī)制研究進(jìn)展[J].生物技術(shù)通報(bào),2012(8):24-28.
SHIMengya,LIYang,ZHANGWei,et al.Progress in mechanism of auxin response factors[J].Biotechnol Bull, 2012(8):24-28.
[23] AUDRAN-DELALANDE C,BASSA C,MILA I,et al.Genome-wide identification,functional analysis and expression profiling of the Aux/IAA gene family in tomato[J].Plant Cell Physiol,2012,53(4):659-672.
[24] CHO H,RYU H,RHO S,et al.A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development[J].Nat Cell Biol,2014,16(1):66-76.
[25] PAULL R E,IRIKURA B,WU Pingfang,et al.Fruit development,ripening and quality related genes in the papaya genome[J].Trop Plant Biol,2008,1(3/4):246-277.
[26] KUMAR R,TYAGIA K,SHARMA A K.Genome-wide analysis of auxin response factor(ARF)gene family from tomato and analysis of their role in flower and fruit development[J].Mol Gen Genomics Mgg,2011,285(3):245-260.
[27] OHNO S.Evolution by Gene Duplication[M].Heidelberg:Springer Verlag,2013.
[28] PENG Zhenhua,LU Ying,LILubin,et al.The draft genome of the fast-growing non-timber forest speciesmoso bamboo(Phyllostachys heterocycla)[J].Nat Gen,2013,45(4):456-461.
[29] QIYanhua,WANG Suikang,SHEN Chenjia,et al.OsARF12,a transcription activator on auxin response gene,regulates root elongation and affects iron accumulation in rice(Oryza sativa)[J].New Phytol,2012,193(1):109-120.
[30] COLE M,CHANDLER J,WEIJERS D,et al.DORNR?SCHEN is a direct target of the auxin response factor MONOPTEROS in the Arabidopsis embryo[J].Development,2009,136(10):1643-1651.
[31] LIJisheng,DAIXinhua,ZHAO Yunde.A role for auxin response factor 19 in auxin and ethylene signaling in Arabidopsis[J].Plant Physiol,2006,140(3):899-908.
[32] HUNTER C,WILLMANN M R,WU Gang,et al.Trans-acting siRNA-mediated repression of Ettin and ARF4 regulates heteroblasty in Arabidopsis[J].Development,2006,133(15):2973-2981.
Bioinformatic analysis and differential expression of auxin response factor(ARF)gene in Phyllostachys edulis
CHENG Zhanchao,HOU Dan,MA Yanjun,GAO Jian
(Key Laboratory of Bamboo and Rattan Science and Technology of State Forestry Administration,International Center for Bamboo and Rattan,Beijing 100102,China)
The auxin response factor (ARF)gene family plays a key role in plant growth and developmental processes,such as root and shoot development aswell as flower and fruit development.To provide a theoretical basis for flower and seed development of Phyllostachys edulis,a genome-wide analysis of the previously undocumented ARF gene family for Ph.edulis was conducted.In this study a whole-genome survey of Ph.edulis was performed and a detailed analysis of the gene motif and phylogenetic classification was provided.Results showed 44 ARF geneswhich were classified into three groups.A comparative analysis of the ARF genes among Ph.edulis,rice,and Arabidopsis suggested a total of 11 sister pairs (OsARF-PheARF)providing insights into various orthologous relationships between OsARFs and PheARFs.For ARF expression patterns of diverse floral organs,PheARF13,PheARF14,and PheARF35 showed the highest expression in the flower bud,pistil,and young embryo;whereas,PheARF2,PheARF30,PheARF14,PheARF13,PheARF35,PheARF7,PheARF37,and PheARF38 were highly expressed in the pistil and the young embryo.This study suggested that ARF genesmay play a very critical role during flower and fruit development of Ph.edulis.[Ch,3 fig.1 tab.32 ref.]
forest tree breeding;Phyllostachys edulis;auxin response factors;floral development
S722
A
2095-0756(2017)04-0574-07
10.11833/j.issn.2095-0756.2017.04.002
2016-06-13;
2016-07-14
國(guó)家高技術(shù)研究發(fā)展計(jì)劃(“863”計(jì)劃)項(xiàng)目(2013AA102607-4);國(guó)家自然科學(xué)基金資助項(xiàng)目(31570673)
程占超,博士,從事林木遺傳育種研究。E-mail:chengzhan_chao@126.com。通信作者:高健,研究員,博士,博士生導(dǎo)師,從事林木遺傳育種研究。E-mail:gaojian@icbr.ac.cn