曹達(dá)啟,王振,郝曉地,汪群慧
?
剩余污泥吸附痕量典型藥物影響因素
曹達(dá)啟1,王振1,郝曉地1,汪群慧2
(1北京建筑大學(xué)城市雨水系統(tǒng)與水環(huán)境省部共建教育部重點(diǎn)實(shí)驗(yàn)室/中-荷未來(lái)污水處理技術(shù)研發(fā)中心,北京100044;2北京科技大學(xué)土木與環(huán)境工程學(xué)院,北京 100083)
傳統(tǒng)的污水處理工藝不能完全去除藥物和個(gè)人護(hù)理用品(PPCPs),可能通過(guò)吸附作用存在于剩余污泥中。當(dāng)污泥經(jīng)土地或農(nóng)業(yè)利用,其中含有的PPCPs可能釋放出來(lái),污染水環(huán)境,因此,揭示PPCPs經(jīng)污泥吸附去除的影響因素,對(duì)于預(yù)測(cè)或評(píng)估污泥中PPCPs含量尤其重要。以北京某污水處理廠剩余污泥為對(duì)象,利用高效液相色譜?質(zhì)譜聯(lián)用儀,研究了痕量濃度下3種典型藥物在污泥中的賦存特性。隨pH增大,環(huán)丙沙星與磺胺甲唑的吸附容量減小,而撲熱息痛的吸附容量增加;主要是因?yàn)閜H不僅改變藥物在水中的存在形態(tài),而且影響微生物細(xì)胞體的表面電位。胞外聚合物(EPS)對(duì)污泥吸附3種典型藥物均有促進(jìn)作用,且不依賴于pH;主要是因?yàn)镋PS中含有的金屬離子與有機(jī)物成分決定污泥吸附藥物性能。
藥品和個(gè)人護(hù)理用品;剩余污泥;吸附;胞外聚合物;金屬離子;有機(jī)物
隨著痕量污染物檢測(cè)技術(shù)高速發(fā)展和人們環(huán)保意識(shí)的不斷增強(qiáng),環(huán)境中藥物和個(gè)人護(hù)理用品(pharmaceutical and personal care products,PPCPs)引起了人們廣泛的關(guān)注[1]。PPCPs在水環(huán)境中的濃度通常在ng·L-1到μg·L-1之間[2],由于PPCPs是與人類活動(dòng)密切相關(guān)的一類化合物,隨著人類的不斷使用,大量PPCPs持續(xù)不斷地進(jìn)入環(huán)境中,給人類健康和生態(tài)環(huán)境安全帶來(lái)潛在風(fēng)險(xiǎn)[3-6]。
污水處理廠點(diǎn)源排放是水環(huán)境中PPCPs的主要來(lái)源[6-7],其中,活性污泥法是污水處理廠中最主要的處理機(jī)制,除去少量經(jīng)曝氣等氣體逸散形式排放大氣外,大部分PPCPs的去除主要經(jīng)過(guò)兩種途徑:生物化學(xué)降解和污泥吸附[8]。PPCPs大部分為人工合成物質(zhì),化學(xué)結(jié)構(gòu)穩(wěn)定,進(jìn)入常規(guī)污水處理廠后難以生物化學(xué)降解[2,7,9],一部分PPCPs會(huì)殘留在污水處理出水中而進(jìn)入天然水體,而另一部分則通過(guò)吸附或溶解形式存在于剩余污泥中。例如,喹諾酮類抗生素主要通過(guò)污泥吸附去除,有研究表明,在污水處理過(guò)程中,污泥吸附環(huán)丙沙星占總?cè)コ实?3%±14%[10]。含PPCPs的剩余污泥,通過(guò)土壤利用以及施肥等農(nóng)業(yè)生產(chǎn)活動(dòng)進(jìn)入環(huán)境,進(jìn)而污染地表水環(huán)境,且經(jīng)滲濾作用也會(huì)污染地下水[7,10-17]。
2015年4月國(guó)務(wù)院正式頒布了《水污染防治行動(dòng)計(jì)劃》,其中,明確規(guī)定了“污水處理設(shè)施產(chǎn)生的污泥應(yīng)進(jìn)行穩(wěn)定化、無(wú)害化和資源化處理處置,禁止處理處置不達(dá)標(biāo)的污泥進(jìn)入耕地”。因此,探明PPCPs等微量有機(jī)污染物在污泥中的賦存狀態(tài)變得尤其重要。目前,PPCPs在剩余污泥中賦存行為的影響因素及機(jī)理尚不太清楚?;谝韵聝牲c(diǎn)的分析:①構(gòu)成剩余污泥的主要固形成分為微生物細(xì)胞體,其代謝過(guò)程中分泌的包裹在細(xì)胞壁外的多聚物(extracellular polymeric substances,EPS)主要由蛋白質(zhì)、多糖、腐殖質(zhì)、核酸等高分子聚合物構(gòu)成[18-19],其中含有的氨基、羧基、羥基及疏水基團(tuán)等官能團(tuán),將為藥物的吸附提供吸附位點(diǎn),從而決定胞體表面的吸附行為[20-21];②細(xì)胞體表面EPS中含有的鈣、鎂、鐵等金屬離子,通過(guò)陽(yáng)離子架橋、陽(yáng)離子交換以及絡(luò)合作用,使細(xì)胞體吸附PPCPs[22-25]。并且,由于在市政污水中檢出的PPCPs大部分為離子型有機(jī)物[3,25],本研究選取pa值差別較大的3種常見(jiàn)藥物:環(huán)丙沙星[7,10,14,23,25]、磺胺甲唑[3,6-7,12-15,17,26]和撲熱息痛[3,7,13,27],討論溶液環(huán)境條件與EPS對(duì)藥物在污泥中賦存行為的影響及作用機(jī)理。
1.1 化學(xué)試劑與樣品
表1 CIP、SMX及ACP的分子結(jié)構(gòu)與物理化學(xué)性質(zhì)[23,26-27]
①Calculated by EPI SuiteTMdeveloped by USEPA.
1.2 實(shí)驗(yàn)設(shè)計(jì)
1.2.1 微生物胞體和EPS的制備 將污泥樣品放入50 ml離心管中,設(shè)定溫度為4℃、離心加速度為8000,離心10 min,去除上清液,超純水清洗后,冷凍干燥后獲得活性污泥微生物胞體(記為Biosolid)。采用陽(yáng)離子樹(shù)脂交換法(CER法)提取活性污泥中EPS[28],將活性污泥移至盛有陽(yáng)離子交換樹(shù)脂[60 g·(g VSS)-1]的燒杯中,加入適量的磷酸鹽緩沖液(2 mmol·L-1Na3PO4,4 mmol·L-1NaH2PO4,9 mmol·L-1NaCl,1 mmol·L-1KCl,pH7),攪拌4 h后,將混合液在4℃、8000條件下離心15 min,含EPS的上清液過(guò)0.45 μm濾膜(Millipore)后,濾液經(jīng)冷凍干燥制備EPS;再用超純水清洗3次提取EPS后的污泥,冷凍干燥后獲得不含EPS的活性污泥微生物胞體(記為BiosolidEPS free)。
1.2.2 固-液分配系數(shù)(d)的確定 用0.1 mol·L-1HEPES 緩沖液配制初始濃度為500 μg·L-1的藥物超純水溶液,以1 mol·L-1HNO3或1 mol·L-1NaOH調(diào)節(jié)pH至特定值。因調(diào)節(jié)pH所需酸或堿的量極低,故可忽略其對(duì)體系的影響。考慮到市政污水中的pH一般處于6~8,本研究選取pH5、7、9進(jìn)行實(shí)驗(yàn)。稱取一定質(zhì)量吸附基質(zhì)(Biosolid、BiosolidEPS free、EPS、SA、BSA),加入至500 μg·L-1的藥物超純水溶液,使吸附基質(zhì)的質(zhì)量濃度為1.0 g·L-1。室溫(25℃)下,160 r·min-1攪拌180 min;混合液經(jīng)0.22 μm濾膜(Millipore)過(guò)濾后,采用高效液相色譜?質(zhì)譜聯(lián)用儀,測(cè)定濾液中藥物濃度。
實(shí)驗(yàn)完成時(shí)吸附達(dá)到平衡,干污泥、EPS或有機(jī)物中吸附的藥物濃度由式(1)計(jì)算
式中,s為實(shí)驗(yàn)結(jié)束(吸附平衡)時(shí)干污泥、EPS或有機(jī)物中吸附的藥物濃度,mg·kg-1;0為水中藥物初始濃度,mg·L-1,以pH調(diào)節(jié)后,吸附基質(zhì)加入前測(cè)定的濃度計(jì);e為實(shí)驗(yàn)結(jié)束(吸附平衡)時(shí)水中藥物濃度,mg·L-1;為溶液體積,L;為干污泥、EPS或有機(jī)物的質(zhì)量,kg。固-液分配系數(shù)d(L·kg-1)可由式(2)計(jì)算
(2)
藥物經(jīng)干污泥、EPS或有機(jī)物吸附的去除率可由式(3)計(jì)算[11]
式中,SS為干污泥、EPS或有機(jī)物的質(zhì)量濃度,kg·L-1。根據(jù)式(3),不同的吸附基質(zhì)質(zhì)量濃度下,藥物的吸附去除率與固?液分配系數(shù)的關(guān)系如圖1所示。
圖1 各種吸附基質(zhì)濃度SS下藥物的去除率與的關(guān)系
Fig.1 Relationship between removal rate of pharmaceuticals, and for various concentrations of adsorbent substances, SS
1.2.3 金屬離子影響藥物在EPS中賦存特性 稱取50 mg EPS,加入至盛有24.75 ml、pH7的HEPES緩沖液的燒杯中,室溫下300 r·min-1攪拌1 h,再加入25 ml含金屬離子的超純水溶液,攪拌3 h后,再加入0.25 ml、100 mg·L-1藥物(CIP、SMX、ACP)的超純水溶液,室溫下300 r·min-1攪拌3 h后,上清液過(guò)0.22 μm濾膜(Millipore),通過(guò)高效液相色譜?質(zhì)譜聯(lián)用儀測(cè)定濾液中對(duì)應(yīng)藥物的濃度。考察的濃度:EPS為1.0 g·L-1,Ca2+、Mg2+為0、0.01、0.1、1、10 mmol·L-1,F(xiàn)e3+為0、0.00667、0.0667、0.667、6.67 mmol·L-1。
1.3 分析方法與儀器
采用EPA方法[29]分析3種典型藥物(CIP、ACP、SMX),高效液相色譜-質(zhì)譜聯(lián)用儀(TSQ Quantum Access MAX系統(tǒng),配有Hypersil GOLD 1.9 μm 100 mm×2.1 mm色譜柱,美國(guó)Thermo-Fisher公司)分析條件如表2所示,其中,流動(dòng)相A為0.3%甲酸+0.1%甲酸銨,流動(dòng)相B為甲醇,梯度洗脫條件:0~1.0 min,90% A,1.0~7.0 min,90%~10% A,7.0~8.0 min,10% A,8.0~8.1 min,10%~90% A,8.1~10.0 min,90% A。通過(guò)對(duì)目標(biāo)藥物的標(biāo)樣進(jìn)行掃描,確定了目標(biāo)藥物的特征離子和定量離子,以及它們的出峰保留時(shí)間(3~7 min);進(jìn)而對(duì)水樣中的目標(biāo)藥物進(jìn)行定量與定性分析。用超純水配制濃度為0.1~500 μg·L-1的一系列藥物標(biāo)準(zhǔn)溶液,通過(guò)待測(cè)樣品中定量離子的峰面積,采用外標(biāo)法定量。Biosolid與BiosolidEPS free的zeta電位測(cè)定方法如下:
表2 CIP、ACP及SMX檢測(cè)的液質(zhì)聯(lián)用儀條件
取50 mg Biosolid或BiosolidEPS free置于燒杯中,緩慢倒入50 ml超純水,使用1.0 mol·L-1HNO3或NaOH調(diào)節(jié)pH至對(duì)應(yīng)值(pH4~10),180 r·min-1攪拌3 h,再注入zeta電位分析儀(Zetasizer Nano ZS90,英國(guó)Malvern公司)的樣品池進(jìn)行測(cè)定。采用的其他實(shí)驗(yàn)儀器包括:等離子體發(fā)射光譜儀(ICAP 7000 SERIES ICP Spectrometer,美國(guó)Thermo-Fisher 公司)、傅里葉變換紅外光譜儀(Nicolet iS5,美國(guó)Thermo-Fisher 公司)、冷凍干燥機(jī)(FD-1A-50,北京博醫(yī)康)、十萬(wàn)分之一天平(MS105DU,瑞士Mettler-Toledo公司)、離心機(jī)(Sigma 3K15,德國(guó)Sigma公司)。
2.1 pH對(duì)藥物d的影響
圖2顯示了3種藥物(CIP、ACP、SMX)在提取EPS前后污泥微生物胞體(Biosolid與BiosolidEPS free)中的d。由圖可知,對(duì)于同一藥物,Biosolid與BiosolidEPS free的d不同,且均隨pH變化而變化。對(duì)于CIP,pH為5、7、9時(shí),Biosolid與BiosolidEPS free中d分別為115156.56與94078.81、34232.98與21267.30、378.96與135.16 L·kg-1;即隨著pH的升高,d呈現(xiàn)指數(shù)型減小,減小1~2個(gè)數(shù)量級(jí)。基于圖1中濃度為1.0 g·L-1時(shí)Biosolid與BiosolidEPS free的結(jié)果或代入式(3),可得藥物去除率分別為99.14%與98.95%(pH5)、97.16%與95.51%(pH7)、27.48%與11.91%(pH9)。隨著pH升高,由于CIP從陽(yáng)離子態(tài)經(jīng)兩性態(tài)、分子態(tài)向陰離子態(tài)轉(zhuǎn)變[圖3(a)];并且,圖4顯示了不同pH下Biosolid與BiosolidEPS free的zeta電位,由圖可知,微生物胞體表面的負(fù)電勢(shì)不斷降低。因此,微生物胞體經(jīng)電性中和作用吸附CIP的量急劇減小,表現(xiàn)了d的指數(shù)型下降。
對(duì)于SMX,當(dāng)pH = 5時(shí),Biosolid與BiosolidEPS free中的d最大,分別為393.56與310.28 L·kg-1,且隨pH的升高亦呈現(xiàn)下降趨勢(shì),但不如CIP顯著;pH7時(shí),其d為255.35與247.20 L·kg-1;pH9時(shí),減小為118.69與70.42 L·kg-1。需說(shuō)明的是,pH7時(shí)差異較小,可能是由于剩余污泥中極其復(fù)雜的未知組分造成的。同前計(jì)算方法,得到污泥吸附去除率分別為28.24%與23.68%(pH = 5)、20.34%與19.82%(pH7)、10.61%與6.58%(pH9)。原因可能為:其一,SMX的溶解度隨pH升高而增大,從而降低污泥對(duì)SMX的吸附量[30-32]。其二,不同pH下,SMX形態(tài)分布不同,pH5時(shí),SMX主要為分子態(tài)[圖3(b)],可與細(xì)胞表面上有機(jī)物之間產(chǎn)生親疏水性作用[21]與π-π EDA作用[33];pH7, 9時(shí),SMX主要為陰離子態(tài)[圖3(b)],親疏水性作用減弱,同時(shí),SMX中去質(zhì)子化的基團(tuán)吸引π電子的能力降低,導(dǎo)致與π電子供體之間的π-π EDA作用減弱,因此,d隨pH增加不斷減小。
圖2 不同pH下各藥物在Biosolid與BiosolidEPS free中的固-液分配系數(shù)
圖3 CIP、SMX及ACP依存于pH的形態(tài)分布
圖4 Biosolid與BiosolidEPS free的zeta電位與pH的關(guān)系
相反地,對(duì)于ACP,無(wú)論Biosolid還是BiosolidEPS free,隨pH升高,盡管d的絕對(duì)量較小,d值仍然不斷增大。pH為5、7、9時(shí),d分別為2.62與2.13、108.73與37.56、337.66與61.33 L·kg-1;污泥吸附去除率分別為0.26%與0.21%、9.81%與3.62%、25.24%與5.78%。由于Biosolid和BiosolidEPS free的電負(fù)性隨pH升高不斷增強(qiáng)(圖4),并且,pH從5增至9,ACP由分子態(tài)轉(zhuǎn)變?yōu)殛庪x子態(tài)[圖3(c)];因此,可能因細(xì)胞表面上金屬離子的架橋作用,即吸附作用從非靜電力向靜電力轉(zhuǎn)變,促進(jìn)ACP的吸附去除。
另外,不同藥物的d也存在較大差異。當(dāng)pH5,7時(shí),d的順序呈現(xiàn)為CIP>SMX>ACP;而pH9時(shí),三者相差較小[圖2(a)~(c)]。宏觀上,污泥微生物胞體表面的負(fù)電性(圖4)或許是CIP的d顯著大于SMX和ACP的原因。pH為5、7時(shí),CIP主要為陽(yáng)離子態(tài)CIP(+)和兩性態(tài)CIP(+/-),SMX主要為分子態(tài)SMX和陰離子態(tài)SMX(-),ACP主要為分子態(tài)ACP[圖3(a)~(c)]。由于在帶負(fù)電荷的污泥微生物胞體表面,陽(yáng)離子型與兩性藥物比陰離子型與中性藥物有更大的吸附可能性[34-35],故無(wú)論Biosolid還是BiosolidEPS free,d的大小順序?yàn)镃IP>SMX>ACP(pH5,7)。
值得注意的是,結(jié)果顯示本研究的3種典型藥物,不論pH的改變,提取EPS之后均較之前的活性污泥微生物胞體具有更小的固?液分配系數(shù)d[圖2(a)~(c)]。這可能是由于經(jīng)陽(yáng)離子交換后,提取了EPS的活性污泥微生物胞體表面金屬離子濃度降低,以及微生物胞體表面上多糖、蛋白質(zhì)等有機(jī)物成分的變化。這一結(jié)果也暗示著,吸附了PPCPs的剩余污泥經(jīng)土地或農(nóng)業(yè)利用后,若環(huán)境條件改變使得EPS解離出來(lái),PPCPs必將釋放到環(huán)境中。
2.2 EPS中金屬離子和有機(jī)物對(duì)藥物d的影響
圖5顯示了Biosolid與EPS的紅外光譜圖。由圖可知,兩者幾乎完全相同,具有相同的特征官能團(tuán)。例如,有機(jī)物(蛋白質(zhì)和多糖)對(duì)應(yīng)的頻段:氨基酸的酰胺Ⅰ的CO振動(dòng)頻率1654 cm-1和酰胺Ⅱ的CNH彎曲振動(dòng)頻率1541 cm-1,多糖的COC或COH伸縮振動(dòng)頻率1000~1150 cm-1。證實(shí)金屬離子存在的頻段:以鹽形式存在的羧酸根COO-的振動(dòng)頻率1401 cm-1。因此,可以認(rèn)為決定活性污泥微生物胞體對(duì)PPCPs的吸附去除作用的物質(zhì),其實(shí)是包裹在胞體表面上的EPS。
圖5 EPS與Biosolid的紅外光譜圖
a—Biosolid; b—EPS
Biosolid、BiosolidEPS free以及EPS中3種常見(jiàn)金屬(鈣、鎂、鐵)離子[36]的測(cè)量結(jié)果如表3所示。根據(jù)表中數(shù)據(jù),經(jīng)物料衡算可知,本研究采用的CER法提取得到的EPS較實(shí)際吸附于Biosolid表面包裹的EPS含有的金屬離子(Ca2+與Mg2+)減少了。故本研究獲得EPS具有結(jié)合金屬離子的能力。為研究EPS中金屬離子對(duì)藥物d的影響,不同金屬離子添加濃度下,3種藥物在EPS中d的實(shí)驗(yàn)結(jié)果如圖6(a)~(c)所示。其中,橫坐標(biāo)為(1/2)i,表示以二價(jià)為基準(zhǔn)等效的金屬離子濃度,為金屬離子帶電數(shù)(Ca2+、Mg2+為2,F(xiàn)e3+為3),i為金屬離子的濃度,縱坐標(biāo)為添加與未添加金屬離子時(shí)d,i與d的比值。
表3 Biosolid、BiosolidEPSfree、EPS中金屬離子、蛋白質(zhì)以及多糖含量
Note: PS—polysaccharides; PN—proteins; “—”no analyzed; EPS accounts for 21.7% (TS/TS) of Biosolid.
圖6 Ca2+、Mg2+、Fe3+對(duì)EPS中藥物Kd,i的影響(pH7)
對(duì)于ACP,金屬離子的存在,幾乎不影響ACP在EPS中的賦存行為[圖6(c)];這可能是因?yàn)閜H7時(shí),ACP主要為分子態(tài)[圖3(c)],EPS與ACP之間主要為親疏水性作用,而且金屬離子的種類與濃度不改變有機(jī)物的親疏水性。
另外,不同的有機(jī)成分亦有可能影響藥物在Biosolid與BiosolidEPS free中的d。表3中亦顯示了EPS中的多糖和蛋白質(zhì)的測(cè)量結(jié)果,證實(shí)了EPS中多糖和蛋白質(zhì)的存在。如圖7所示,顯示了中性環(huán)境下,EPS、SA以及BSA與各種藥物的d。對(duì)于3種藥物,EPS基本均大于純有機(jī)物SA與BSA中d,除了有機(jī)物成分差異外,也可能是EPS中含有金屬離子所致。對(duì)于CIP,SA與BSA中d相差不大;而對(duì)于SMX與ACP,BSA中具有較大的d。
圖7 藥物在EPS、SA及BSA中的Kd(pH7)
(3)研究結(jié)果現(xiàn)實(shí)指導(dǎo)意義為:當(dāng)吸附有PPCPs的剩余污泥經(jīng)土地或農(nóng)業(yè)利用,排放到環(huán)境中后,隨著微生物細(xì)胞體表面EPS的脫附或者環(huán)境條件改變(如pH),PPCPs在污泥中的固-液分配系數(shù)將減小,致使PPCPs釋放到環(huán)境中。
Ce——實(shí)驗(yàn)結(jié)束(吸附平衡)時(shí)水中藥物濃度,mg·L-1 Ci——溶液中金屬離子初始濃度(Ca2+、Mg2+、Fe3+),mmol·L-1 Cs——實(shí)驗(yàn)結(jié)束(吸附平衡)時(shí)干泥樣、EPS或有機(jī)物中吸附的藥物濃度,mg·kg-1 C0——水中藥物初始濃度,mg·L-1 Kd——固?液分配系數(shù),L·kg-1 Kd,i——添加金屬離子(Ca2+、Mg2+、Fe3+)后的固?液分配系數(shù),L·kg-1 M——干泥樣、EPS或有機(jī)物的質(zhì)量,kg N——金屬離子帶電數(shù),Ca2+、Mg2+為2,F(xiàn)e3+為3 SS——干污泥、EPS或有機(jī)物的質(zhì)量濃度,kg·L-1 V——溶液體積,L η——藥物經(jīng)干污泥、EPS或有機(jī)物吸附的去除率,%
[1] DAUGHTON C G, TERNES T A. Pharmaceuticals and personal care products in the environment: agents of subtle change? [J]. Environmental Health Perspectives, 1999, 107 (Suppl. 6): 907-938.
[2] ALVARINO T, SUAREZ S, KATSOU E,. Removal of PPCPs from the sludge supernatant in a one stage nitritation/anammox process [J]. Water Research, 2015, 68: 701-709.
[3] MURRAY K E, THOMAS S M, BODOUR A A. Prioritizing research for trace pollutants and emerging contaminants in the freshwater environment [J]. Environmental Pollution, 2010, 158 (12): 3462-3471.
[4] 王丹, 隋倩, 趙文濤, 等. 中國(guó)地表水環(huán)境中藥物和個(gè)人護(hù)理品的研究進(jìn)展 [J]. 科學(xué)通報(bào), 2014, 59 (9): 743-751. WANG D, SUI Q, ZHAO W T,. Pharmaceutical and personal care products in the surface water of China: a review [J]. Chinese Science Bulletin, 2014, 59 (9): 743-751.
[5] MARTINEZ GOMEZ D A, BACA S, WALSH E J. Lethal and sublethal effects of selected PPCPs on the freshwater rotifer,[J]. Environmental Toxicology and Chemistry, 2015, 34 (4): 913-922.
[6] WANG Z, ZHANG X H, HUANG Y,. Comprehensive evaluation of pharmaceuticals and personal care products (PPCPs) in typical highly urbanized regions across China [J]. Environmental Pollution, 2015, 204: 223-232.
[7] BLAIR B, NIKOLAUS A, HEDMAN C,. Evaluating the degradation, sorption, and negative mass balances of pharmaceuticals and personal care products during wastewater treatment [J]. Chemosphere, 2015, 134: 395-401.
[8] JOSS A, CARBALLA M, KREUZINGER N,. Wastewater treatment//TERNES T A, JOSS A. Human Pharmaceuticals, Hormones and Fragrances: The Challenge of Micropollutants in Urban Water Management [M]. London, UK: IWA Publishing, 2006: 243-292.
[9] KOSMA C I, LAMBROPOULOU D A, ALBANIS T A. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece [J]. Journal of Hazardous Materials, 2010, 179 (1): 804-817.
[10] GOLET E M, XIFRA I, SIEGRIST H,. Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil [J]. Environmental Science & Technology, 2003, 37 (15): 3243-3249.
[11] TERNES T A, HERRMANN N, BONERZ M,. A rapid method to measure the solid-water distribution coefficient (d) for pharmaceuticals and musk fragrances in sewage sludge [J]. Water Research, 2004, 38 (19): 4075-4084.
[12] SUáREZ S, CARBALLA M, OMIL F,. How are pharmaceutical and personal care products (PPCPs) removed from urban wastewaters? [J]. Reviews in Environmental Science and Bio/Technology, 2008, 7 (2): 125-138.
[13] RADJENOVI? J, PETROVI? M, BARCELó D. Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment [J]. Water Research, 2009, 43 (3): 831-841.
[14] McClellan K, Halden R U. Pharmaceuticals and personal care products in archived US biosolids from the 2001 EPA national sewage sludge survey [J]. Water Research, 2010, 44 (2): 658-668.
[15] 潘尋, 賁偉偉, 強(qiáng)志民. 高效液相色譜-質(zhì)譜聯(lián)用法同步測(cè)定城市污水處理廠活性污泥中的多類抗生素殘留 [J]. 分析測(cè)試學(xué)報(bào), 2011, 30 (4): 448-452. PAN X, BEN W W, QIANG Z M. Simultaneous determination of several classes of antibiotics in the activated sludge of municipal sewage treatment plants by high performance liquid chromatography-mass spectrometry [J]. Journal of Instrumental Analysis, 2011, 30 (4): 448-452.
[16] LIU J L, WONG M H. Pharmaceuticals and personal care products (PPCPs): a review on environmental contamination in China [J]. Environment international, 2013, 59: 208-224.
[17] 甘秀梅, 嚴(yán)清, 高旭, 等. 典型抗生素在中國(guó)西南地區(qū)某污水處理廠中的行為和歸趨 [J]. 環(huán)境科學(xué), 2014, 35 (5): 1817-1823.GAN X M, YAN Q, GAO X,. Occurrence and fate of typical antibiotics in a wastewater treatment plant in Southwest China [J]. Environmental Science, 2014, 35 (5): 1817-1823.
[18] URBAIN V, BLOCK J C, MANEM J. Bioflocculation in activated sludge: an analytic approach [J]. Water Research, 1993, 27 (5): 829-838.
[19] SHENG G P, YU H Q, LI X Y. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review [J]. Biotechnology Advances, 2010, 28 (6): 882-894.
[20] HA J, GéLABERT A, SPORMANN A M,. Role of extracellular polymeric substances in metal ion complexation on: batch uptake, thermodynamic modeling, ATR-FTIR, and EXAFS study [J]. Geochimica et Cosmochimica Acta, 2010, 74 (1): 1-15.
[21] XU J, SHENG G P, MA Y,. Roles of extracellular polymeric substances (EPS) in the migration and removal of sulfamethazine in activated sludge system [J]. Water Research, 2013, 47 (14): 5298-5306.
[22] MACKAY A A, CANTERBURY B. Oxytetracycline sorption to organic matter by metal-bridging [J]. Journal of Environmental Quality, 2005, 34 (6): 1964-1971.
[23] VASUDEVAN D, BRULAND G L, TORRANCE B S,. pH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption [J]. Geoderma, 2009, 151 (3): 68-76.
[24] MACKAY A A, VASUDEVAN D. Polyfunctional ionogenic compound sorption: challenges and new approaches to advance predictive models [J]. Environmental Science & Technology, 2012, 46 (17): 9209-9223.
[25] POLESEL F, LEHNBERG K, DOTT W,. Factors influencing sorption of ciprofloxacin onto activated sludge: experimental assessment and modelling implications [J]. Chemosphere, 2015, 119: 105-111.
[26] YU X Q, ZHANG L P, LIANG M,. pH-dependent sulfonamides adsorption by carbon nanotubes with different surface oxygen contents [J]. Chemical Engineering Journal, 2015, 279: 363-371.
[27] BASTOS C A, DE OLIVEIRA M A L. Quantitative determination of acetaminophen, phenylephrine and carbinoxamine in tablets by high-performance liquid chromatography [J]. Química Nova, 2009, 32 (7): 1951-1955.
[28] FR?LUND B, PALMGREN R, KEIDING K,. Extraction of extracellular polymers from activated sludge using a cation exchange resin [J]. Water Research, 1996, 30 (8): 1749-1758.
[29] USEPA. Method 1694: pharmaceuticals and personal care products in water, soil, sediment, and biosolids by HPLC/MS/MS:EPA-821-R- 08-002 [S]. Washington, DC, 2007.
[30] CORNELISSEN G, GUSTAFSSON ?, BUCHELI T D,Extensive sorption of organic compounds to black carbon, coal, and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation, and biodegradation [J]. Environmental Science & Technology, 2005, 39 (18): 6881-6895.
[31] DAHLAN R, MCDONALD C, SUNDERLAND V B. Solubilities and intrinsic dissolution rates of sulfamethoxazole and trimethoprim [J]. Journal of Pharmacy and Pharmacology, 1987, 39 (4): 246-251.
[32] CHEN H, GAO B, LI H. Functionalization, pH, and ionic strength influenced sorption of sulfamethoxazole on graphene [J]. Journal of Environmental Chemical Engineering, 2014, 2 (1): 310-315.
[33] SCHWARZ J, THIELE-BRUHN S, ECKHARDT K U,. Sorption of sulfonamide antibiotics to soil organic sorbents: batch experiments with model compounds and computational chemistry [J]. International Scholarly Research Notices, 2012, 2012 (4): 1-10.
[34] URASE T, KIKUTA T. Separate estimation of adsorption and degradation of pharmaceutical substances and estrogens in the activated sludge process [J]. Water Research, 2005, 39 (7): 1289-1300.
[35] H?RSING M, LEDIN A, GRABIC R,. Determination of sorption of seventy-five pharmaceuticals in sewage sludge [J]. Water Research, 2011, 45 (15): 4470-4482.
[36] WESTERHOFF P, LEE S, YANG Y,. Characterization, recovery opportunities, and valuation of metals in municipal sludges from US wastewater treatment plants nationwide [J]. Environmental Science & Technology, 2015, 49 (16): 9479-9488.
[37] CARMOSINI N, LEE L S. Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials [J]. Chemosphere, 2009, 77 (6): 813-820.
[38] PAN B, QIU M, WU M,. The opposite impacts of Cu and Mg cations on dissolved organic matter-ofloxacin interaction [J]. Environmental Pollution, 2012, 161: 76-82.
Controlling factors of excess sludge on adsorbing trace typical pharmaceuticals
CAO Daqi1, WANG Zhen1, HAO Xiaodi1, WANG Qunhui2
(1Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies/Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China;2School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China)
Conventional biological systems in centralized wastewater treatment plants (WWTPs) are presently inefficient in the removal of pharmaceutical and personal care products (PPCPs), resulting in their ubiquitous presence in excess sludge by absorption. When the sludge is utilized in agricultural land, the absorbed PPCPs may be released and then water environment is contaminated. Therefore, it becomes a crucial issue to predict and assess the content of PPCPs in excess sludge, by revealing the controlling factors of PPCPs adsorption. The adsorption properties of three typical pharmaceuticals onto the sludge from a certain WWTP in Beijing, were investigated based on a trace concentration level using UPLC-MS-MS. The adsorption capacity of ciprofloxacin (CIP) and sulfamethoxazole (SMX) decreased, however, that of acetaminophen (ACP) increased with increasing pH; because the speciation of pharmaceuticals in aqueous solution and zeta potential of biosolid are as a function of pH. Extracellular polymeric substance (EPS) could enhance the adsorption of three typical pharmaceuticals onto the sludge, independent of pH; because the metal ions and organic substances contained in EPS determine the adsorption of pharmaceutical onto the sludge.
pharmaceutical and personal care products; excess sludge; adsorption; extracellular polymeric substance; metal ion; organic substance
10.11949/j.issn.0438-1157.20170137
X 523
A
0438—1157(2017)08—3266—09
郝曉地。第一作者:曹達(dá)啟(1988—),男,博士,講師。
中國(guó)博士后科學(xué)基金項(xiàng)目(2015M580968);北京市博士后工作經(jīng)費(fèi)項(xiàng)目;北京市優(yōu)秀人才培養(yǎng)項(xiàng)目;北京市教育委員會(huì)科技計(jì)劃一般項(xiàng)目(SQKM201710016001)。
2017-02-13收到初稿,2017-04-12收到修改稿。
2017-02-13.
HAO Xiaodi, haoxiaodi@bucea.edu.cn
supported by the China Postdoctoral Science Foundation (2015M580968), the Beijing Postdoctoral Research Foundation, the Beijing Outstanding Talents Training and the Science and Technology Programs from Beijing Municipal Education Commission (SQKM201710016001).