賀亭峰 叢文杰 BELAL Eisa Adam,2 丁啟朔 楊艷山 霍連飛
(1.南京農(nóng)業(yè)大學(xué)工學(xué)院, 南京 210031; 2.扎林蓋大學(xué)農(nóng)業(yè)工程系, 扎林蓋 06)
基于壓實分析模型的土壤應(yīng)力傳遞系數(shù)研究
賀亭峰1叢文杰1BELAL Eisa Adam1,2丁啟朔1楊艷山1霍連飛1
(1.南京農(nóng)業(yè)大學(xué)工學(xué)院, 南京 210031; 2.扎林蓋大學(xué)農(nóng)業(yè)工程系, 扎林蓋 06)
機械壓實是造成土壤退化的重要原因之一,研究并預(yù)測土壤應(yīng)力有助于科學(xué)規(guī)劃田間機械使用,緩解壓實問題?;诜治瞿P皖A(yù)測土壤應(yīng)力的關(guān)鍵在于選擇合適的集中系數(shù)。然而在已有的研究中集中系數(shù)取值混亂,導(dǎo)致該模型使用時存在很大爭議,其原因在于對該參數(shù)隨土壤環(huán)境的變化缺乏規(guī)律性認(rèn)識。本文通過對集中系數(shù)表達式的進一步推導(dǎo),在理論上提出了能夠代表土壤環(huán)境對集中系數(shù)影響的無量綱參數(shù)σz/σ0,定義為應(yīng)力傳遞系數(shù)(STC)?;谒就梁忘S棕壤兩種土壤,通過控制含水率和濕密度于室內(nèi)重塑30種狀態(tài)的土壤,在單軸壓縮實驗中運用土壓力傳感器測量計算應(yīng)力傳遞系數(shù),建立應(yīng)力傳遞系數(shù)與土壤環(huán)境參數(shù),如含水率、干密度和先期固結(jié)壓力等之間的相關(guān)性分析。結(jié)果表明應(yīng)力傳遞系數(shù)隨土壤含水率的增大而增大,土壤初始干密度和先期固結(jié)壓力與應(yīng)力傳遞系數(shù)之間負(fù)相關(guān)性明顯。根據(jù)所得應(yīng)力傳遞系數(shù)計算相應(yīng)土壤狀態(tài)下的集中系數(shù),其取值在1.20~12.39之間,與以往的研究結(jié)果相差不大,但包含了關(guān)于集中系數(shù)隨土壤環(huán)境變化的具體信息。這意味著作為一個穩(wěn)定可測的無量綱參數(shù),應(yīng)力傳遞系數(shù)為集中系數(shù)的計算提供了一個相對科學(xué)的方法,在定量描述土壤環(huán)境對集中系數(shù)影響的同時,完善了分析模型。
土壤壓實; 分析模型; 集中系數(shù); 土壤環(huán)境; 應(yīng)力傳遞系數(shù)
引言
田間機械作業(yè)過程中,土壤-輪胎交互作用產(chǎn)生土壤應(yīng)力改變土壤狀態(tài)[1-4]造成的土壤壓實是導(dǎo)致世界范圍內(nèi)土壤出現(xiàn)退化的重要原因之一[2,5-10]。研究并預(yù)測土壤應(yīng)力可以科學(xué)規(guī)劃田間機械的使用,緩解這一問題[2,11-12]。在以往的研究中,計算土壤應(yīng)力的方法有仿真法(有限元和離散元)和分析模型法[2,13-14]。
與仿真法建立的土壤應(yīng)力傳遞模型[15-17]相比,土壤壓實分析模型在使用時因所需參數(shù)較少而被廣泛運用[10,18-23]。然而現(xiàn)有的分析模型都是基于原始的Boussinesq方程,其假設(shè)土壤是均質(zhì)、彈性、各向同性的介質(zhì)[21]。實際上土壤介質(zhì)是彈塑性體甚至粘彈塑性體,因此又引入了集中系數(shù)更精確地描述應(yīng)力在土壤中的分布[24]。然而在實際應(yīng)用中,集中系數(shù)的取值成為最大的問題。
S?HNE[25]發(fā)現(xiàn)集中系數(shù)ν隨含水率的增大而增大,提出土壤在“堅硬”、“中度”、“松軟”3種條件下分別取值為4、5、6。RAM[26]利用重塑土實驗控制土壤含水率和容重來探究集中系數(shù)的影響因素,發(fā)現(xiàn)容重從1.24 g/cm3變化到1.63 g/cm3的過程中,對應(yīng)的集中系數(shù)從5.4減小到1.5。HORN等[27]在實驗中證明集中系數(shù)的取值取決于先期固結(jié)壓力,給出了集中系數(shù)的取值范圍是6~9。在其他同類型的研究中,集中系數(shù)的范圍是2.0~14.3[12,28-31]。即使針對集中系數(shù)變化趨勢這一問題,也無法得到統(tǒng)一的認(rèn)識。HORN等[28]和RüCKNAGEL等[23]認(rèn)為先期固結(jié)壓力較大的土壤,集中系數(shù)更大,然而TRAUTNER[20]在實驗中卻得到了相反的結(jié)論。面對集中系數(shù)取值不一致性,無論是理論還是實驗,都沒有給出合理的解釋。也正是因為這一原因,國內(nèi)的土壤應(yīng)力計算研究多使用仿真模型預(yù)測法[16-17],關(guān)于分析模型預(yù)測法的應(yīng)用鮮見報道。
集中系數(shù)受加載環(huán)境和土壤環(huán)境的雙重影響[25,27,32],KELLER等[12]認(rèn)為:“土壤環(huán)境對集中系數(shù)影響的未知是分析模型預(yù)測土壤應(yīng)力的主要障礙?!北疚耐ㄟ^對集中系數(shù)表達式的進一步推導(dǎo),在理論上提出能夠代表土壤環(huán)境對集中系數(shù)影響的無量綱參數(shù)即應(yīng)力傳遞系數(shù)(STC);并設(shè)計室內(nèi)重塑土實驗,驗證應(yīng)力傳遞系數(shù)是否穩(wěn)定可測;再建立其與土壤物理參數(shù)間的關(guān)系,來驗證應(yīng)力傳遞系數(shù)及由應(yīng)力傳遞系數(shù)計算得到的集中系數(shù)ν是否確實受到土壤環(huán)境的影響。
在使用分析模型預(yù)測土壤應(yīng)力的研究中發(fā)現(xiàn),應(yīng)力預(yù)測值與實際測量值之間存在著較大差距[24-25,33],故而將土壤視作彈塑性材料并引入了集中系數(shù)[24]。因此,土壤表面加載點正下方z點處的應(yīng)力σz(kPa)為[24-25]
(1)
式中P——土壤表面加載點處載荷,kNR、z——土壤-輪胎接觸面當(dāng)量半徑、加載點與正下方應(yīng)力預(yù)測點間的距離,m
ν——集中系數(shù),在初始的Boussinesq方程中取值為3
當(dāng)土壤-輪胎接觸面當(dāng)量半徑(R)確定時,對方程(1)積分以預(yù)測土體中任何位置處垂直方向的土壤應(yīng)力。假設(shè)加載力均勻地分布在當(dāng)量半徑為R的圓形接觸面,此時接觸面正下方z處垂直方向的應(yīng)力可表示為[24]
(2)
其中
σ0=W/(2πR2)
式中σ0——土壤的表面應(yīng)力,kPaW——當(dāng)量半徑范圍內(nèi)的總載荷,kN
為了能更進一步的研究分析模型,推導(dǎo)出集中系數(shù)的表達式[24,28]
(3)
在恒定的加載條件下(R恒定),可推導(dǎo)出集中系數(shù)ν
(4)
在式(4)中,集中系數(shù)是關(guān)于加載環(huán)境(R和z)和一個無量綱參數(shù)的函數(shù)。1/(1-σz/σ0)所代表的是加載應(yīng)力在傳入土體后到達位置z過程中單純由土壤導(dǎo)致的應(yīng)力衰減率,即σz/σ0為應(yīng)力在土壤中的傳遞效率,定義為應(yīng)力傳遞系數(shù)S(Stress transmission coefficient,STC)。因此,公式(4)變換為
(5)
由公式(5)可知,在加載條件一定的情況下,集中系數(shù)取決于應(yīng)力傳遞系數(shù),即取決于土壤自身的應(yīng)力傳遞效率。由于土壤屬于非彈性體,以上公式的推導(dǎo)均是假設(shè)土壤為彈塑性介質(zhì)。
通過對重塑的水稻土進行單軸壓縮實驗,同時運用土壓力傳感器監(jiān)測土壤應(yīng)力,對土壤應(yīng)力傳遞過程進行評價。在眾多的研究中[14,19,24,29-31,34-35],土壓力傳感器被用于量化土壤內(nèi)部應(yīng)力和表面應(yīng)力間的關(guān)系。
2.1 土樣的準(zhǔn)備
實驗所用水稻土取自南京農(nóng)業(yè)大學(xué)浦口農(nóng)場,水稻收獲后從田間將耕作層土壤(0~15 cm)取回實驗室,黃棕壤樣品取自南京浦口老山地區(qū)丘陵緩坡非農(nóng)業(yè)景觀用地,2種土壤的理化指標(biāo)如表1所示。將取回的土壤風(fēng)干,破碎,過4 mm篩,根據(jù)汪攀峰等[36]的方法按照5%級差調(diào)配含水率為15%、20%、25%、30%、35%的水稻土土壤,按照3%級差調(diào)配含水率為13%、16%、19%、22%、25%的黃棕壤土壤。并分別密封于塑料膜中,靜置24 h[37-38]。然后采用TAGAR等[38]的方法用φ50 mm×50 mm的環(huán)刀制備濕密度為1.1、1.3、1.5 g/cm3的土壤樣品(土壤厚度50 mm)。在此之前還需在環(huán)刀內(nèi)壁抹上一層凡士林以減弱土壤-內(nèi)壁摩擦效應(yīng)[39]。每種參數(shù)的土壤重復(fù)3次。
表1 土壤基本理化性質(zhì)
2.2 監(jiān)測土壤應(yīng)力
圖2 一次加載過程中土壤應(yīng)力σz與表面應(yīng)力σ0間的關(guān)系Fig.2 Relationships between soil stress σz and surface stress σ0 in a loading process
使用土壤固結(jié)儀對制備好的土壤樣品進行單軸壓縮實驗,同時由土壓力傳感器監(jiān)測因逐次加載(σ0)而產(chǎn)生的土壤應(yīng)力(σz)(如圖1a),進而描述受壓過程中土壤應(yīng)力傳遞系數(shù)變化。將制備好的土壤樣品放置于透水石中央,如圖1b所示,土壤壓力傳感器內(nèi)嵌于透水石圓心處。土壤壓力傳感器型號DZ-I,尺寸φ17 mm×7 mm,量程1 MPa[40]。為避免受壓過程中傳感器的拱效應(yīng),確保傳感器與透水石上表面處于同一平面[39],另將直徑為48 mm的加載板置于土壤樣品的上表面,再開始實驗。通過添加砝碼使環(huán)刀中的土壤依次承受50、100、200、300、400、500 kPa的加載力,每2次加載間隔30 min使加載力全部施加于土壤樣品,同時記錄加載板下陷的位移ε(cm)[40]。在整個過程中,計算機數(shù)據(jù)采集系統(tǒng)會不間斷的記錄下土壓力傳感器監(jiān)測到的土壤應(yīng)力。需要注意的是該實驗是一次性單向加載,并無循環(huán)加載卸載過程。
在實驗前按照DAVE等[39]的方法自制土工膜液囊標(biāo)定土壓力傳感器。根據(jù)Cassagrande 方法計算各參數(shù)土壤樣品的先期固結(jié)壓力[41-42]。利用SPSS Statistics 20.0統(tǒng)計軟件做雙因素(含水率、濕密度)方差分析,采用Duncan方法進行多重比較(α=0.05)。
圖1 加載裝置和監(jiān)測系統(tǒng)Fig.1 Loading device and monitoring system1.土壤固結(jié)儀 2.測試系統(tǒng) 3.土壤樣品 4.土壓力傳感器 5.傳感器電纜 6.透水石
3.1 應(yīng)力傳遞系數(shù)的計算
圖2所示為重塑水稻土(含水率20%)和黃棕壤(含水率22%)在受壓過程中土壤應(yīng)力σz隨表面應(yīng)力σ0的變化。由圖可知,σz與σ0間存在著相對穩(wěn)定的線性關(guān)系(圖2a濕密度為1.1、1.3、1.5 g/cm3時擬合曲線R2為0.958 7、0.970 5、0.933 1),當(dāng)土壤含水率、濕密度、土壤類型發(fā)生改變時,線性關(guān)系同樣穩(wěn)定。這意味著對于給定的土壤,在其加載過程中應(yīng)力傳遞系數(shù)(σz/σ0)始終保持恒定,并同時受到含水率和濕密度的影響。因此應(yīng)力傳遞系數(shù)在數(shù)值上等于σz-σ0擬合直線的斜率,圖中3種濕密度水稻土的應(yīng)力傳遞系數(shù)分別為0.82、0.69、0.60,黃棕壤的應(yīng)力傳遞系數(shù)分別為0.61、0.62、0.58。
3.2 土壤參數(shù)對應(yīng)力傳遞系數(shù)的影響
圖3為土壤含水率與濕密度對應(yīng)力傳遞系數(shù)的綜合影響,從圖中可以看出含水率對土壤的應(yīng)力傳遞系數(shù)影響顯著。含水率越大土壤的應(yīng)力傳遞系數(shù)越大。隨著土壤濕密度的變化,應(yīng)力傳遞系數(shù)也隨之變化,但變化規(guī)律不顯著。應(yīng)力傳遞系數(shù)作為一個穩(wěn)定可測的土壤應(yīng)力傳遞性能參數(shù),含水率的增大會導(dǎo)致土壤應(yīng)力傳遞系數(shù)增大,這意味著在受壓過程中,高含水率的土壤條件更有利于應(yīng)力往土壤底層傳遞。這一結(jié)果與大多數(shù)研究結(jié)論相吻合[19,24,31]。LAMANDé等[31]針對結(jié)構(gòu)性土壤研究后提出,表面應(yīng)力恒定時增加土壤含水率,從底層土壤中會探測到明顯增大的土壤應(yīng)力。SAFFIH-HDADI等[37]基于重塑土的實驗表明,含水率越高,土壤越容易被壓實。ARVIDSSON等[19]和DéFOSSEZ等[43]發(fā)現(xiàn)土壤中的含水率較高時,受壓后土壤的形變較大。
圖3 土壤含水率和濕密度對應(yīng)力傳遞系數(shù)的影響Fig.3 Effects of soil water content and bulk density on STC
建立應(yīng)力傳遞系數(shù)與土壤初始干密度的關(guān)系,發(fā)現(xiàn)兩者之間呈明顯的負(fù)相關(guān)關(guān)系(圖4)。土壤初始干密度越小,應(yīng)力越容易通過土體傳遞到更深的位置[26,44],即初始干密度越小,土壤的應(yīng)力傳遞效率越高。SMITH等[24]認(rèn)為在土壤受壓時初始干密度是影響土壤形變和可承壓能力的重要因素,初始干密度較大的土壤不易被壓實[32]。
應(yīng)力傳遞系數(shù)與土壤先期固結(jié)壓力間也表現(xiàn)為負(fù)相關(guān)變化,說明先期固結(jié)壓力是影響土壤的應(yīng)力傳遞效率的重要參數(shù)。這與S?HNE[25]、HORN等[28]、RüCKNAGEL等[23]的結(jié)果相一致。運用HORN等[28]的理論可以計算出先期固結(jié)壓力較大時,土壤應(yīng)力較小。然而也有研究表明在先期固結(jié)壓力完全不同的2種土壤中,土壤應(yīng)力的傳遞并沒有發(fā)現(xiàn)不同[45]。這是因為土壤的先期固結(jié)壓力σp反映了土壤在前期所受的最大壓實應(yīng)力,被稱為閾值應(yīng)力[41-42]。如果隨后施加的壓力低于該閾值,土壤將不發(fā)生進一步壓實,但高于該閾值的應(yīng)力過程就會造成土壤進一步的壓實[42],即先期固結(jié)壓力是閾值參數(shù)而并非定量土壤應(yīng)力傳遞的過程參數(shù)。
圖4 土壤初始干密度對應(yīng)力傳遞系數(shù)的影響Fig.4 Effects of initial soil dry bulk density on STC
從理論上講,應(yīng)力傳遞系數(shù)在數(shù)值上是小于1的參數(shù),但在圖3a、圖4a和圖5a中可以發(fā)現(xiàn)應(yīng)力傳遞系數(shù)存在大于1的情況,該情況主要出現(xiàn)在含水率為35%的水稻土條件下。在該狀態(tài)下土壤含水率接近液限,受壓后整體流動,加載力幾乎全部作用于底部傳感器處。同時因使用自制液囊標(biāo)定土壓力傳感器,土工膜較差的收縮性能導(dǎo)致標(biāo)定結(jié)果出現(xiàn)較小偏差。所有的應(yīng)力傳遞系數(shù)數(shù)值均是基于這一標(biāo)定結(jié)果獲得,因此在運用應(yīng)力傳遞系數(shù)的過程中需要更準(zhǔn)確地對土壓力傳感器進行標(biāo)定。
圖5 先期固結(jié)壓力σp與應(yīng)力傳遞系數(shù)間的關(guān)系Fig.5 Relationships between precompression stress σp and STC
盡管應(yīng)力傳遞系數(shù)與土壤物理參數(shù)(含水率、干密度、先期固結(jié)壓力)間有著良好、可重復(fù)的穩(wěn)定關(guān)系,但本實驗是基于室內(nèi)有限的重塑土實驗,還需要更進一步在田間結(jié)構(gòu)性土壤中驗證應(yīng)力傳遞系數(shù)理論的可靠性。然而從圖3中可以發(fā)現(xiàn),土壤濕密度、含水率對應(yīng)力傳遞系數(shù)影響顯著但缺乏規(guī)律性,從圖4、圖5中同樣可以看出應(yīng)力傳遞系數(shù)與干密度、先期固結(jié)壓力間關(guān)系密切但并無規(guī)律可循。這是因為應(yīng)力傳遞系數(shù)是土壤環(huán)境對土壤應(yīng)力傳遞性能影響的綜合體現(xiàn)(如含水率、干密度、先期固結(jié)壓力、粘結(jié)力和土壤水勢等),解釋其隨土壤環(huán)境的變化規(guī)律需要更綜合全面地探討土壤環(huán)境參數(shù)(非單一物理參數(shù))對土壤應(yīng)力傳遞的影響。
3.3 通過應(yīng)力傳遞系數(shù)計算集中系數(shù)ν
由以上結(jié)果可知,應(yīng)力傳遞系數(shù)確實受土壤環(huán)境的影響。通過公式(5)計算所得不同含水率、濕密度土壤狀態(tài)的集中系數(shù)如表2所示。從表2可以看出,集中系數(shù)隨著土壤含水率的增大而增大,但隨
濕密度的變化趨勢卻不明朗。在以往的眾多研究中,關(guān)于集中系數(shù)的取值說法不一[12,25-31],然而這些不一致的觀點卻都能在表2中得到體現(xiàn)。經(jīng)Fr?lich和S?hne修正后,分析模型廣泛地應(yīng)用于土壤機械壓實領(lǐng)域,然而集中系數(shù)引入時取值的局限性限制了該模型的推廣[46]。表2展示了基于應(yīng)力傳遞系數(shù)理論定量集中系數(shù)ν的方法。根據(jù)計算結(jié)果,集中系數(shù)取值范圍1.20~12.39,與已有集中系數(shù)的取值范圍2.0~14.3極為相近[12, 27-31]。同時如表2所示,集中系數(shù)ν經(jīng)應(yīng)力傳遞系數(shù)直接與土壤環(huán)境參數(shù)(物理參數(shù))關(guān)聯(lián),不再是根據(jù)土壤堅硬程度取值。同樣硬度的土壤既可以是高含水率、高密度的狀態(tài),也可以是低含水率、低密度狀態(tài),然而在表1中可以看出這2種狀態(tài)下土壤集中系數(shù)間存在較大的差別。
表2 通過應(yīng)力傳遞系數(shù)計算得到的集中系數(shù)(R=50 mm, z=50 mm)
表中數(shù)據(jù)為z=50 mm時集中系數(shù)的取值,隨著輪胎-土壤接觸面正下方z點深度的變化,集中系數(shù)也會隨之變化。需要注意的是除了公式(5)中z的取值,變化的還有土壤應(yīng)力傳遞系數(shù)(σz/σ0)的取值。對于環(huán)境參數(shù)(含水率、濕密度、土壤強度等)固定的土壤,z(土壤厚度)是影響σz的重要因素。因此在測量土壤應(yīng)力傳遞系數(shù)時需要將土壤厚度加以更改。如z=100 mm時,實驗測量時的土壤樣品厚度應(yīng)該100 mm。使用公式(5)計算集中系數(shù)的前提是土壤在受壓過程中表現(xiàn)為彈塑性變形,LAMANDé等[34]認(rèn)為土壤形變越大集中系數(shù)ν取值越大。在本文實驗中加載板下陷位移小于土壤樣品厚度的10%,因此該因素可忽略不計。
國內(nèi)已有的壓實研究成果,成功地為農(nóng)業(yè)機械-土壤相互作用提供了可視化數(shù)據(jù),然而土壤壓實機理的未知,系統(tǒng)評價土壤壓實模型的缺失,依然是無法形成一套有效消減土壤壓實技術(shù)體系的主要障礙[14]。土壤壓實的過程主要分為3步[18]:在輪胎-土壤交互的過程中應(yīng)力施加到土壤表面;應(yīng)力在土壤內(nèi)部傳遞;土壤應(yīng)力引起了土壤結(jié)構(gòu)的變化。本文針對的主要是“應(yīng)力在土壤內(nèi)部傳遞”這一過程。使用分析模型預(yù)測土壤應(yīng)力的困擾在于確定集中系數(shù)[12],應(yīng)力傳遞系數(shù)的提出,在完善分析模型的同時,將土壤應(yīng)力與土壤環(huán)境間的關(guān)系清晰化。通過研究土壤環(huán)境參數(shù)對應(yīng)力傳遞系數(shù)的影響,可以進一步明確哪些土壤環(huán)境參數(shù)對土壤應(yīng)力的傳遞影響較大,土壤應(yīng)力又是如何隨某一土壤環(huán)境參數(shù)(如含水率、密度、入滲率、導(dǎo)水率、導(dǎo)氣率等)的變化而變化。這一土壤壓實研究方法的優(yōu)化,可以進一步揭示壓實機理,明確壓實過程,為消減土壤壓實提供理論基礎(chǔ)。
(1)本文從理論出發(fā),基于傳統(tǒng)的土壤應(yīng)力分析模型,提出了能夠代表土壤環(huán)境自身應(yīng)力傳遞效率的應(yīng)力傳遞系數(shù),并用實驗的方法證明,該參數(shù)穩(wěn)定可測。
(2)應(yīng)力傳遞系數(shù)受土壤環(huán)境的綜合影響,與含水率、干密度、先期固結(jié)壓力等之間存在明顯的相關(guān)性。
(3)集中系數(shù)是使用分析模型預(yù)測土壤應(yīng)力的關(guān)鍵參數(shù),應(yīng)力傳遞系數(shù)為準(zhǔn)確定量集中系數(shù)提供了一個科學(xué)的方法。優(yōu)化了土壤壓實研究方法,為消減土壤壓實提供了技術(shù)基礎(chǔ)。
1 劉任先. 農(nóng)業(yè)土壤壓實應(yīng)變與流動特性的測試方法——精確噴印網(wǎng)格法[J]. 北京農(nóng)業(yè)機械化學(xué)院學(xué)報, 1983(1): 103-107. LIU Renxian. The accurate sprayed-Grid method for measuring soil compaction and plastic flow [J]. Beijing Agricultural Mechanization College, 1983(1): 103-107.(in Chinese)
2 陳浩,楊亞莉. 土壤壓實模型分析[J]. 農(nóng)機化研究, 2012, 34(1): 46-50. CHEN Hao,YANG Yali. Analysis of soil compaction models [J]. Journal of Agricultural Mechanization Research, 2012, 34(1): 46-50.(in Chinese)
3 張家勵,傅濰坊. 土壤壓實特性及其在農(nóng)業(yè)生產(chǎn)中的應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報, 1995,11(2): 17-20. ZHANG Jiali,F(xiàn)U Weifang. The soil compactive characteristics and their application in agriculture production [J]. Transactions of the CSAE, 1995,11(2): 17-20.(in Chinese)
4 KELLER T, BERLI M, RUIZ S, et al. Transmission of vertical soil stress under agricultural tyres: comparing measurements with simulations[J]. Soil and Tillage Research, 2014, 140: 106-117.
5 SOANE B D, VAN OUWERKERK C. Implications of soil compaction in crop production for the quality of the environment[J]. Soil and Tillage Research, 1995, 35(1-2): 5-22.
6 MARI G R, JI C, ZHOU J. Effect of different types of tractor traffic on soil physical properties and yield of winter wheat[J]. Transactions of the CSAE, 2007,23(10): 132-140.
7 遲仁立,左淑珍,夏平,等. 不同程度壓實對土壤理化性狀及作物生育產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報, 2001, 17(6): 39-43. CHI Renli,ZUO Shuzhen,XIA Ping,et al. Effects of different level compaction on the physicochemical characteristerics of soil and crop growth [J]. Transactions of the CSAE, 2001, 17(6): 39-43.(in Chinese)
8 孫忠英,李寶筏. 農(nóng)業(yè)機器行走裝置對土壤壓實作用的研究[J]. 農(nóng)業(yè)機械學(xué)報, 1998, 29(3): 172-174. SUN Zhongying,LI Baofa. Effect of agricultural machine walking device on soil compaction [J].Transactions of the Chinese Society for Agricultural Machinery, 1998, 29(3): 172-174.(in Chinese)
9 張興義,隋躍宇. 土壤壓實對農(nóng)作物影響概述[J]. 農(nóng)業(yè)機械學(xué)報, 2005, 36(10): 161-164. ZHANG Xingyi, SUI Yueyu. Summarization on the effect of soil compaction on crops[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005,36(10):161-164. (in Chinese)
10 NAWAZ M F, BOURRIé G, TROLARD F. Soil compaction impact and modelling. A review[J]. Agronomy for Sustainable Development, 2012, 33(2): 291-309.
11 李汝莘,林成厚,高煥文,等. 小四輪拖拉機土壤壓實的研究[J]. 農(nóng)業(yè)機械學(xué)報, 2002, 33(1): 126-129.
12 KELLER T, LAMANDé M. Challenges in the development of analytical soil compaction models[J]. Soil and Tillage Research, 2010, 111(1): 54-64.
13 DEFOSSEZ P, RICHAD G. Models of soil compaction due to traffic and their evaluation[J]. Soil and Tillage Research, 2002, 67(1): 41-64.
14 王憲良,王慶杰,李洪文,等. 農(nóng)業(yè)機械土壤壓實研究方法現(xiàn)狀[J]. 熱帶農(nóng)業(yè)科學(xué), 2015,35(6): 72-76. WANG Xianliang,WANG Qingjie,LI Hongwen,et al. Current research status of soil compaction by agriculture machinery [J]. Chinese Journal of Tropical Agriculture, 2015,35(6): 72-76.(in Chinese)
15 ABU-HAMDEH N H, REEDER R C. Measuring and predicting stress distribution under tractive devices in undisturbed soils[J]. Biosystems Engineering, 2003, 85(4): 493-502.
16 李汝莘,宋洪波,高煥文. 小型拖拉機土壤壓實的有限元預(yù)測[J]. 農(nóng)業(yè)工程學(xué)報, 2001, 17(4): 66-69. LI Ruxin,SONG Hongbo,GAO Huanwen. Prediction of soil compaction by small tractor using finite element method [J]. Transactions of the CSAE, 2001, 17(4): 66-69.(in Chinese)
17 趙振家,鄒猛,薛龍,等. 壓實對土壤應(yīng)力分布的影響仿真分析[J/OL]. 農(nóng)業(yè)機械學(xué)報, 2012, 43(增刊): 311-313.http:∥www.j-csam.org/jcsam/ch/reader/view_abstract.aspx?flag=1&file_no=2012s63&journal_id=jcsam.DOI:10.6041/j.issn.1000-1298.2012.S0.063. ZHAO Zhenjia,ZOU Meng,XUE Long,et al. Simulation analysis of effect of compaction on soil stress distribution [J/OL]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(Supp.): 311-313.(in Chinese)
18 O’SULLIVAN M F, HENSHALL J K, DICKSON J W. A simplified method for estimating soil compaction[J]. Soil and Tillage Research, 1999, 49(4): 325-335.
19 ARVIDSSON J, TRAUNTNER A, VAN DEN AKKER J J H, et al. Subsoil compaction caused by heavy sugarbeet harvesters in southern Sweden: II. soil displacement during wheeling and model computations of compaction[J]. Soil and Tillage Research, 2001, 60(1-2): 79-89.
20 TRAUTNER A. On soil behaviour during field traffic[D]. Uppsala: Sveriges Lantbruksuniv., 2003.
21 VAN DEN AKKER J J H. SOCOMO: a soil compaction model to calculate soil stresses and the subsoil carrying capacity[J]. Soil and Tillage Research, 2004, 79(1): 113-127.
22 KELLER T, DéFOSSEZ P, WEISSKONPF P, et al. SoilFlex: a model for prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis of analytical approaches[J]. Soil and Tillage Research, 2007, 93(2): 391-411.
23 RüCKNAGEL J, HOFMANN B, DEUMELANDT P, et al. Indicator based assessment of the soil compaction risk at arable sites using the model REPRO[J]. Ecological Indicators, 2015, 52: 341-352.
24 SMITH R, ELLIES A, HORN R. Modified Boussinesq’s equations for nonuniform tire loading[J]. Journal of Terramechanics, 2000, 37(4): 207-222.
25 S?HNE W. Distribution of pressure in the soil and soil deformation under tractor tires[J]. Grundl. Landtech, 1953, 5: 49-59.
26 RAM R B. Pressure measurement in the soil under the load[J]. Soil and Tillage Research, 1984, 4(2): 137-145.
28 HORN R, FLEIGE H. A method for assessing the impact of load on mechanical stability and on physical properties of soils[J]. Soil and Tillage Research, 2003, 73(1-2): 89-99.
29 LAMANDé M, SCHJ?NNING P. Transmission of vertical stress in a real soil profile. Part I: site description, evaluation of the S?hne model, and the effect of topsoil tillage[J]. Soil and Tillage Research, 2011, 114(2): 57-70.
30 LAMANDé M, SCHJ?NNING P. Transmission of vertical stress in a real soil profile. Part II: effect of tyre size, inflation pressure and wheel load[J]. Soil and Tillage Research, 2011, 114(2): 71-77.
31 LAMANDé M, SCHJ?NNING P. Transmission of vertical stress in a real soil profile. Part III: effect of soil water content[J]. Soil and Tillage Research, 2011, 114(2): 78-85.
32 JONES R J A, SPOOR G, THOMASSON A J. Vulnerability of subsoils in Europe to compaction: a preliminary analysis[J]. Soil and Tillage Research, 2003, 73(1-2): 131-143.
33 KELLER T, ARVIDSSON J. Technical solutions to reduce the risk of subsoil compaction: effects of dual wheels, tandem wheels and tyre inflation pressure on stress propagation in soil[J]. Soil and Tillage Research, 2004, 79(2): 191-205.
34 LAMANDé M, SCHJ?NNING P, T?GERSEN F A. Mechanical behaviour of an undisturbed soil subjected to loadings: effects of load and contact area[J]. Soil and Tillage Research, 2007, 97(1): 91-106.
35 柏建彩,丁啟朔,陳青春,等. 農(nóng)田原狀土壤壓實測試系統(tǒng)的設(shè)計及操作方法[J]. 江蘇農(nóng)業(yè)科學(xué), 2015(1): 368-370. BO Jiancai,DING Qishuo,CHEN Qingchun,et al. Undisturbed soil compaction test system design and operation method in farmland [J]. Jiangsu Agricultural Sciences, 2015(1): 368-370.(in Chinese)
36 汪攀峰,丁啟朔. 黏土單層擊實試驗與制樣因子研究[J]. 巖土力學(xué), 2010, 31(6): 1797-1802. WANG Panfeng,DING Qishuo. Study of dynamic compaction of monolayer cohesive soil and factors for remolded soil [J]. Rock and Soil Mechanics, 2010, 31(6): 1797-1802.(in Chinese)
37 SAFFIH-HDADI K, DéFOSSEZ P, RICHAD G, et al. A method for predicting soil susceptibility to the compaction of surface layers as a function of water content and bulk density[J]. Soil and Tillage Research, 2009, 105(1): 96-103.
38 TAGAR A, JI C, DING Q, et al. Soil failure patterns and draft as influenced by consistency limits: an evaluation of the remolded soil cutting test[J]. Soil and Tillage Research, 2014, 137: 58-66.
39 DAVE T N, DASAKA S M. In-house calibration of pressure transducers and effect of material thickness[J]. Geomechanics & Engineering, 2013, 5(1): 1-15.
40 THOMAS K, JOHAN A, PER S, et al. In situ subsoil stress-strain behavior in relation to soil precompression stress[J]. Soil Science, 2012, 177(8): 490-497.
41 AJAYI A E, DIAS JUNIOR M D S, CURI N, et al. Strength attributes and compaction susceptibility of Brazilian Latosols[J]. Soil and Tillage Research, 2009, 105(1): 122-127.
42 李春林,丁啟朔,陳青春. 水稻土的先期固結(jié)壓力測定與分析[J]. 農(nóng)業(yè)工程學(xué)報, 2010, 26(8): 141-144. LI Chunlin,DING Qishuo,CHEN Qingchun. Measurement and analysis of precompression stress of soil in rice field [J]. Transactions of the CSAE, 2010, 26(8): 141-144.(in Chinese)
43 DéFOSSEZ P, RICHAD G, BOIZARD H, et al. Modeling change in soil compaction due to agricultural traffic as function of soil water content[J]. Geoderma, 2003, 116(1-2): 89-105.
44 SMITH D L O. Compaction by wheels: a numerical model for agricultural soils[J]. European Journal of Soil Science, 1985, 36(4): 621-632.
45 ZINK A, FLEIGE H, HORN R. Load risks of subsoil compaction and depths of stress propagation in arable luvisols[J]. Soil Science Society of America Journal, 2010, 74(5): 1733-1742.
46 SELVADURAI A P S. On Fr?hlich’s solution for Boussinesq’s problem[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2014, 38(9): 925-934.
Soil Stress Transmission Coefficient Based on Compaction Analytical Model
HE Tingfeng1CONG Wenjie1BELAL Eisa Adam1,2DING Qishuo1YANG Yanshan1HUO Lianfei1
(1.CollegeofEngineering,NanjingAgriculturalUniversity,Nanjing210031,China2.DepartmentofAgriculturalEngineering,ZalingeiUniversity,Zalingei06,Sudan)
Predicting soil stress with analytical models requires proper selection of the models’ concentration factor. But due to the insufficient knowledge about the effects of soil conditions on stress transmission, little is known about how the concentration factor varies with soil states and loading conditions. The function of the concentration factor was transformed and a dimensionless factorσz/σ0standing for soil-induced attenuation on the stress transmission was defined as the soil stress transmission coefficient and is denoted as STC. Since soil stress transmission property is affected by soil states and loading conditions, a modified oedometer testing setup with a soil stress sensor was used to evaluate controlled soil properties on STCs. Totally 30 soil states were tested by controlling soil water contents and bulk densities based on different soil styles. Correlation analysis was performed between measured STCs and soil state parameters, i.e. water content, bulk density and soil strength. The highly linear correlation between soil stress and applied surface stress indicated a stable STC for each particular soil state. STC was also found both linearly decreased with dry bulk density and precompression stress. The back-calculation of concentration factor from measured STCs illustrated that the proposed solution for soil stress transmission provided a means to define concentration factor for each soil state with measured result. Concentration factor varied from 1.20 to 12.39, being in agreement with the past reports. And the detail of how the concentration factor was affected by the changed states of soils was provided.
soil compaction; analytical model; concentration factor; soil condition; stress transmission coefficient
10.6041/j.issn.1000-1298.2017.06.007
2016-10-23
2016-12-11
國家自然科學(xué)基金項目(41371238)
賀亭峰(1992—),男,博士生,主要從事土壤壓實力學(xué)研究,E-mail: hetingfeng_543364@126.com
丁啟朔(1968—),男,教授,博士生導(dǎo)師,主要從事土壤耕作力學(xué)和壓實力學(xué)研究,E-mail: qsding@njau.edu.cn
S152.9
A
1000-1298(2017)06-0059-07