孫建軍+沈佳胤+盧洪洲
摘 要 自然殺傷細(xì)胞是固有免疫體系中具有抗病毒效應(yīng)的重要成分,可發(fā)揮免疫清除和調(diào)節(jié)作用。其表面具有的一系列活化性受體和抑制性受體,共同決定著NK細(xì)胞的免疫功能。在HIV感染中,NK細(xì)胞能夠通過(guò)細(xì)胞毒作用裂解靶細(xì)胞和免疫調(diào)節(jié)作用抑制HIV復(fù)制。但隨著感染時(shí)間的延長(zhǎng),HIV患者之NK細(xì)胞亞群分布出現(xiàn)變化,低能/失能NK細(xì)胞頻數(shù)增多,進(jìn)而弱化了NK細(xì)胞對(duì)HIV的控制作用。予以抗病毒治療后,感染者體內(nèi)的NK細(xì)胞功能通常會(huì)有所恢復(fù)。
關(guān)鍵詞 自然殺傷細(xì)胞 人免疫缺陷病毒感染 殺傷細(xì)胞免疫球蛋白受體 免疫效應(yīng)
中圖分類號(hào):R512.91 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1006-1533(2017)11-0003-04
The interaction between natural killer cells and human immunodeficiency virus
SUN Jianjun1*, SHEN Jiayin1, LU Hongzhou1,2**(1. Department of Infectious Diseases, Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China;
2. Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai 200040, China)
ABSTRACT Natural killer cell is an important component of the innate immune system, and can play a vital role in immune clearance and immune regulation. There are a series of activating receptors and inhibitory receptors on its surface and both of them can determine the immune function and the effect of NK cells. In HIV infection, NK cells can cleave the target cells of HIV infection by cytotoxic effect and inhibit HIV replication by immune regulation. However, the distribution of NK cell subsets in patients with HIV is changed and the number of defective NK cells is increased with the extension of the infection time, which can weaken the control effect of NK cells on HIV. The function of NK cells in the infected patients can usually be partly restored after antiviral treatment.
KEY WORDS NK cell; HIV infection; KIR; immunological effect
1 自然殺傷細(xì)胞概述
自然殺傷細(xì)胞(natural killer cell,NK),是一類無(wú)需提前致敏而可以直接發(fā)揮細(xì)胞毒等免疫效應(yīng)而殺傷靶細(xì)胞的免疫細(xì)胞[1] 。NK細(xì)胞是固有免疫體系中發(fā)揮抗病毒作用的重要效應(yīng)成分,起著連接固有免疫和適應(yīng)性免疫兩個(gè)系統(tǒng)的橋梁作用。在人體血液循環(huán)中,NK細(xì)胞約占到外周血單個(gè)核細(xì)胞比例的5%~15%。從形態(tài)上,NK細(xì)胞屬于大顆粒淋巴細(xì)胞,起源于骨髓。人類的NK細(xì)胞表面分化簇以CD3-CD56+為基本特征[2] 。依據(jù)NK細(xì)胞表面表達(dá)CD16、CD56的水平,可將NK細(xì)胞分為兩群:CD56dimCD16bright和CD56brightCD16dim/-。前者約占到外周血NK細(xì)胞總數(shù)的90%,主要通過(guò)釋放穿孔素/顆粒酶而發(fā)揮細(xì)胞毒作用;后者約占到外周血液循環(huán)中NK細(xì)胞的10%,主要通過(guò)分泌細(xì)胞因子起免疫調(diào)節(jié)作用。NK細(xì)胞具有多種生物學(xué)功能,包括識(shí)別被病原體感染的細(xì)胞或自體內(nèi)的腫瘤細(xì)胞。概而言之,NK細(xì)胞具有[2] :(1)免疫清除作用:①細(xì)胞毒作用:通過(guò)分泌穿孔素/顆粒酶等途徑發(fā)揮殺傷靶細(xì)胞的效應(yīng);②誘導(dǎo)凋亡作用:通過(guò)Fas-FasL或TRAIL途徑;③抗體依賴細(xì)胞介導(dǎo)的細(xì)胞毒作用(ADCC):通過(guò)NK細(xì)胞表面的CD16作為相關(guān)抗體Fc段的受體而對(duì)靶細(xì)胞進(jìn)行殺傷;(2)免疫調(diào)節(jié)作用,如分泌IFN-g發(fā)揮調(diào)節(jié)NK細(xì)胞與抗原遞呈細(xì)胞或NK細(xì)胞與適應(yīng)性免疫系統(tǒng)的作用。在NK細(xì)胞發(fā)育過(guò)程中需要有抑制性受體所傳導(dǎo)的抑制性信號(hào)參與[3] 。NK細(xì)胞功能的發(fā)揮則依賴于其細(xì)胞表面的一系列受體及其所傳遞信號(hào)的綜合。這些受體主要包括[4-5] :①殺傷細(xì)胞免疫球蛋白樣受體(killer immunoglobulin-like receptors, KIR),其配體為人類白細(xì)胞抗原(human leukocyte antigen, HLA)A (HLA-A), HLA-B, HLA-C以及其他配體。KIR可分為抑制性受體(KIR2DL或KIR3DL,胞內(nèi)區(qū)含有酪氨酸抑制基序,ITIM)和活化性的受體(KIR2DS或KIR3DS,胞內(nèi)區(qū)含有酪氨酸活化基序,ITAM);②C型凝集素樣受體(C lectin-like receptor, CLR),可分為抑制性受體CD94/ NKG2A、活化性受體CD94/NKG2C和NKG2D;③自然細(xì)胞毒受體(natural cytotoxicity receptors, NCRs),它可識(shí)別多種病原、腫瘤以及源于自身的配體,包括NKp30、NKp44和NKp46三種分子,均屬于活化性受體分子。正是依賴于上述種類多樣的受體組合,NK細(xì)胞得以能夠快速地識(shí)別和發(fā)揮免疫效應(yīng)以清除病毒感染細(xì)胞、腫瘤細(xì)胞等病變細(xì)胞[6-7] 。更進(jìn)一步地講,成熟的NK細(xì)胞會(huì)在其HLA配體表達(dá)下調(diào)或者缺失時(shí)對(duì)病毒感染后所表達(dá)的活化受體或者腫瘤細(xì)胞所表達(dá)的分子變得更加敏感而易于活化并發(fā)揮免疫效應(yīng)(喪失自我模式)[8] ;此外,NK細(xì)胞的活化會(huì)通過(guò)活化性信號(hào)的強(qiáng)度超過(guò)抑制性信號(hào)強(qiáng)度而激活(誘導(dǎo)自我模式)[9] 。通常情況下,NK細(xì)胞通過(guò)此兩種模式的結(jié)合可最大程度地識(shí)別和清除病原體的感染。
2 NK細(xì)胞對(duì)HIV感染的抑制和清除作用
NK細(xì)胞表面表達(dá)許多受體,包括:殺傷細(xì)胞免疫球蛋白樣受體(KIR)、自然細(xì)胞毒受體(NCR,如NKp30、NKp44和NKp46)、C型凝集素受體(包括NKG2A、NKG2C和NKG2D),還有SLAM家族受體的CD16分子,都參與到了NK細(xì)胞免疫效應(yīng)的調(diào)控之中。對(duì)于HIV感染,NK細(xì)胞可以通過(guò)病毒感染的靶細(xì)胞表面所表達(dá)的壓力配體而識(shí)別或通過(guò)間接途徑由抗體依賴的細(xì)胞介導(dǎo)的細(xì)胞毒作用識(shí)別,進(jìn)而對(duì)靶細(xì)胞進(jìn)行細(xì)胞毒作用而將其裂解。此外,NK細(xì)胞還可通過(guò)釋放細(xì)胞因子,如MIP-1b或效應(yīng)分子IFN-g而發(fā)揮免疫效應(yīng)或調(diào)節(jié)免疫系統(tǒng)功能而發(fā)揮抗病毒作用。另外,NK細(xì)胞可由其表面的CD16分子而被招募至被HIV感染后且分泌HIV抗原蛋白的靶細(xì)胞附近而參與殺傷的免疫功能。最終,NK細(xì)胞的脫顆粒/細(xì)胞毒以及細(xì)胞因子分泌的免疫效應(yīng)是否發(fā)揮,需要活化性信號(hào)和抑制性信號(hào)的綜合。對(duì)于NK細(xì)胞免疫調(diào)節(jié)中極其重要的受體——KIR,目前研究主要集中在KIR及其配體HLA的組合對(duì)HIV感染風(fēng)險(xiǎn)和感染HIV后疾病進(jìn)展速度的影響等方面。
對(duì)于HIV感染的預(yù)防,目前尚無(wú)疫苗可用。理論上講,只有發(fā)揮固有免疫體系快速而有效的免疫效應(yīng)才可能在病原入侵的同時(shí)將HIV快速殺滅,從而防止HIV感染的發(fā)生。之前的一項(xiàng)在越南開(kāi)展的關(guān)于靜脈吸毒者的觀察性隊(duì)列發(fā)現(xiàn)[10] ,有相關(guān)HIV危險(xiǎn)暴露行為而未被HIV感染的人群中,NK細(xì)胞活性顯著高于同樣有危險(xiǎn)接觸但已被HIV感染的人群和健康對(duì)照;同時(shí),研究者[11-12] 還發(fā)現(xiàn),在有危險(xiǎn)暴露行為而未被HIV感染者中,基因型為KIR3DS1純合子的比例顯著高于HIV感染組。因而推測(cè),KIR3DS1+NK細(xì)胞具有保護(hù)個(gè)體不被HIV感染的作用。但是需要注意的是,此基因型僅僅具有部分保護(hù)作用,而非像CCR5Δ32純合子那樣具有絕對(duì)的保護(hù)個(gè)體免受HIV感染的能力。
感染HIV后,臨床研究發(fā)現(xiàn),擁有不同HLA/KIR組合的HIV感染者中,其感染預(yù)后存在顯著的差別,如HLA-Bw4與KIR3DS1組合之感染者進(jìn)展至免疫缺陷期的病程較其他的患者更慢[13-14]。而國(guó)內(nèi)外多名學(xué)者的研究也證實(shí),NK細(xì)胞參與了HIV抑制且HLA-Bw4/ KIR3DS1組合的抑制能力最強(qiáng)[15-16]。而近年來(lái)國(guó)內(nèi)亦有研究表明,HLA-Bw4與KIR3DS1的組合在長(zhǎng)期無(wú)進(jìn)展的HIV感染人群中出現(xiàn)頻率最高[17]。此外,由于在HIV感染后,不同于HLA-A和HLA-B分子,HLA-C作為NK細(xì)胞KIR的配體而未被Nef蛋白下調(diào)[18] ,因而在HIV感染防治中具有獨(dú)特的價(jià)值。也因此,近年來(lái)諸多研究者逐漸將注意力從HLA-B分子上轉(zhuǎn)移到了HLA-C分子。在2015年的AIDS期刊上,泰國(guó)的一項(xiàng)臨床隊(duì)列研究發(fā)現(xiàn),擁有HLA-C1/KIR2DL3+的HIV高危人群中,出現(xiàn)HIV感染的風(fēng)險(xiǎn)顯著高于HLA-C1/KIR2DL3-者;對(duì)于已經(jīng)感染HIV者,擁有HLA-C1/KIR2DL3-者具有較少的基線病毒載量和較低的HIV感染病死率[18]。
3 HIV感染后NK細(xì)胞亞群分布和免疫功能的變化
在HIV急性感染后且CD8+ T淋巴細(xì)胞尚未活化時(shí),NK細(xì)胞在大量細(xì)胞因子的刺激下發(fā)生快速而大量的增殖[19(] 主要是CD56dim亞群)。一般而言,病毒感染后會(huì)下調(diào)感染細(xì)胞表面的HLA-I型分子以逃避CD8+ T淋巴細(xì)胞的殺傷,但往往會(huì)由于同時(shí)下調(diào)了NK細(xì)胞的抑制性受體KIR的HLA配體,誘發(fā)了NK細(xì)胞的免疫清除。但是HIV進(jìn)化出了逃避NK細(xì)胞殺傷的策略:HIV感染后會(huì)通過(guò)分泌Nef蛋白而選擇性下調(diào)靶細(xì)胞表面的HLA-A和HLA-B型分子(逃避細(xì)胞毒性T淋巴細(xì)胞攻擊),但是保留HLA-C分子(KIR2D的配體,發(fā)揮抑制NK細(xì)胞免疫效應(yīng)的作用)和HLA-E分子(CD94/ NKG2A的配體,發(fā)揮抑制NK細(xì)胞免疫效應(yīng)的作用)的表達(dá),最終巧妙地同時(shí)躲避了細(xì)胞毒性T淋巴細(xì)胞和NK細(xì)胞的免疫清除[20] 。此外,在HIV感染者體內(nèi),NK細(xì)胞的抑制性受體表達(dá)上調(diào)而活化性受體如NKp30、NKp46等表達(dá)下調(diào)[21-22] 。除了Nef蛋白外,HIV的其他分子如gp41、gp120和Tat蛋白均可通過(guò)多種途徑下調(diào)NK細(xì)胞活性[23] 。
同樣在HIV急性感染的過(guò)程中,由于NK細(xì)胞亞群分布的變化,失能的NK細(xì)胞亞群CD56dim NK細(xì)胞出現(xiàn)擴(kuò)增,這就從在整體上降低了NK細(xì)胞對(duì)未成熟樹(shù)突狀細(xì)胞的清除,進(jìn)一步減弱了樹(shù)突狀細(xì)胞致敏T淋巴細(xì)胞的能力(DC-editing),最終導(dǎo)致適應(yīng)性免疫應(yīng)答的效應(yīng)能力下降[24] 。此外,CD56dim NK細(xì)胞亞群由于表面活化性受體減少,進(jìn)而分泌IFN-g和TNF-a的能力下降。由于此兩種細(xì)胞因子對(duì)于促進(jìn)樹(shù)突狀細(xì)胞成熟非常重要,所以NK細(xì)胞功能下降會(huì)影響到樹(shù)突狀細(xì)胞成熟。同樣,由于樹(shù)突狀細(xì)胞成熟減少,由其分泌的IL-12、IL-15和IL-18亦會(huì)相應(yīng)減少,進(jìn)而影響到NK細(xì)胞的發(fā)育和成熟[6] 。
在HIV感染進(jìn)入慢性階段,NK細(xì)胞的數(shù)量和功能均發(fā)生了顯著變化[6] 。隨著感染時(shí)間的延長(zhǎng),NK細(xì)胞亞群中CD56brightCD16dim數(shù)量減少而具有高水平抑制性受體和低水平自然殺傷受體的失能CD56-CD16+NK細(xì)胞數(shù)量增加[25] 。這意味著HIV感染后,通過(guò)異化NK細(xì)胞的構(gòu)成進(jìn)而弱化了NK細(xì)胞對(duì)HIV的控制作用。
盡管HIV不能夠感染、直接破壞NK細(xì)胞,可是HIV感染后不斷進(jìn)行的病毒復(fù)制使得NK細(xì)胞的亞群分布發(fā)生了巨大改變。予以抗病毒治療后,在HIV復(fù)制受抑后NK細(xì)胞的功能通常會(huì)逐漸恢復(fù)正常[26] ,這也提示,HIV對(duì)NK細(xì)胞的功能影響是可逆的。在體外的實(shí)驗(yàn)發(fā)現(xiàn),予以IL-2刺激后,NK細(xì)胞分群的異常可以得到恢復(fù)[27]。
4 結(jié)語(yǔ)
在HIV感染后,宿主之NK細(xì)胞功能出現(xiàn)缺陷,使得NK細(xì)胞對(duì)于HIV感染的控制能力減弱。由于NK細(xì)胞的免疫效應(yīng)以及其與適應(yīng)性免疫體系的相互作用是發(fā)揮NK細(xì)胞抗擊HIV感染的關(guān)鍵之處,所有能對(duì)NK細(xì)胞分化和增殖有促進(jìn)作用的因素都可認(rèn)為是具有治療HIV感染潛在價(jià)值的手段。IL-15是NK細(xì)胞成熟、存活以及功能完善的主要調(diào)控因子。在關(guān)于腫瘤遠(yuǎn)處轉(zhuǎn)移的臨床研究中發(fā)現(xiàn),予以重組人IL-15的制劑后受試者體內(nèi)NK細(xì)胞功能活化和增殖效應(yīng)明顯[28] 。而另一個(gè)關(guān)于人源化HIV小鼠模型實(shí)驗(yàn)中,予以IL-15超激動(dòng)劑(IL-15結(jié)合到IL-15Ra的制劑)應(yīng)用后可以通過(guò)NK細(xì)胞相關(guān)的免疫效應(yīng)預(yù)防HIV感染[29] 。這就表明,在HIV感染而予以常規(guī)抗病毒治療之后仍有潛在低水平病毒復(fù)制和病毒儲(chǔ)存庫(kù)的背景下,增強(qiáng)NK細(xì)胞免疫監(jiān)視功能以清除HIV潛伏感染具有新的可行性。除此之外,還有其他的針對(duì)NK細(xì)胞或者NK細(xì)胞功能激活的研究,均在探索恢復(fù)NK細(xì)胞功能以發(fā)揮抗HIV感染的作用[30] 。這些都可為開(kāi)辟新的抗HIV治療路徑提供理論儲(chǔ)備。
參考文獻(xiàn)
[1] Smyth MJ, Hayakawa Y, Takeda K, et al. New aspects of natural-killer-cell surveillance and therapy of cancer[J]. Nat Rev Cancer, 2002, 2(11): 850-861.
[2] Mandal A, Viswanathan C. Natural killer cells: In health and disease[J]. Hematol Oncol Stem Cell Ther, 2015, 8(2): 47-55.
[3] Sun JC, Lanier LL. NK cell development, homeostasis and function: parallels with CD8+ T cells[J]. Nat Rev Immunol, 2011, 11(10): 645-657.
[4] Jiang Y, Chen O, Cui C, et al. KIR3DS1/L1 and HLA-Bw4-80I are associated with HIV disease progression among HIV typical progressors and long-term nonprogressors[J/OL]. BMC Infect Dis, 2013, 13: 405. doi: 10.1186/1471-2334-13-405.
[5] Sivori S, Carlomagno S, Pesce S, et al. TLR/NCR/KIR: Which One to Use and When?[J/OL]. Front Immunol, 2014, 5: 105. doi: 10.3389/fimmu.2014.00105.
[6] Scully E, Alter G. NK Cells in HIV Disease[J]. Curr HIV/ AIDS Rep, 2016, 13(2): 85-94.
[7] Blish CA. Natural killer cell diversity in viral infection: why and how much?[J]. Pathog Immun, 2016, 1(1): 165-192.
[8] Hens J, Jennes W, Kestens L. The role of NK cells in HIV-1 protection: autologous, allogeneic or both?[J/OL]. AIDS Res Ther, 2016, 13: 15. doi: 10.1186/s12981-016-0099-6.
[9] Lanier LL. NK cell recognition[J]. Annu Rev Immunol, 2005, 23: 225-274.
[10] Scott-Algara D, Truong LX, Versmisse P, et al. Cutting edge: increased NK cell activity in HIV-1-exposed but uninfected Vietnamese intravascular drug users[J]. J Immunol, 2003, 171(11): 5663-5667.
[11] Ravet S, Scott-Algara D, Bonnet E, et al. Distinctive NK-cell receptor repertoires sustain high-level constitutive NK-cell activation in HIV-exposed uninfected individuals[J]. Blood, 2007, 109(10): 4296-4305.
[12] Boulet S, Sharafi S, Simic N, et al. Increased proportion of KIR3DS1 homozygotes in HIV-exposed uninfected individuals[J]. AIDS, 2008, 22(5): 595-599.
[13] Habegger DSA, Sinchi JL, Marinic K, et al. KIR-HLA-A and B alleles of the Bw4 epitope against HIV infection in discordant heterosexual couples in Chaco Argentina[J]. Immunology, 2013, 140(2): 273-279.
[14] Koehler RN, Alter G, Tovanabutra S, et al. Natural killer cellmediated innate sieve effect on HIV-1: the impact of KIR/ HLA polymorphism on HIV-1 subtype-specific acquisition in east Africa[J]. J Infect Dis, 2013, 208(8): 1250-1254.
[15] Alter G, Martin MP, Teigen N, et al. Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes[J]. J Exp Med, 2007, 204(12): 3027-3036.
[16] Song R, Lisovsky I, Lebouché B, et al. HIV protective KIR3DL1/S1-HLA-B genotypes influence NK cell-mediated inhibition of HIV replication in autologous CD4 targets[J/ OL]. PLoS Pathog, 2014, 10(1): e1003867. doi: 10.1371/ journal.ppat.1003867.
[17] Jiang Y, Chen O, Cui C, et al. KIR3DS1/L1 and HLA-Bw4-80I are associated with HIV disease progression among HIV typical progressors and long-term nonprogressors[J/OL]. BMC Infect Dis, 2013, 13: 405. doi: 10.1186/1471-2334-13-405.
[18] Mori M, Wichukchinda N, Miyahara R, et al. The effect of KIR2D–HLA-C receptor–ligand interactions on clinical outcome in a HIV-1 CRF01_AE-infected Thai population[J]. AIDS, 2015, 29(13): 1607-1615.
[19] Alter G, Rihn S, Walter K, et al. HLA class I subtypedependent expansion of KIR3DS1+ and KIR3DL1+ NK cells during acute human immunodeficiency virus type 1 infection[J]. J Virol, 2009, 83(13): 6798-6805.
[20] Martin MP, Carrington M. Immunogenetics of HIV disease[J/ OL]. Immunol Rev, 2013, 254(1): 245-264. doi: 10.1111/ imr.12071. Review.
[21] De Maria A, Fogli M, Costa P, et al. The impaired NK cell cytolytic function in viremic HIV-1 infection is associated with a reduced surface expression of natural cytotoxicity receptors (NKp46, NKp30 and NKp44)[J]. Eur J Immunol, 2003, 33(9): 2410-2418.
[22] Mavilio D, Benjamin J, Daucher M, et al. Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates[J]. Proc Natl Acad Sci U S A, 2003, 100(25): 15011-15016.
[23] Huber M, Trkola A. Humoral immunity to HIV-1: neutralization and beyond[J]. J Intern Med, 2007, 262(1): 5-25.
[24] Mavilio D, Lombardo G, Benjamin J, et al. Characterization of CD56-/CD16+ natural killer (NK) cells: a highly dysfunctional NK subset expanded in HIV-infected viremic individuals[J]. Proc Natl Acad Sci U S A, 2005, 102(8): 2886-2891.
[25] Mavilio D, Benjamin J, Daucher M, et al. Natural killer cells in HIV-1 infection: dichotomous effects of viremia on inhibitory and activating receptors and their functional correlates[J]. Proc Natl Acad Sci U S A, 2003, 100(25): 15011-15016.
[26] Brunetta E, Hudspeth KL, Mavilio D. Pathologic natural killer cell subset redistribution in HIV-1 infection: new insights in pathophysiology and clinical outcomes[J]. J Leukoc Biol, 2010, 88(6): 1119-1130.
[27] Micha?lsson J, Long BR, Loo CP, et al. Immune reconstitution of CD56dim NK cells in individuals with primary HIV-1 infection treated with interleukin-2[J]. J Infect Dis, 2008, 197(1): 117-125.
[28] Conlon KC, Lugli E, Welles HC, et al. Redistribution, hyperproliferation, activation of natural killer cells and CD8 T cells, and cytokine production during first-in-human clinical trial of recombinant human interleukin-15 in patients with cancer[J]. J Clin Oncol, 2015, 33(1): 74-82.
[29] Seay K, Church C, Zheng JH, et al. In vivo activation of human NK cells by treatment with an interleukin-15 superagonist potently inhibits acute in vivo HIV-1 infection in humanized mice[J]. J Virol, 2015, 89(12): 6264-6274.
[30] Lim O, Jung MY, Hwang YK, et al. Present and future of allogeneic natural killer cell therapy[J]. Front Immunol, 2015, 6: 286.