劉全樂(lè) 李天富 王保國(guó)*
(1.首都醫(yī)科大學(xué)三博腦科醫(yī)院麻醉科,北京 100093; 2.首都醫(yī)科大學(xué)三博腦科醫(yī)院神經(jīng)內(nèi)科,北京 100093)
· 麻醉學(xué)與神經(jīng)科學(xué) ·
丙戊酸鈉神經(jīng)保護(hù)作用機(jī)制及其應(yīng)用研究
劉全樂(lè)1李天富2王保國(guó)1*
(1.首都醫(yī)科大學(xué)三博腦科醫(yī)院麻醉科,北京 100093; 2.首都醫(yī)科大學(xué)三博腦科醫(yī)院神經(jīng)內(nèi)科,北京 100093)
丙戊酸鈉(sodium valproate)作為一種組蛋白去乙酰酶抑制劑,廣泛應(yīng)用于抗癲癇治療以及精神分裂、雙相障礙等精神疾病的治療。丙戊酸鈉還能對(duì)神經(jīng)元的生長(zhǎng)、變異、凋亡產(chǎn)生影響,發(fā)揮神經(jīng)保護(hù)作用。丙戊酸鈉的作用機(jī)制與神經(jīng)傳遞和細(xì)胞內(nèi)信號(hào)傳導(dǎo)通路的調(diào)節(jié)有關(guān)。丙戊酸鈉作為神經(jīng)功能保護(hù)藥物治療神經(jīng)損傷以及認(rèn)知障礙有待于進(jìn)一步研究。
丙戊酸鈉;神經(jīng)保護(hù);信號(hào)傳導(dǎo);組蛋白去乙酰酶抑制劑
丙戊酸(valproic acid,VPA)是一種短支鏈脂肪酸,最初是由從植物中提取的纈草酸合成的[1]。常以丙戊酸鈉(sodium valproate)的形式被用于治療癲癇和雙相情感障礙等疾病[1-2]。近年來(lái),VPA以其良好的安全性[3]、合并癥少[1]以及治療劑量下幾乎不對(duì)病人的意識(shí)產(chǎn)生影響等特性[4],日益受到神經(jīng)外科醫(yī)生的推崇,成為神經(jīng)外科術(shù)后預(yù)防性抗癲癇治療的首選藥物。除此之外,VPA應(yīng)用于一些急性神經(jīng)系統(tǒng)損傷動(dòng)物模型中,如創(chuàng)傷性腦損傷(traumatic brain injury,TBI)、脊髓損傷(spinal cord injury,SCI)、腦卒中(stroke)等,顯示了良好的神經(jīng)保護(hù)作用,在臨床中的應(yīng)用也越來(lái)越受重視。目前VPA的神經(jīng)保護(hù)作用機(jī)制成為國(guó)內(nèi)外研究的熱點(diǎn)。本文就近年來(lái)VPA神經(jīng)保護(hù)作用的相關(guān)機(jī)制和臨床應(yīng)用作一綜述。
癲癇(epilepsy)是大腦神經(jīng)元突發(fā)性放電,導(dǎo)致短暫的大腦功能障礙的一種慢性疾病。癲癇的發(fā)作主要是由于中樞神經(jīng)系統(tǒng)興奮與抑制的不平衡所致,與離子通道、神經(jīng)遞質(zhì)及神經(jīng)膠質(zhì)細(xì)胞的改變有關(guān)。目前VPA治療癲癇的作用與以下幾方面有關(guān):
1.1 作用于γ-氨基丁酸(γ-aminobutyric acid,GABA)能系統(tǒng)
VPA抗癲癇的作用機(jī)制與多種綜合因素造成神經(jīng)元興奮性降低有關(guān)[5]。早在20世紀(jì)70年代,就有人提出VPA對(duì)于GABA能系統(tǒng)的作用。GABA是哺乳動(dòng)物神經(jīng)系統(tǒng)中重要的抑制性神經(jīng)傳遞物質(zhì)[6-7],癲癇的發(fā)生與GABA介導(dǎo)的抑制性突觸傳遞作用降低有關(guān)。VPA主要通過(guò)作用于GABA的代謝途徑進(jìn)而影響GABA的水平,最終增強(qiáng)GABA介導(dǎo)的突觸后抑制作用[8]。如圖1所示,VPA通過(guò)作用于GABA的合成和分解代謝的關(guān)鍵酶發(fā)揮作用,最后總的結(jié)果是增加GABA的水平。近期一些研究[9-11]表明,VPA除了對(duì)于GABA代謝途徑的影響外,還能夠增強(qiáng)GABA受體的反應(yīng),能夠通過(guò)與GABA-A受體苯二氮卓結(jié)合位點(diǎn)相互作用延長(zhǎng)突觸后抑制作用的時(shí)間。
圖1 VPA對(duì)GABA能系統(tǒng)作用示意圖Fig.1 Schematic diagram of the effect of VPA on the GABA energy system
(+)shows the positive effect on the corresponding enzyme, and (-) indicates the negative inhibition of the corresponding enzyme;VPA: valproic acid;GABA: γ-aminobutyric acid.
1.2 作用于谷氨酸能系統(tǒng)
谷氨酸是一種興奮性神經(jīng)遞質(zhì),對(duì)癲癇的誘發(fā)和發(fā)作起重要作用。研究[12]表明VPA能夠降低大腦內(nèi)谷氨酸和天冬氨酸的水平。但是近年來(lái)有一些實(shí)驗(yàn)[13]得出了相對(duì)矛盾的結(jié)果,VPA在腦內(nèi)不同的區(qū)域?qū)劝彼岬淖饔檬怯胁顒e的。例如在VPA慢性治療的大鼠模型中,VPA能劑量依賴性地提高海馬組織內(nèi)谷氨酸的攝取能力,然而在額葉或者頂葉的皮質(zhì)和小腦組織內(nèi)卻沒(méi)有發(fā)現(xiàn)類似的結(jié)果[13]。VPA對(duì)谷氨酸的影響,在不同組織內(nèi)得出了不同的觀察結(jié)果可能與谷氨酸能系統(tǒng)的突觸可塑性有關(guān)。
1.3 作用于離子通道
VPA的抗癲癇作用除了與上述兩個(gè)神經(jīng)遞質(zhì)系統(tǒng)有關(guān)外,還與VPA對(duì)細(xì)胞膜離子通道的作用有關(guān)。在早期的一項(xiàng)研究[14]中,研究者選取單個(gè)神經(jīng)纖維的郎飛結(jié),利用電壓鉗技術(shù)研究細(xì)胞膜鈉鉀電流,結(jié)果表明VPA能夠同步阻滯鈉和鉀的傳導(dǎo),進(jìn)而使細(xì)胞動(dòng)作電位幅度、去極化最大速率降低,閾電位提高,最終導(dǎo)致了興奮性的降低。N-甲基-D天冬氨酸(N-methyl-D-aspartic acid, NMDA)受體作為谷氨酸的受體之一,其拮抗劑被用于臨床麻醉,逐步發(fā)展成為癲癇、卒中以及防止神經(jīng)退行性損傷的治療藥物[15]。NMDA拮抗劑有明顯的神經(jīng)毒性,NMDA受體功能不良可能與神經(jīng)退行性疾病(如阿爾茨海默病、雙相情感障礙、精神分裂)有關(guān)。如圖2所示,谷氨酸與GABA能神經(jīng)元和去甲腎上腺素能神經(jīng)元的NMDA受體結(jié)合能夠維持這兩種神經(jīng)元對(duì)兩種興奮通路的緊張性抑制(tonic inhibitory)作用。NMDA拮抗劑能夠消除這種抑制作用,從而受這兩種通路支配的神經(jīng)元將會(huì)處于極度活躍狀態(tài),進(jìn)而導(dǎo)致多種細(xì)胞內(nèi)通路的破壞,最終導(dǎo)致急性認(rèn)知功能障礙等疾病的發(fā)生。VPA對(duì)鈉通道的阻滯能夠抑制NMDA拮抗劑相關(guān)的神經(jīng)毒性作用。這也為VPA應(yīng)用于臨床麻醉,抑制由NMDA拮抗劑類的麻醉藥物造成的神經(jīng)毒性提供了理論依據(jù)。
組蛋白是真核生物體染色質(zhì)中的堿性蛋白,是真核生物染色體基本結(jié)構(gòu)蛋白,與帶負(fù)電荷的雙螺旋DNA結(jié)合成DNA-組蛋白復(fù)合物。染色質(zhì)的局部重塑和動(dòng)力學(xué)改變是基因表達(dá)的關(guān)鍵環(huán)節(jié),進(jìn)而影響細(xì)胞的變異、增生等功能[16]。其中影響染色質(zhì)重塑的重要機(jī)制之一就是組蛋白N末端的乙?;揎?。組蛋白的乙酰化作用由組蛋白乙酰轉(zhuǎn)移酶(histone acetyltransferase,HAT)介導(dǎo);組蛋白去乙酰化作用由組蛋白去乙酰酶(histone deacetylase,HDAC)介導(dǎo)。在組蛋白的去乙酰化過(guò)程中,HAT和HDAC的活性是相互平衡的[17]。HDAC能夠影響細(xì)胞基因表達(dá)的修飾,VPA作為一種組蛋白去乙酰酶抑制劑(histone deacetylase inhibitor, HDACI),能夠激活細(xì)胞生存因子Akt,進(jìn)而發(fā)揮多種神經(jīng)保護(hù)作用。下面就VPA的抗凋亡作用、抗炎作用、抗氧化作用等方面分別敘述VPA的神經(jīng)保護(hù)作用及相關(guān)機(jī)制。
圖2 VPA作用于谷氨酸和GABA代謝機(jī)制Fig.2 Mechanisms of VPA action on the glutamate and GABA metabolism
NMDA receptors are a unique dual gated channel that is controlled by both membrane potential and by other neurotransmitters. Mainly in the neural cells of the postsynaptic membrane, NMDA receptors is a class of important excitatory amino acid receptors. Glutamate acts on GLU nerve pathway and energetic pathway through the GABAergic neurons and NEergic neurons NMDA receptor. Glutamate binds to NMDA receptors of GABAergic neurons and norepinephrine neurons to maintain the inhibitory effects of these two neurons on the Glutamate nerve pathway and cholinergic nerve pathways, and thus effectively inhibit the excessive activity of the neurons. (+) indicates excitement, (-) indicates inhibition;VPA: valproic acid;Glu:glutamate; NMDA:N-methyl-D-aspartic acid;GABA: γ-aminobutyric acid.
2.1 抗細(xì)胞凋亡作用
研究[2]表明,對(duì)于一些急性中樞神經(jīng)系統(tǒng)損傷性疾病,神經(jīng)元凋亡機(jī)制不恰當(dāng)?shù)募せ钍窃斐善洳±韺W(xué)表現(xiàn)的主要機(jī)制。VPA已經(jīng)被證實(shí)能夠在急性中樞神經(jīng)系統(tǒng)損傷中抑制細(xì)胞的凋亡。VPA主要通過(guò)正向調(diào)節(jié)磷酸肌醇3激酶(phosphatidylinositol 3 kinase, PI3K)/Akt通路,如圖3所示,磷酸化通路中的Akt和GSK-3β兩個(gè)因子,最終抑制凋亡激酶的激活進(jìn)而發(fā)揮抗凋亡的作用[18]。PI3K/Akt信號(hào)通路在介導(dǎo)神經(jīng)元的生存機(jī)制中起到重要作用[19]。PI3K是一種細(xì)胞表面因子,能夠激活A(yù)kt。Akt通過(guò)磷酸化多種酶、激酶和轉(zhuǎn)錄因子等作用調(diào)節(jié)細(xì)胞功能。TRB3和PTEN與PI3K的功能相反,可以減少Akt的活化。GSK-3β是一種與多種細(xì)胞生物過(guò)程有關(guān)的激酶,能夠調(diào)節(jié)多種細(xì)胞骨架蛋白,在中樞神經(jīng)系統(tǒng)中有重要作用。VPA能夠抑制其活性,但是否可以直接抑制其活性仍然存在爭(zhēng)議。β連環(huán)蛋白可以通過(guò)提高抗凋亡蛋白質(zhì)如Bcl-2的水平改善細(xì)胞生存能力。VPA主要通過(guò)抑制TRB3和PTEN促進(jìn)Akt的磷酸化,上調(diào)P-GSK-3β和β連環(huán)蛋白的方式促進(jìn)細(xì)胞存活,抵抗細(xì)胞凋亡。
VPA的抗凋亡機(jī)制除了與上述的細(xì)胞通路有關(guān),還與熱休克蛋白70(heat shock protein70,HSP70)的誘導(dǎo)有關(guān)。熱休克蛋白家族有強(qiáng)效的細(xì)胞保護(hù)作用[20]。HSP70通過(guò)多種機(jī)制抗細(xì)胞凋亡。caspase-3的激活具有細(xì)胞色素酶c依賴性。HSP 70可以抑制caspase-3的激活,并且抑制其下游的凋亡介導(dǎo)因子。HSP還可以使JNK失活,抑制其興奮性細(xì)胞毒性作用,同時(shí)HSP作為分子伴侶,能夠防止蛋白的聚集,減少細(xì)胞死亡。在短暫局灶性腦缺血的大鼠模型中,VPA能夠上調(diào)大腦內(nèi)HSP 70水平,減少缺血引起的大腦損傷[20]。除了HSP 70,VPA能夠誘導(dǎo)多種神經(jīng)保護(hù)蛋白(如BCL-2、葡萄糖轉(zhuǎn)運(yùn)蛋白78、腦源性神經(jīng)營(yíng)養(yǎng)因子等)的表達(dá),但機(jī)制是否與VPA的組蛋白去乙酰酶抑制作用有關(guān)目前還尚不清楚。
除此之外,也有研究[21]表明VPA能夠激活一些細(xì)胞外信號(hào)調(diào)節(jié)激酶類,反過(guò)來(lái)影響轉(zhuǎn)錄因子活性和基因的表達(dá)。在一項(xiàng)以外傷性腦損傷和失血性休克大鼠為模型的實(shí)驗(yàn)中,觀察了VPA對(duì)腦部基因表達(dá)的影響,結(jié)果顯示神經(jīng)絲輕鏈基因(neurofilament light gene,NEFL)和SLX4兩種基因在應(yīng)用VPA的大鼠神經(jīng)元中過(guò)度表達(dá)。這兩種基因在神經(jīng)元的再生、變異和成熟中有重要作用,并且與神經(jīng)元凋亡的抑制有關(guān)。這些基因的表達(dá)對(duì)抑制細(xì)胞凋亡,提升神經(jīng)元再生能力有重要作用[22]。
圖3 VPA作用于PI3K/Akt通路機(jī)制Fig.3 VPA acting on PI3K/Akt pathway mechanism
(+) indicates excitement, (-) indicates inhibition; PI3K: phosphatidylinositol 3 kinase;Akt: serine/threonine kinase;TRB3: tribbles 3, a pseudo-kinase that controls stress, cell growth and metabolic processes;PTEN:phosphate and tension homology deleted on chromsome ten,PTENgene is a novel tumor suppressor gene whose product PTEN protein has lipid phosphatase activity and protein phosphatase activity;P-Akt: phosphorylated Akt;GSK-3β: glycogen synthase kinase-3β; P-GSK-3β: phosphorylated GSK-3β;Pro-caspase-3: Cysteine-3 precursor, caspase-3 is considered to be the most important terminal cleavage enzyme in apoptosis. Cleaved-caspase-3: caspase-3 cleaves into cleaved-caspase-3 after cleavage, which is the active form of the former.
2.2 抗炎性作用
神經(jīng)炎性反應(yīng)是中樞神經(jīng)系統(tǒng)功能紊亂十分重要的發(fā)病機(jī)制,同時(shí)在腦部損傷中也起到重要作用[23-24]。在一些神經(jīng)損傷模型中,VPA的抗炎作用得到證實(shí)[2]。小膠質(zhì)細(xì)胞(microglial)作為一種普通免疫細(xì)胞,在神經(jīng)元的生理活動(dòng)中起著支持、營(yíng)養(yǎng)、保護(hù)和修復(fù)的重要功能。在炎性反應(yīng)刺激下,抗原性增強(qiáng),功能活躍。研究[25]證實(shí)VPA能夠抑制小膠質(zhì)細(xì)胞的活性,并且在中腦神經(jīng)元-神經(jīng)膠質(zhì)培養(yǎng)中,VPA能夠保護(hù)多巴胺能神經(jīng)元不受脂多糖引起的炎性損傷。在人類神經(jīng)膠質(zhì)的培養(yǎng)中發(fā)現(xiàn),VPA改變了小膠質(zhì)細(xì)胞的表現(xiàn)型,并且能夠抑制小膠質(zhì)細(xì)胞的吞噬作用[26]。在淋巴結(jié)中,VPA抑制Th1和Th7的反應(yīng)但是能夠?qū)h2和調(diào)節(jié)性T細(xì)胞的反應(yīng)起到促進(jìn)作用。在腦脊髓炎大鼠模型中,VPA減少巨噬細(xì)胞和淋巴細(xì)胞在脊髓內(nèi)的積累[27]。VPA的抗炎作用主要是對(duì)炎性小體聚集和活性的抑制發(fā)揮作用。在眾多炎性小體中,NLRP3是最近發(fā)現(xiàn)的胞質(zhì)蛋白,主要參與免疫炎性應(yīng)答反應(yīng)。不論是內(nèi)源性的還是外源性的刺激物都可以刺激NLRP3發(fā)生反應(yīng),NLRP3的激活涉及兩個(gè)過(guò)程:1)NF-κB通路的激活能夠啟動(dòng)NLRP3的轉(zhuǎn)錄,提高其數(shù)量并促進(jìn)其聚集;2)多種刺激可以激活NLRP3,如細(xì)胞內(nèi)低鉀、增多的活性氧(reactive oxygen species, ROS)都能激活NLRP3炎性小體。參與免疫反應(yīng)的早期和炎性反應(yīng)各個(gè)階段的分子都受到NF-κB的調(diào)控,VPA能夠通過(guò)抑制NF-κB的活性進(jìn)而減少NLRP3炎性小體的產(chǎn)生[28-33]。
2.3 神經(jīng)營(yíng)養(yǎng)作用
神經(jīng)營(yíng)養(yǎng)因子包括腦源性營(yíng)養(yǎng)因子和膠質(zhì)源性營(yíng)養(yǎng)因子,對(duì)神經(jīng)元的存活和功能都有重要作用。VPA能夠上調(diào)這些營(yíng)養(yǎng)因子。機(jī)制可能是VPA加強(qiáng)營(yíng)養(yǎng)因子基因周圍組蛋白的乙?;?,從而激活腦源性和膠質(zhì)源性營(yíng)養(yǎng)因子啟動(dòng)子并促進(jìn)其轉(zhuǎn)錄[34-36]。
2.4 抗氧化防御作用
氧化應(yīng)激(oxidative stress,OS)是指體內(nèi)氧化與抗氧化作用失衡,傾向于氧化。OS是由自由基在體內(nèi)產(chǎn)生的一種負(fù)面作用。VPA通過(guò)抑制脂質(zhì)過(guò)氧化和蛋白質(zhì)氧化對(duì)氧化應(yīng)激起防御作用。眾所周知,谷胱甘肽S-轉(zhuǎn)移酶(glutathione S-transferases,GSTs)是谷胱甘肽結(jié)合反應(yīng)的關(guān)鍵酶。GSTs能夠清除體內(nèi)氫過(guò)氧化物。GSTs同工酶能夠清除脂類自由基,在抗脂質(zhì)過(guò)氧化反應(yīng)中起重要作用,是抗氧化的重要保護(hù)因子。VPA能夠調(diào)節(jié)3種GST同工酶的表達(dá)。谷胱甘肽作為大腦內(nèi)重要的抗氧化劑,在抗氧化防御中發(fā)揮重要作用。在培養(yǎng)的大鼠皮質(zhì)細(xì)胞中,VPA既能夠提高谷胱甘肽的水平,同時(shí)還能增加谷胱甘肽合成限速酶的表達(dá)。通過(guò)這種方式,VPA抑制了過(guò)氧化氫誘發(fā)的細(xì)胞死亡[37]。Shao等[38]發(fā)現(xiàn),同樣是在大鼠皮質(zhì)細(xì)胞培養(yǎng)基中,VPA能夠明顯抑制谷氨酸鹽誘發(fā)的細(xì)胞內(nèi)游離鈣的增加、脂質(zhì)過(guò)氧化作用、蛋白質(zhì)氧化作用、DNA的分裂和細(xì)胞死亡。有研究[39]表明,JNK信號(hào)通路在ROS介導(dǎo)的細(xì)胞死亡中發(fā)揮重要作用。VPA在含氧正常的細(xì)胞中對(duì)JNK沒(méi)有激活作用,但是在低氧細(xì)胞中,能夠顯著抑制JNK的活性,這可能與上述的VPA對(duì)HSP 70的上調(diào)作用有關(guān)。VPA的抗氧化防御作用可能是其神經(jīng)功能保護(hù)的主要作用機(jī)制。
2.5 保護(hù)血腦脊液屏障作用
一些急性神經(jīng)系統(tǒng)損傷性疾病,如創(chuàng)傷性腦損傷(traumatic brain injury,TBI)造成的認(rèn)知和行為異常,不僅與初始損傷有關(guān),還與進(jìn)行性的病理發(fā)展性損傷相關(guān)。其中血腦脊液屏障(blood-brain barrier,BBB)的破壞導(dǎo)致的腦內(nèi)環(huán)境的紊亂,大量興奮性神經(jīng)遞質(zhì)的釋放、神經(jīng)元的炎性反應(yīng)等都與大腦外傷后的二次損傷有關(guān)[40-44]。在TBI大鼠模型中,損傷后注射VPA可以減少血腦脊液屏障的滲透,改善血腦脊液屏障的完整性和功能[45]。該實(shí)驗(yàn)[45]還證實(shí)了損傷后早期注射VPA對(duì)于運(yùn)動(dòng)和認(rèn)知功能的改善都有作用。有研究[46-47]表明腦卒中后導(dǎo)致血腦脊液屏障破壞和功能紊亂的重要調(diào)節(jié)因子是基質(zhì)金屬蛋白酶9。VPA能夠降低這種蛋白質(zhì)的活性,同時(shí)能夠保護(hù)緊密連接,這也是其保護(hù)血腦脊液屏障的機(jī)制之一。
VPA作為目前臨床上一線廣譜抗癲癇藥物廣泛應(yīng)用于抗癲癇治療中,其在神經(jīng)外科術(shù)后以及顱腦損傷后預(yù)防和控制癲癇發(fā)作越來(lái)越受到關(guān)注。神經(jīng)外科術(shù)后癲癇發(fā)生的主要原因是手術(shù)操作過(guò)程中分離病變以及腦板牽拉腦組織造成皮質(zhì)腦組織的損傷。即使目前微創(chuàng)手術(shù)也是如此。這些損傷會(huì)引起皮質(zhì)局部?jī)?nèi)環(huán)境的改變而誘發(fā)早期癲癇。術(shù)后預(yù)防性使用抗癲癇藥物仍然存在爭(zhēng)議。但是術(shù)后預(yù)防性應(yīng)用VPA可以明顯降低術(shù)后癲癇的發(fā)生率,而且在治療劑量下使用不良反應(yīng)小,安全性高。
一些臨床前期的研究[2]顯示,VPA在一些急性神經(jīng)系統(tǒng)損傷中,如缺血性腦卒中(ischemic stroke)、顱內(nèi)出血(intracerebral hemorrhage,ICH)、TBI和脊髓損傷(spinal cord injury,SCI),均能表現(xiàn)出神經(jīng)保護(hù)作用,能從上述多個(gè)方面發(fā)揮其神經(jīng)保護(hù)作用。對(duì)于一些神經(jīng)性損傷的疾病,VPA的應(yīng)用同樣表現(xiàn)出了神經(jīng)保護(hù)效應(yīng)。例如皮下或經(jīng)靜脈注射VPA能夠促進(jìn)視網(wǎng)膜神經(jīng)節(jié)細(xì)胞生存,使損傷的視神經(jīng)重塑[48]。
通過(guò)以上對(duì)于VPA抗癲癇機(jī)制和神經(jīng)保護(hù)作用機(jī)制的分析,以及一些VPA臨床前期證據(jù),都提示VPA在治療急性中樞神經(jīng)系統(tǒng)損傷中有重要作用。神經(jīng)外科術(shù)后預(yù)防性應(yīng)用VPA不僅能夠有效抑制術(shù)后癲癇的發(fā)生,同時(shí)還能夠有助于病人神經(jīng)功能的恢復(fù)。這也為將丙戊酸鈉的鎮(zhèn)靜作用和神經(jīng)保護(hù)作用有機(jī)結(jié)合起來(lái),應(yīng)用于神經(jīng)外科麻醉領(lǐng)域提供了一個(gè)新的思路。也有文獻(xiàn)[49]報(bào)道,VPA對(duì)一些有認(rèn)知障礙特點(diǎn)的神經(jīng)退行性疾病有神經(jīng)保護(hù)作用,并且可以加強(qiáng)記憶功能。越來(lái)越多的研究者投身于VPA抗阿爾茨海默病、帕金森病、亨廷頓舞蹈癥和認(rèn)知功能障礙的研究中。然而,因?yàn)閂PA缺乏以其神經(jīng)保護(hù)作用應(yīng)用于臨床的證據(jù),以及藥物本身產(chǎn)生的不良反應(yīng)和毒性的限制,使VPA作為神經(jīng)保護(hù)藥物應(yīng)用于臨床還處于探索階段。不同劑量的VPA能夠發(fā)揮不同的藥理效應(yīng),在臨床上,100~120 mg/kg的劑量時(shí)能夠發(fā)揮抗癲癇作用,高濃度的VPA(500 mg·kg-1·d-1)有組蛋白去乙酰酶抑制劑依賴性抗腫瘤作用,當(dāng)VPA抑制組蛋白去乙?;淖饔锰岣呒?xì)胞生存能力時(shí),劑量范圍是非常狹窄的,使VPA發(fā)揮促進(jìn)組蛋白乙?;饔眯枰芨叩难帩舛龋荲PA的高濃度隨之而來(lái)的就是其毒性反應(yīng)的增加。
探索丙戊酸鈉應(yīng)用于臨床的劑量,使其既發(fā)揮其神經(jīng)保護(hù)作用,又能減少其不良反應(yīng)和毒性反應(yīng)還有很長(zhǎng)的一段路要走,但無(wú)疑具有獨(dú)特藥理學(xué)優(yōu)勢(shì)的丙戊酸鈉值得我們?yōu)橹μ剿鳌?/p>
[1] L?scher W. Basic pharmacology of valproate: a review after 35 years of clinical use for the treatment of epilepsy[J]. CNS Drugs, 2002,16(10):669-694.
[2] Chen S, Wu H, Klebe D, et al. Valproic acid: a new candidate of therapeutic application for the acute central nervous system injuries[J]. Neurochem Res, 2014,39(9):1621-1633.
[3] Venkataraman V, Wheless J W. Safety of rapid intravenous infusion of valproate loading doses in epilepsy patients[J]. Epilepsy Res, 1999,35(2):147-153.
[4] Mattson R H, Cramer J A, Collins J F. A comparison of valproate with carbamazepine for the treatment of complex partial seizures and secondarily generalized tonic-clonic seizures in adults. The department of Veterans Affairs Epilepsy Cooperative Study No. 264 Group[J]. N Engl J Med, 1992,327(11):765-771.
[5] L?scher W. Valproate: a reappraisal of its pharmacodynamic properties and mechanisms of action[J]. Prog Neurobiol, 1999,58(1):31-59.
[6] Hu J, Quick M W. Substrate-mediated regulation of gamma-aminobutyric acid transporter 1 in rat brain[J]. Neuropharmacology, 2008,54(2):309-318.
[7] Chiu C S, Brickley S, Jensen K, et al. GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum[J]. J Neurosci, 2005,25(12):3234-3245.
[8] Monti B, Polazzi E, Contestabile A. Biochemical, molecular and epigenetic mechanisms of valproic acid neuroprotection[J]. Curr Mol Pharmacol, 2009,2(1):93-109.
[9] Harrison N L, Simmonds M A. Sodium valproate enhances responses to GABA receptor activation only at high concentrations[J]. Brain Res, 1982,250(1):201-204.
[10]Motohashi N. GABA receptor alterations after chronic lithium administration. Comparison with carbamazepine and sodium valproate[J]. Prog Neuropsychopharmacol Biol Psychiatry, 1992,16(4):571-579.
[11]Cunningham M O, Woodhall G L, Jones R S. Valproate modifies spontaneous excitation and inhibition at cortical synapses in vitro[J]. Neuropharmacology, 2003,45(7):907-917.
[12]Thurston J H, Hauhart R E. Valproate doubles the anoxic survival time of normal developing mice: possible relevance to valproate-induced decreases in cerebral levels of glutamate and aspartate, and increases in taurine[J]. Life Sci, 1989,45(1):59-62.
[13]Hassel B, Iversen E G, Gjerstad L, et al. Up-regulation of hippocampal glutamate transport during chronic treatment with sodium valproate[J]. J Neurochem, 2001,77(5):1285-1292.
[14]VanDongen A M, VanErp M G, Voskuyl R A. Valproate reduces excitability by blockage of sodium and potassium conductance[J]. Epilepsia, 1986,27(3):177-182.
[15]Farber N B, Jiang X P, Heinkel C, et al. Antiepileptic drugs and agents that inhibit voltage-gated sodium channels prevent NMDA antagonist neurotoxicity[J]. Mol Psychiatry, 2002,7(7):726-733.
[16]G?ttlicher M, Minucci S, Zhu P, et al. Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells[J]. EMBO J, 2001,20(24):6969-6978.
[17]Li Y, Alam H B. Modulation of acetylation: creating a pro-survival and anti-inflammatory phenotype in lethal hemorrhagic and septic shock[J]. J Biomed Biotechnol, 2011,2011:523481.
[18]Bambakidis T, Dekker S E, Liu B, et al. Hypothermia and valproic acid activate prosurvival pathways after hemorrhage[J]. J Surg Res, 2015,196(1):159-165.
[19]Brunet A, Datta S R, Greenberg M E. Transcription-dependent and -independent control of neuronal survival by the PI3K-Akt signaling pathway[J]. Curr Opin Neurobiol, 2001,11(3):297-305.
[20]Ren M, Leng Y, Jeong M, et al. Valproic acid reduces brain damage induced by transient focal cerebral ischemia in rats: potential roles of histone deacetylase inhibition and heat shock protein induction[J]. J Neurochem, 2004,89(6):1358-1367.
[21]Yuan P X, Huang L D, Jiang Y M, et al. The mood stabilizer valproic acid activates mitogen-activated protein kinases and promotes neurite growth[J]. J Biol Chem, 2001,276(34):31674-31683.
[22]Dekker S E, Bambakidis T, Sillesen M, et al. Effect of pharmacologic resuscitation on the brain gene expression profiles in a swine model of traumatic brain injury and hemorrhage[J]. J Trauma Acute Care Surg, 2014,77(6): 906-912; discussion 912.
[23]Lucas S M, Rothwell N J, Gibson R M. The role of inflammation in CNS injury and disease[J]. Br J Pharmacol, 2006,147 Suppl 1:S232-240.
[24]Ahmad M, Graham S H. Inflammation after stroke: mechanisms and therapeutic approaches[J]. Transl Stroke Res, 2010,1(2):74-84.
[25]Chen P S, Wang C C, Bortner C D, et al. Valproic acid and other histone deacetylase inhibitors induce microglial apoptosis and attenuate lipopolysaccharide-induced dopaminergic neurotoxicity[J]. Neuroscience, 2007,149(1):203-212.
[26]Gibbons H M, Smith A M, Teoh H H, et al. Valproic acid induces microglial dysfunction, not apoptosis, in human glial cultures[J]. Neurobiol Dis, 2011,41(1):96-103.
[27]Zhang Z, Zhang Z Y, Wu Y, et al. Valproic acid ameliorates inflammation in experimental autoimmune encephalomyelitis rats[J]. Neuroscience, 2012,221:140-150.
[28]Bauernfeind F G, Horvath G, Stutz A, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression[J]. J Immunol, 2009,183(2):787-791.
[29]Harder J, Franchi L, Muoz-Planillo R, et al. Activation of the Nlrp3 inflammasome by Streptococcus pyogenes requires streptolysin O and NF-kappa B activation but proceeds independently of TLR signaling and P2X7 receptor[J]. J Immunol, 2009,183(9):5823-5829.
[30]Segovia J, Sabbah A, Mgbemena V, et al. TLR2/MyD88/NF-κB pathway, reactive oxygen species, potassium efflux activates NLRP3/ASC inflammasome during respiratory syncytial virus infection[J].PLoS One,2012,7(1):e29695.
[31]Latz E, Xiao T S, Stutz A. Activation and regulation of the inflammasomes[J]. Nat Rev Immunol, 2013,13(6):397-411.
[32]Kwon K J, Kim J N, Kim M K, et al. Neuroprotective effects of valproic acid against hemin toxicity: possible involvement of the down-regulation of heme oxygenase-1 by regulating ubiquitin-proteasomal pathway[J]. Neurochem Int, 2013,62(3):240-250.
[33]Wang Z, Leng Y, Tsai L K, et al. Valproic acid attenuates blood-brain barrier disruption in a rat model of transient focal cerebral ischemia: the roles of HDAC and MMP-9 inhibition[J]. J Cereb Blood Flow Metab, 2011,31(1):52-57.
[34]Wu X, Chen P S, Dallas S, et al. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons[J]. Int J Neuropsychopharmacol, 2008,11(8):1123-1134.
[35]Bredy T W, Wu H, Crego C, et al. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear[J]. Learn Mem, 2007,14(4):268-276.
[36]Yasuda S, Liang M H, Marinova Z, et al. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons[J]. Mol Psychiatry, 2009,14(1):51-59.
[37]Cui J, Shao L, Young L T, et al. Role of glutathione in neuroprotective effects of mood stabilizing drugs lithium and valproate[J]. Neuroscience, 2007,144(4):1447-1453.
[38]Shao L, Young L T, Wang J F. Chronic treatment with mood stabilizers lithium and valproate prevents excitotoxicity by inhibiting oxidative stress in rat cerebral cortical cells[J]. Biol Psychiatry, 2005,58(11):879-884.
[39]Li Y, Yuan Z, Liu B, et al. Prevention of hypoxia-induced neuronal apoptosis through histone deacetylase inhibition[J]. J Trauma, 2008,64(4):863-870. discussion 870-871.
[40]Bramlett H M, Dietrich W D. Progressive damage after brain and spinal cord injury: pathomechanisms and treatment strategies[J]. Prog Brain Res, 2007,161:125-141.
[41]Kadhim H J, Duchateau J, Sébire G. Cytokines and brain injury: invited review[J]. J Intensive Care Med, 2008,23(4):236-249.
[42]Faden A I, Demediuk P, Panter S S, et al. The role of excitatory amino acids and NMDA receptors in traumatic brain injury[J]. Science, 1989,244(4906):798-800.
[43]Zhang X, Chen Y, Jenkins L W, et al. Bench-to-bedside review: Apoptosis/programmed cell death triggered by traumatic brain injury[J]. Crit Care, 2005,9(1):66-75.
[44]Raghupathi R. Cell death mechanisms following traumatic brain injury[J]. Brain Pathol, 2004,14(2):215-222.
[45]Dash P K, Orsi S A, Zhang M, et al. Valproate administered after traumatic brain injury provides neuroprotection and improves cognitive function in rats[J]. PLoS One, 2010,5(6):e11383.
[46]Sinn D I, Kim S J, Chu K, et al. Valproic acid-mediated neuroprotection in intracerebral hemorrhage via histone deacetylase inhibition and transcriptional activation[J]. Neurobiol Dis, 2007,26(2):464-472.
[47]Meaney D F, Ross D T, Winkelstein B A, et al. Modification of the cortical impact model to produce axonal injury in the rat cerebral cortex[J]. J Neurotrauma, 1994,11(5):599-612.
[48]Biermann J, Grieshaber P, Goebel U, et al. Valproic acid-mediated neuroprotection and regeneration in injured retinal ganglion cells[J]. Invest Ophthalmol Vis Sci, 2010,51(1):526-534.
[49]Bredy T W, Wu H, Crego C, et al. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear[J]. Learn Mem, 2007,14(4):268-276.
編輯 陳瑞芳
Neuroprotective mechanism of sodium valproate and its application
Liu Quanle1, Li Tianfu2, Wang Baoguo1*
(1.DepartmentofAnesthesiology,SanboBrainHospital,CapitalMedicalUniversity,Beijing100093,China; 2.DepartmentofNeurology,SanboBrainHospital,CapitalMedicalUniversity,Beijing100093,China)
As an inhibitor of histone deacetylases,sodium valproate is often used in the treatment of neuropsychiatric disorders such as antiepileptic treatment,schizophrenia and bipolar disorder. Sodium valproate can also affect the growth,mutation and apoptosis of neurons and play a neuroprotective effect. The mechanism of neuroprotection of sodium valproate is related to the regulation of neurotransmission and intracellular signaling pathways. Sodium valproate as a neuroprotective drug for the treatment of nerve injury and cognitive impairment remains to be further studied.
sodium valproate;neuroprotection;signal transduction;histone deacetylase inhibitor
國(guó)家自然科學(xué)基金(81571275)。This study was supported by National Natural Science Foundation of China(81571275).
時(shí)間:2017-06-09 17∶50 網(wǎng)絡(luò)出版地址:http://kns.cnki.net/kcms/detail/11.3662.r.20170609.1750.052.html
10.3969/j.issn.1006-7795.2017.03.008]
R971+.6
2017-03-20)
*Corresponding author, E-mail:wbgttyy@163.com
首都醫(yī)科大學(xué)學(xué)報(bào)2017年3期