陶 宇,劉堂昆
(湖北師范大學(xué)物理與電子科學(xué)學(xué)院,湖北 黃石 435002)
右逆二項(xiàng)式態(tài)及其量子特性
陶 宇,劉堂昆
(湖北師范大學(xué)物理與電子科學(xué)學(xué)院,湖北 黃石 435002)
用右逆算符在光場(chǎng)二項(xiàng)式態(tài)上重復(fù)作用m次,制備了一個(gè)新的光場(chǎng)量子態(tài)—右逆二項(xiàng)式態(tài),并討論了該光場(chǎng)態(tài)的非經(jīng)典特性。
右逆算符;二項(xiàng)式態(tài);右逆二項(xiàng)式態(tài);量子特性
1985年,Stoler D 等人[4]引入了光場(chǎng)的二項(xiàng)式態(tài)(binomial state):
(1)
而
(2)
(3)
(4)
這個(gè)結(jié)果在1993年被范洪義[13]給出了嚴(yán)格的證明。
(5)
(6)
則
(7)
其中
(8)
又因?yàn)?/p>
(9)
所以
(10)
因此,右逆二項(xiàng)式態(tài)的數(shù)學(xué)表達(dá)式可以表示為:
(11)
2.1 平均光子數(shù)和光子數(shù)均方差:
(12)
(13)
因此有
(14)
方差與平均值的比(相對(duì)起伏)由Fano因子給出
(15)
可見F=1-σ<1(相干態(tài)光場(chǎng)的F=1,光場(chǎng)呈泊松分布),這就表明了右逆二項(xiàng)式態(tài)光場(chǎng)也呈現(xiàn)亞泊松分布(sub-Poissonian distribution)。
2.2 光子數(shù)分布函數(shù)和反聚束效應(yīng)
(16)
其光子數(shù)分布函數(shù)為:
(17)
該式結(jié)果表明pn(σ,M+m)趨向于泊松分布。
(18)
2.3 坐標(biāo)和動(dòng)量的漲落(壓縮效應(yīng))
已知坐標(biāo)和動(dòng)量的漲落分別為:
(19)
(20)
(21)
(22)
則
(23)
(24)
則有
(25)
(26)
其中
〈σ,M+m‖σ,M+m-k〉=
(27)
由式(25)和(26),可見
(28)
(29)
故有
(30)
(31)
(32)
(33)
則有
(34)
(35)
我們采用右逆算符在光場(chǎng)二項(xiàng)式態(tài)上重復(fù)作用m次的方法,理論上制備了一個(gè)新的光場(chǎng)量子態(tài),并稱之為右逆二項(xiàng)式態(tài),討論了該光場(chǎng)態(tài)的非經(jīng)典特性。研究結(jié)果表明:右逆二項(xiàng)式光場(chǎng)態(tài)是一個(gè)介于Fock態(tài)和Glauber態(tài)之間的中間態(tài),呈現(xiàn)亞泊松分布和光子反聚束效應(yīng)、坐標(biāo)和動(dòng)量壓縮效應(yīng),而且與重復(fù)作用次數(shù)m有關(guān)。這個(gè)結(jié)果有助于原子與光場(chǎng)相互作用領(lǐng)域的研究工作。
[1]Agarwal G S, Tara K. Nonclassical properties of states generated by the excitations on a coherent state[J]. Phys Rev A, 1991, 43(1):492~497.
[2]Wei L F, Wang S J, Jie Q L. Excited states of coherent state and their nonclasscal properties[J]. Chin Sci Bull, 1997, 42(20):1686~1688.
[3]Nehta C L, Roy A K, Saxena G M. Eigenstates of two-photon annihilation operators[J]. Phys Rev A ,1992, 46(3):1565~1572.
[4]Stoler D, Saleh B E A, Teich M C. Binomial states of the quantized radiation field[J]. Opt Acta,1985, 32:345~355.
[5]Dattoli G, Galarde J, Torre A. Binomal state of the quantioned radiation field comment [J]. 1987, J Opt Soc Am, B2:185~191.
[6]Joshi A, Lawande S V. Properties of squeezed binomial states and squeezed negative binomial states [J]. 1991, J Mod Opt, 38(10):2009~2022.
[7]王曉光,于榮金,李 文. 位移二項(xiàng)式態(tài)與負(fù)位移二項(xiàng)式態(tài)的性質(zhì)及其與二能級(jí)原子的相互作用[J]. 物理學(xué)報(bào),1998,47(11):1798~06.
[8]Jiao Zhi-yong, Ma Jun-mao, Shang Yong-tao, et al. Quantum statistical properties of Binomial field interacting with two entangled atoms[J]. 2008, Commun. Theor. Phys. (Chinese) 50:971~973.
[9]姜道來(lái),任學(xué)藻,叢紅璐,等. 二項(xiàng)式光場(chǎng)與二能級(jí)原子相互作用的量子特性[J]. 中國(guó)科學(xué),2010,40(2):201~206.
[10]范洪義,吳 澤. 二項(xiàng)-負(fù)二項(xiàng)組合光場(chǎng)態(tài)的光子統(tǒng)計(jì)性質(zhì)及其在量子擴(kuò)散通道中的生成[J].物理學(xué)報(bào), 2015,64(8):080303~07.
[11]Liu Tang-kun , Tao Yu. Quantum Correlation of Two Entangled Atoms Interacting with the Binomial Optical Field[J]. J Theor Phys,2016, 55(6): 3047~3058.
[12]Mehta C L, Roy Anil K, Saxena G M. Eigenstates of two-photon annihilation operators[J]. Phys Rev A,1992,46(3):1565~1572.
[13]Fan Hong-yi. Inverse operators in Fock space studied via a coherent-state approach[J].Phys Rev A,1993,47(5): 4521~4523.
Right-inverse binomial state and their quantum properties
TAO Yu,LIU Tang-kun
(College of Physics and Electronic Science, Hubei Normal University, Huangshi 435002, China)
The m-times by the right-inverse operator acts on the optical field binomial state, we obtained a new quantum state (or called right-inverse binomial state), and discussed the nonclassical properties of the right-inverse binomial state.
right-inverse operator; binomial state; right-inverse binomial state; quantum properties
2016—11—10
陶宇(1993— ),男,湖北武穴市人,在讀研究生;劉堂昆(1956— ),男,湖北武穴市人,博士,教授.
O413.1
A
2096-3149(2017)02- 0048-05
10.3969/j.issn.2096-3149.2017.02.011
湖北師范大學(xué)學(xué)報(bào)(自然科學(xué)版)2017年2期