閆書雄,朱 輝,莫 婷,高 偉,黃正旭
(1.暨南大學(xué)質(zhì)譜儀器與大氣環(huán)境研究所,廣東 廣州 510632;2.廣東省大氣污染在線源解析系統(tǒng)工程技術(shù)研究中心,廣東 廣州 510632;3.昆山禾信質(zhì)譜技術(shù)有限公司,江蘇 昆山 215311;4.廣州禾信儀器股份有限公司,廣東 廣州 510530)
離子閥技術(shù)在垂直引入式飛行時(shí)間質(zhì)譜儀中的應(yīng)用
閆書雄1,2,朱 輝3,莫 婷4,高 偉1,2,黃正旭1,2
(1.暨南大學(xué)質(zhì)譜儀器與大氣環(huán)境研究所,廣東 廣州 510632;2.廣東省大氣污染在線源解析系統(tǒng)工程技術(shù)研究中心,廣東 廣州 510632;3.昆山禾信質(zhì)譜技術(shù)有限公司,江蘇 昆山 215311;4.廣州禾信儀器股份有限公司,廣東 廣州 510530)
垂直引入式飛行時(shí)間質(zhì)譜儀(O-TOF MS)是以脈沖的工作方式對樣品進(jìn)行檢測,對于離子源產(chǎn)生的連續(xù)離子流利用率極低。為了使O-TOF MS更好地匹配離子源,在自制的大氣壓接口垂直引入式飛行時(shí)間質(zhì)譜儀(API-O-TOF MS)的基礎(chǔ)上開發(fā)了離子閥技術(shù),將原本連續(xù)進(jìn)入推斥區(qū)的離子流調(diào)制為與推斥脈沖同步的離子團(tuán),提高推斥占空比,進(jìn)而提高離子利用率。通過進(jìn)一步研究富集原理以及分析富集參數(shù)的影響,確定了離子富集的最佳參數(shù)。以PPG-1000為實(shí)驗(yàn)對象,在同等條件下,離子信號強(qiáng)度普遍提升1個(gè)數(shù)量級以上。該結(jié)果表明,離子閥技術(shù)在O-TOF MS中的應(yīng)用可有效提高儀器的離子利用率。
垂直引入式飛行時(shí)間質(zhì)譜儀(O-TOF MS);離子利用率;離子閥;占空比
垂直引入式飛行時(shí)間質(zhì)譜儀(O-TOF MS)以高分辨、高質(zhì)量精度以及易與多種離子源聯(lián)用等優(yōu)點(diǎn),廣泛應(yīng)用于環(huán)境科學(xué)、醫(yī)藥學(xué)、礦物分析等領(lǐng)域[1-5]。O-TOF MS是以脈沖的方式截取進(jìn)入推斥區(qū)的離子[3],將其垂直加速并最終檢測的,因此對于連續(xù)離子源產(chǎn)生的離子利用率低,影響儀器的靈敏度,導(dǎo)致一些痕量物質(zhì)無法有效檢出[6]。
O-TOF MS使用常規(guī)離子推斥方式時(shí),占空比較低,通常為5%~20%[3-6]。對于以TOF作為檢測器的串聯(lián)質(zhì)譜,通常利用前級四極桿或離子阱截?cái)嘣具B續(xù)的離子流,將離子調(diào)制為與TOF同步的離子團(tuán)。Chernushevich等[6]采取在碰撞室貯留離子并與推斥脈沖同頻率釋放的方式提高占空比,但得到的質(zhì)量范圍很小;隨后,Hashimoto等[3]利用離子阱對離子的篩選功能先后分時(shí)釋放大質(zhì)荷比和小質(zhì)荷比離子,使它們同時(shí)到達(dá)推斥區(qū),以增大質(zhì)量范圍,但調(diào)制過程復(fù)雜且難以控制;Loboda等[5]借鑒Hashimoto的做法在碰撞室后加了小離子阱,調(diào)制不同質(zhì)荷比的離子同步到達(dá)推斥區(qū),獲得了較大的質(zhì)量范圍,但實(shí)際應(yīng)用同樣有限。
本工作將在自制的大氣壓接口垂直引入式飛行時(shí)間質(zhì)譜儀 (API-O-TOF MS)的基礎(chǔ)上[7-8],針對推斥區(qū)離子利用率不高的問題,在傳輸區(qū)增加離子閥技術(shù),希望能有效地提高推斥占空比、改善儀器靈敏度,并在此基礎(chǔ)上對富集原理和規(guī)律做研究總結(jié)。
自制的飛行時(shí)間質(zhì)譜儀主要由離子源、傳輸調(diào)制系統(tǒng)和質(zhì)量分析器構(gòu)成,儀器整體結(jié)構(gòu)示于圖1。
離子源產(chǎn)生的樣品離子經(jīng)不銹鋼毛細(xì)管進(jìn)入分子離子反應(yīng)裝置(molecule ion reactor, MIR)[9-10],在MIR高頻電場的作用下與背景氣體碰撞并逐漸匯聚到中軸線上,通過Skimmer1傳輸至射頻四極桿(radio frequency quadrupole, RFQ)[11-12];離子在RFQ射頻場中進(jìn)一步碰撞冷卻,動能趨于零,再經(jīng)過加有直流電的Skimmer2進(jìn)入直流四極桿 (direct current quadrupole, DCQ)[13],經(jīng)DCQ及離子光學(xué)系統(tǒng) (LENSE)[14]調(diào)制為扁平的離子束,進(jìn)入質(zhì)量分析器;在推斥脈沖的作用下,離子經(jīng)加速區(qū)進(jìn)入無場飛行區(qū),并在反射區(qū)發(fā)生反射再次進(jìn)入無場飛行區(qū),最終到達(dá)微通道板(micro-channel plate, MCP)產(chǎn)生檢測信號。
圖1 API-O-TOF MS結(jié)構(gòu)示意圖Fig.1 Schematic diagram of API-O-TOF MS
分辨率和靈敏度是飛行時(shí)間質(zhì)譜儀兩項(xiàng)重要的性能參數(shù),本實(shí)驗(yàn)自制的儀器已達(dá)到較高分辨率[7],但靈敏度仍有待提升。占空比是限制飛行時(shí)間質(zhì)譜儀靈敏度的主要因素[3],連續(xù)進(jìn)樣的離子流中絕大多數(shù)離子都直接穿過推斥區(qū),并未被有效地推斥加速。對于某個(gè)離子,可根據(jù)質(zhì)荷比m/z計(jì)算其在加速區(qū)的推斥占空比為:
(1)
式中,l代表推斥區(qū)開孔的有效長度,z為離子所帶電荷數(shù),m為離子質(zhì)量,f為推斥脈沖頻率,EK為進(jìn)入TOF的離子動能。代入API-O-TOF MS的參數(shù),可計(jì)算出對于m/z100~1 000的離子,單一離子的推斥效率在16%~53%之間,且質(zhì)荷比越低的離子推斥占空比越低。
2.1 傳輸區(qū)電場的改進(jìn)
對API-O-TOF MS的傳輸區(qū)進(jìn)行改進(jìn),改進(jìn)后的裝置示意圖示于圖2。使用離子阱的離子門技術(shù)[3, 5, 15-16],當(dāng)Skimmer2脈沖處于高電平時(shí),連續(xù)的離子流被截?cái)嗖⒂谒臉O桿與出口電極之間富集,示于圖2a;低電平時(shí),離子放出,TOF推斥脈沖經(jīng)一定延時(shí)后工作,將放出的離子團(tuán)垂直引入加速區(qū)并得以檢測,示于圖2b。
圖2 改進(jìn)后,離子蓄積(a)和離子引出(b)狀態(tài)下四極桿軸心位置的直流電壓分布圖以及離子閥工作時(shí)序圖(c)Fig.2 Schematic of improved transmission region, plots of potential vs coordinate in storage (a) and release (b) mode andtiming diagram (c) of gating voltages and TOF pulses
保持原有機(jī)械結(jié)構(gòu)不變,將RFQ出口電極Skimmer2上的直流電壓改為脈沖電壓,該脈沖與TOF推斥脈沖同步,如圖2c。該技術(shù)可使TOF很好的適用于連續(xù)的離子源,從而極大地提高TOF的占空比及儀器的靈敏度。
2.2 實(shí)驗(yàn)方案
采用聚丙二醇(PPG-1000)標(biāo)準(zhǔn)品作為驗(yàn)證樣品,評估離子閥相關(guān)參數(shù),如延遲時(shí)間、富集時(shí)間、閥值電壓等對占空比的影響,研究其相關(guān)性及規(guī)律。
實(shí)驗(yàn)所需的PPG-1000標(biāo)準(zhǔn)品及甲醇均購自阿拉丁工業(yè)公司。將標(biāo)準(zhǔn)品配制成濃度為1.0×10-6mol/L的PPG-1000甲醇溶液,通過ESI離子源以5 μL/min流速進(jìn)樣。
3.1 質(zhì)量窗口
根據(jù)電學(xué)、力學(xué)及運(yùn)動學(xué)原理,建立離子運(yùn)動模型,其離子團(tuán)變化示意圖示于圖3。根據(jù)能量守恒定律及牛頓運(yùn)動定律可知,m/z不同的離子在相同電場的作用下加速度不同,且m/z越小的離子加速度越大,速度越快;隨著離子的運(yùn)動,不同m/z的離子在水平方向的速度差不斷增大、位置分散也不斷增大,到達(dá)推斥區(qū)的時(shí)間不再同步,這就導(dǎo)致推斥時(shí)出現(xiàn)質(zhì)量歧視。
圖3 離子團(tuán)變化示意圖Fig.3 Scheme illustrating ion motion after leaving Skimmer2
3.1.1 窗口位置 推斥區(qū)的質(zhì)量歧視帶來對離子的不完全推斥,進(jìn)而造成譜圖出現(xiàn)質(zhì)量窗口的現(xiàn)象。根據(jù)改進(jìn)原理可知,Skimmer2下降沿到推斥脈沖上升沿的時(shí)間tdelay決定了質(zhì)量窗口的位置。由運(yùn)動學(xué)原理可求出:
(2)
其中,a為僅由傳輸區(qū)物理尺寸及電場電壓決定的常數(shù),m為相對原子質(zhì)量,代入儀器參數(shù)可求得a=1.906×10-6。
通過公式(2)可以確定不同質(zhì)荷比離子所需的延遲時(shí)間,從而更好的優(yōu)化富集參數(shù)。
tdelay理論推導(dǎo)值與實(shí)驗(yàn)數(shù)據(jù)的對比示于圖4,二曲線特征相似,基本吻合。
圖4 不同質(zhì)荷比離子的tdelay關(guān)系曲線Fig.4 Relation curve of tdelay with different m/z
3.1.2 窗口范圍 結(jié)合自制的API-O-TOF MS具體尺寸,可推算出對質(zhì)荷比為(m/z)ref的離子做最優(yōu)富集的質(zhì)量窗口的近似范圍。將有效推斥口長度l近似為推斥區(qū)的開口寬度,即l=w=64 mm,將Skimmer2到推斥區(qū)長度s=85 mm的保守場近似為電勢差U的勻強(qiáng)電場,則質(zhì)量窗口大小可以簡化為一個(gè)簡單的追擊問題確定出來。以(m/z)ref的離子到達(dá)推斥口中心為臨界時(shí)間t,計(jì)算此時(shí)推斥口兩端的離子質(zhì)荷比,運(yùn)動方程組為:
(3)
解方程可得,質(zhì)量窗口范圍為(78.5%×~134.5%)×(m/z)ref。根據(jù)計(jì)算出的質(zhì)量窗口范圍可知,在對目標(biāo)離子的最優(yōu)富集中,質(zhì)量窗口范圍僅與目標(biāo)離子的(m/z)ref有關(guān),且(m/z)ref越大,質(zhì)量窗口越寬。
濃度為1.0×10-6mol/L的PPG-1000甲醇溶液,以5 μL/min流速進(jìn)樣,在1 s內(nèi)累積得到的質(zhì)譜圖示于圖5。圖5a為普通模式下譜圖,RFQ上加帶35 V直流偏置的射頻電壓,Skimmer2加31 V直流,推斥板以10 kHz頻率推斥,得到的離子信號強(qiáng)度低,無質(zhì)量歧視。圖5b為針對m/z326離子優(yōu)化富集得到的譜圖,RFQ上直流偏置不變,Skimmer2加10 kHz脈沖,脈寬89 μs,高電位39 V,低電位31 V,譜圖呈現(xiàn)出質(zhì)量窗口的特點(diǎn),以信噪比(S/N)大于3作為有效信號,檢測范圍約為m/z177~441,窗口寬度263。圖5c為針對m/z790離子優(yōu)化富集得到的譜圖,Skimmer2加10 kHz脈沖,脈寬79 μs,高電位37.5 V,低電位31 V,質(zhì)量窗口范圍m/z495~1 054,窗口寬度582。實(shí)驗(yàn)得出的窗口寬度比值與m/z326與790比值近似相等,符合推導(dǎo)出的規(guī)律。質(zhì)量窗口范圍與推導(dǎo)出的范圍基本一致,僅窗口左側(cè)范圍較推導(dǎo)公式偏小,這可能與離子閥的電場有關(guān)。
圖5 普通模式(a),m/z 326(b)和m/z 790(c)離子優(yōu)化富集得到的質(zhì)譜圖Fig.5 Mass spectrum of normal mode (a), synchronous mode optimized for m/z 326 (b) and m/z 790 (c)
離子閥附近的電場示于圖6。富集模式下,離子閥打開時(shí),離子的動能與離子到Skimmer2的距離直接相關(guān)[6],越靠近Skimmer2的位置電勢差ΔUSk2越大、離子獲得的初始動能越大,導(dǎo)致了即使是相同m/z的離子初速度也不同,從而在飛行過程中產(chǎn)生了顯著的位置分散。當(dāng)位于Skimmer2位置的離子A穿過推斥區(qū)時(shí),位于RFQ末端的離子B卻能落在有效推斥區(qū)內(nèi),進(jìn)而造成了質(zhì)量窗口左側(cè)范圍的擴(kuò)大。
圖6 離子閥電場示意圖Fig.6 Schematic of electric field at ion valve
3.2 富集參數(shù)的影響
為了更好地應(yīng)用離子閥技術(shù),進(jìn)一步研究富集脈寬(pulse width)及富集閥值(SkimmerH)等參數(shù)對信號強(qiáng)度的影響。采用電子光學(xué)軟件模擬RFQ四極桿中心軸線附近電場,離子富集和釋放時(shí)的電勢示于圖7。
離子富集時(shí),靠近Skimmer2的電場形成了一個(gè)錐面,對帶電離子有切向加速度,隨著富集脈寬增大,離子在RFQ中蓄積時(shí)間增長,富集的離子數(shù)量增加,但空間分散及動能分散加??;同時(shí)伴隨著帶電離子源源不斷地涌入RFQ與Skimmer2之間的狹小區(qū)域,空間電荷效應(yīng)[17]不斷增強(qiáng),離子的空間分散進(jìn)一步擴(kuò)大;離子在傳輸區(qū)的冷卻聚焦效果變差,進(jìn)入TOF的離子分散也不斷增大。當(dāng)富集脈寬過大,富集時(shí)間過長時(shí),質(zhì)量分析器已無法有效地補(bǔ)償離子分散,離子聚焦效果變差,離子信號強(qiáng)度降低。閥值電壓決定了離子閥擋板的高度,只有閥值電壓足夠高才能有效地截留離子,但過大的閥值同樣會加劇離子分散。
使用濃度為1.0×10-6mol/L的PPG-1000甲醇溶液,以5 μL/min流速進(jìn)樣,選擇m/z790離子為實(shí)驗(yàn)對象,以閥值為自變量,優(yōu)化富集脈寬、脈沖延時(shí)等其余參數(shù),得到不同閥值下的信號強(qiáng)度曲線,示于圖8a;脈寬作為一個(gè)周期內(nèi)高電平的持續(xù)時(shí)間,對應(yīng)離子在RFQ中的富集時(shí)間,同理,得到不同脈寬下的信號強(qiáng)度曲線,示于圖8b。實(shí)驗(yàn)結(jié)果與模擬分析結(jié)果一致,即提高富集閥值、富集脈寬可以提升信號強(qiáng)度,但參數(shù)值過大反而抑制信號強(qiáng)度。
圖7 離子富集裝置在蓄積(a)和引出(b)離子狀態(tài)下的直流電勢模擬圖Fig.7 Simulation of ion enrichment apparatus in storage (a) and release (b) mode
進(jìn)一步通過實(shí)驗(yàn)的方式,得到不同m/z離子富集的最優(yōu)參數(shù)(以目標(biāo)離子增益最大為原則),結(jié)果列于表1。
由表1可以看出,對不同m/z離子做最優(yōu)富集,信號強(qiáng)度普遍提升1個(gè)數(shù)量級以上。對于m/z較大的離子,應(yīng)設(shè)置較小的富集脈寬(tpw)和較大的脈沖延時(shí)(td);而對于m/z較小的離子,則應(yīng)設(shè)置較大的富集脈寬和較小的脈沖延時(shí)。
同時(shí)由富集原理可推出,脈寬與脈沖延時(shí)應(yīng)滿足:
td+(T-tpw)=f(m/z)=tdelay
(4)
其中,T為推斥脈沖的周期,f(m/z)為關(guān)于m/z的函數(shù)式,由公式(2)確定。
由3.1.1節(jié)可知,m/z越大的離子,tdelay越大,這與表1中的參數(shù)規(guī)律相同。通過聯(lián)立公式(2)、(4),可以確定質(zhì)荷比為m/z離子的最優(yōu)富集參數(shù)。
圖8 針對m/z 790實(shí)驗(yàn)得到的信號強(qiáng)度與閥值電壓(a)和脈沖寬度(b)的關(guān)系曲線Fig.8 Experiment results as a function of the skimmer2 voltage (a) and the pulse width (b)
表1 不同質(zhì)荷比離子的最優(yōu)富集參數(shù)表Table 1 Best parameters of different m/z
在自制的API-O-TOF基礎(chǔ)上,對傳輸區(qū)進(jìn)行了改造,在Skimmer2上加裝離子閥,控制離子富集并與推斥脈沖同步釋放,提升了推斥占空比。以信號強(qiáng)度最優(yōu)為原則,在固定的離子閥釋放電壓下,對PPG-1000產(chǎn)生的離子峰優(yōu)化富集,測試結(jié)果顯示,離子信號強(qiáng)度普遍提高了1個(gè)數(shù)量級以上,離子利用率顯著提高,這為痕量物質(zhì)的測量提供了條件。受制于實(shí)驗(yàn)條件,本工作未討論離子閥富集參數(shù)中RFQ電壓以及釋放電壓SkimmerL的影響,后續(xù)將對富集增益與質(zhì)量窗口范圍的關(guān)系等問題做進(jìn)一步的研究。
[1] DODONOV A F, KOZLOVSKI V I, SOULIMENKOV I V, et al. High-resolution electrospray ionization orthogonal-injection time-of-flight massspectrometer[J]. European Mass Spectrometry, 2000, 6(6): 481-490.
[2] VERENTCHIKOV A N, ENS W, STANDING K G. Reflecting time-of-flight mass spectrometer with an electrospray ion source and orthogonal extraction[J]. Analytical Chemistry, 1994, 66(1): 126-133.
[3] HASHIMOTO Y, HASEGAWA H, SATAKE H, et al. Duty cycle enhancement of an orthogonal acceleration TOF mass spectrometer using an axially-resonant excitation linear ion trap[J]. Journal of the American Society for Mass Spectrometry, 2006, 17(12): 1 669-1 674.
[4] 黃正旭,郭長娟,陳華勇,等. 大氣壓基體輔助激光解析離子源發(fā)展及其應(yīng)用[J]. 光譜學(xué)與光譜分析,2007,27(10):1 910-1 916.
HUANG Zhengxu, GUO Changjuan, CHEN Huayong, et al. The development and applications of atmospheric pressure matrix-assisted laser desorptionionization[J]. Spectroscopy and Spectral Analysis, 2007, 27(10): 1 910-1 916(in Chinese).
[5] LOBODA A V, CHERNUSHEVICH I V. A novel ion trap that enables high duty cycle and widem/zrange on an orthogonal injection TOF mass spectrometer[J]. Journal of the American Society for Mass Spectrometry, 2009, 20(7): 1 342-1 348.
[6] CHERNUSHEVICH I V. Duty cycle improvement for a quadrupole-time-of-flight mass spectrometer and its use for precursor ion scans[J]. Eur J Mass Spectrom, 2000, 6(6): 471-480.
[7] GUO C, HUANG Z, GAO W, et al. A homemade high-resolution orthogonal-injection time-of-flight mass spectrometer with a heated capillary inlet[J]. Review of Scientific Instruments, 2008, 79(1): 013109.
[8] 莫婷,胡帆,朱輝,等. 臺式大氣壓離子源飛行時(shí)間質(zhì)譜儀的研制及性能表征[J]. 分析測試學(xué)報(bào),2014,33(3):307-312.
MO Ting, HU Fan, ZHU Hui, et al. Development and characterization of a desktop time-of-flight mass spectrometer with atmospheric pressure ionization[J]. Journal of Instrumental Analysis, 2014, 33(3): 307-312(in Chinese).
[9] GUO C, HUANG Z, GAO W, et al. Combining capillary with radio-frequency-only quadrupole as an interface for a home-made time-of-flight mass spectrometer[J]. European Journal of Mass Spectrometry, 2007, 13(4): 249.
[10]TOLMACHEV A, CHERNUSHEVICH I, DODONOV A, et al. A collisional focusing ion guide for coupling an atmospheric pressure ion source to a mass spectrometer[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1997, 124(1): 112-119.
[11]SOULIMENKOV I, KOZLOVSKI V, PIKHTELEV A, et al. A new method to study the kinetics of ion decay in a radio frequency quadrupole with resonance rotational excitation[J]. European Journal of Mass Spectrometry, 2002, 8(2): 99-106.
[12]朱輝,郭長娟,張紹飛,等. 飛行時(shí)間質(zhì)譜儀四極桿射頻信號放大器的研制[J]. 分析測試學(xué)報(bào),2011,30(8):927-932.
ZHU Hui, GUO Changjuan, ZHANG Shaofei, et al. Development of a radio frequency signal amplifier for radio frequency quadrupole in time-of-flight mass spectrometer[J]. Journal of Instrumental Analysis, 2011, 30(8): 927-932(in Chinese).
[13]伍小梅,彭真,董俊國,等. 在線檢測揮發(fā)性有機(jī)物的質(zhì)子轉(zhuǎn)移反應(yīng)飛行時(shí)間質(zhì)譜儀的研制[J]. 質(zhì)譜學(xué)報(bào),2015,36(1):1-7.
WU Xiaomei, PENG Zhen, DONG Junguo, et al. Development of proton transfer reaction time-of-flight mass spectrometer for on-line detection of volatile organic compounds[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(1): 1-7(in Chinese).
[14]GAO W, HUANG Z, NIAN H, et al. A novel gas analysis system for metallurgical materials based on time-of-flight mass spectrometry[J]. International Journal of Mass Spectrometry, 2010, 294(2): 77-82.
[15]HASHIMOTO Y, HASEGAWA H, WAKI I. Dual linear ion trap/orthogonal acceleration time-of-flight mass spectrometer with improved precursor ion selectivity[J]. Rapid Communications in Mass Spectrometry Rcm, 2005, 19(11): 1 485-1 491.
[16]WHITEHOUSE C M, GUILCICEK E, ANDRIEN B, et al. A two-dimensional ion trap API TOF mass spectrometer[C]. Proceedings of the 46th ASMS Conference on Mass Spectrometry and Allied Topics, Orlando, May 3-June 4, 1998: 39.
[17]SILVEIRA J A, RIDGEWAY M E, LAUKIEN F H, et al. Parallel accumulation for 100% duty cycle trapped ion mobility-mass spectrometry[J]. International Journal of Mass Spectrometry, 2016.
Application of Ion Valve Technology in an Orthogonal-Injection TOF Mass Spectrometer
YAN Shu-xiong1,2, ZHU Hui3, MO Ting4, GAO Wei1,2, HUANG Zheng-xu1,2
(1.InstituteofMassSpectrometerandAtmosphericEnvironmental,Ji’nanUniversity,Guangzhou510632,China; 2.GuangdongProvincialEngineeringResearchCenterforOn-lineSourceApportionmentSystemofAirPollution,Guangzhou510632,China;3.KunshanHexinMassSpectrometryCO.,LTD.,Kunshan215311,China;4.GuangzhouHexinAnalyticalInstrumentCO.,LTD.,Guangzhou510530,China)
It is known that continuous ion beams generated by normal ion sources cannot be detected completely by an orthogonal-injection time of flight mass spectrometer (O-TOF MS). A duty cycle is defined as by the ratio of the ions accelerated by a TOF pusher to continuous ion beams introduced to the pusher. Typically, the duty cycle of the O-TOF MS is between 5% to 20% depending on the instrument geometry and them/zvalue of the ion, because most of the ions are lost while they pass through the pusher during the period among the acceleration pulses of the pusher. To solve the low duty cycle problem, a new technique has been put forward to improve the duty cycle of an O-TOF MS to some degree. The core of the technique relies on an ion valve placed on the skimmer2, or the end-cap of the RF quadrupole, that has the function to transmit or stop the ion beam. By using the ion valve technology, the RF quadrupole is turned into an ion trap, which ejects ions axially into the TOF synchronously with the TOF pusher. A delay between the ejection timing of the RF quadrupole and the push timing of the O-TOF MS leads to the mass synchronization. The ions can be detected with a duty cycle of near 100% in a certain mass range and a much higher sensitivity can be realized. It is noted that the synchronous mode is only suitable for the circumstances where recording the complete mass spectrum is not necessary but a higher sensitivity is expected for a certain mass range. The limitation of a mass range is caused by the spatial spread which occurs during the flight from skimmer2 to the pusher, because the lowerm/zions would move faster than the higherm/zions in the same acceleration DC field if ions obtained the same kinetic energy. Our future effort will be try to improve a duty cycle in a larger mass range. Here, we presented the simulation results for several ion valve configurations and their comparison with experimental measurements. The experiment results showed that the application of an optimized ion valve could improve the peak intensities of some masses more than an order of magnitude. The ion valve technology could be a promising synchronous technique for O-TOF MS.
orthogonal-injection time of flight mass spectrometer (O-TOF MS); ion utilization; ion valve; duty cycle
2016-05-31;
2016-10-07
國家重大科學(xué)儀器設(shè)備開發(fā)專項(xiàng)(2011YQ170067);廣東省工程中心建設(shè)項(xiàng)目(2015B0903029)資助
閆書雄(1991—),男(漢族),河南人,碩士研究生,環(huán)境科學(xué)專業(yè)。E-mail: yanshxvip@163.com
黃正旭(1982—),男(漢族),福建人,副研究員,從事飛行時(shí)間質(zhì)譜儀器開發(fā)研究。E-mail: huangzhengxuJNU@163.com
網(wǎng)絡(luò)出版時(shí)間:2017-04-13;網(wǎng)絡(luò)出版地址:http:∥www.cnki.net/kcms/detail/11.2979.TH.20170413.0933.014.html
O657.63
A
1004-2997(2017)03-0294-08
10.7538/zpxb.2016.0083