国产日韩欧美一区二区三区三州_亚洲少妇熟女av_久久久久亚洲av国产精品_波多野结衣网站一区二区_亚洲欧美色片在线91_国产亚洲精品精品国产优播av_日本一区二区三区波多野结衣 _久久国产av不卡

?

腺苷、調(diào)節(jié)性T細(xì)胞在胃癌的免疫調(diào)控中的進(jìn)展

2017-06-19 19:36:59時林森沙索友邵永朱孝成
中國腫瘤外科雜志 2017年2期
關(guān)鍵詞:調(diào)節(jié)性腺苷免疫治療

時林森, 沙索友, 邵永, 朱孝成

作者單位: 221006 江蘇 徐州,徐州醫(yī)科大學(xué)附屬醫(yī)院 胃腸外科

綜述與講座

腺苷、調(diào)節(jié)性T細(xì)胞在胃癌的免疫調(diào)控中的進(jìn)展

時林森, 沙索友, 邵永, 朱孝成

腫瘤免疫治療是一種有效的手段。調(diào)節(jié)性T細(xì)胞(Treg)可通過細(xì)胞表面外核苷酸酶(CD39,CD73)降解ATP生成腺苷(ADO),ADO和細(xì)胞表面A2aR結(jié)合后可激活細(xì)胞內(nèi)腺苷酸環(huán)化酶合成cAMP,從而進(jìn)一步抑制效應(yīng)T細(xì)胞(Teff)的免疫活性。胃癌作為常見的消化道惡性腫瘤之一,其免疫治療尚處于臨床前期或起步階段。近年來,關(guān)于腺苷在調(diào)節(jié)性T細(xì)胞對胃癌免疫調(diào)控中的作用日益受到重視,作者對腺苷、T細(xì)胞與胃癌的研究進(jìn)展進(jìn)行了綜述。

胃腫瘤; 腺苷; T淋巴細(xì)胞,調(diào)節(jié)性; 免疫

腫瘤免疫治療是繼手術(shù)、放療、化療后又一有效治療手段,更是被2013年Science雜志列為當(dāng)年十大科學(xué)突破之首[1]。胃癌作為我國最常見的消化道惡性腫瘤之一,其免疫治療尚處于臨床前期或起步階段[2]。深入研究腫瘤微環(huán)境中復(fù)雜的作用機(jī)制,是腫瘤免疫治療的基礎(chǔ)[3]。近年來,關(guān)于腺苷(adenosine,ADO)在調(diào)節(jié)性T細(xì)胞(Treg)對胃癌免疫調(diào)控中的作用日益受到重視,現(xiàn)對ADO、Treg與胃癌的研究進(jìn)展做一概述。

1 腺苷受體家族

ADO是機(jī)體ATP代謝產(chǎn)物,細(xì)胞內(nèi)ADO參與細(xì)胞的能量代謝、核算合成等生理過程,而在細(xì)胞外則是重要的信號傳導(dǎo)因子。正常生理狀態(tài)下,ADO的生成和細(xì)胞攝取及降解保持動態(tài)平衡。在炎癥及腫瘤組織缺氧條件下,ATP不充分裂解,低氧誘導(dǎo)因子-α(HIF-α)誘導(dǎo)組織外核苷酸酶(CD39、CD73)的過表達(dá),使組織ADO水平明顯升高。在腫瘤微環(huán)境中,其不僅可以抑制免疫殺傷細(xì)胞的抗腫瘤免疫應(yīng)答,而且可以促進(jìn)免疫抑制細(xì)胞的極化和增殖,有利于腫瘤新生血管形成,從而促進(jìn)腫瘤生長(圖1)[4]。

ADO受體的生理作用主要是通過與其受體結(jié)合實現(xiàn)的[5]。其屬于G蛋白偶聯(lián)受體超家族,共有7個跨膜結(jié)構(gòu)域,與胞內(nèi)GTP結(jié)合蛋白相偶聯(lián),共有A1R、A2aR、A2bR及A3R四種腺苷受體(adenosine receptors,ARs)[6]。ARs幾乎在機(jī)體所有細(xì)胞均有表達(dá),但不同組織及器官其功能各異[7]。其中A2aR與ADO的親和力最強(qiáng),ADO可通過直接結(jié)合Teff表面A2aR激活細(xì)胞內(nèi)腺苷酸環(huán)化酶生成cAMP或結(jié)合Treg表面A2aR生成cAMP,然后通過細(xì)胞縫隙連接進(jìn)入Teff。阻斷或基因敲除A2aR可明顯降低T細(xì)胞內(nèi)cAMP濃度,小鼠體內(nèi)淋巴瘤和黑素瘤的生長明顯受到抑制[8]。由于缺血、缺氧、炎癥等因素影響,ARs的表達(dá)會明顯上調(diào)[9]。

2 Treg與腫瘤免疫調(diào)控

Treg作為CD4+T細(xì)胞的亞群之一,約占人體外周血CD4+T細(xì)胞總數(shù)的5%,根據(jù)其起源及作用機(jī)制又分為中心性Treg(nTreg)和外周性Treg(iTreg)[10]。在健康個體中,nTreg可維持機(jī)體的免疫耐受和免疫平衡,疾病狀態(tài)下iTreg則替代nTreg對外來應(yīng)激作出功能改變并調(diào)控Teff產(chǎn)生免疫反應(yīng)[11]。Treg對機(jī)體免疫應(yīng)答的調(diào)控主要通過以下途徑來實現(xiàn):①通過產(chǎn)生細(xì)胞因子IL-10,IL-35、轉(zhuǎn)移生長因子-β(TGF-β)等來調(diào)控;②裂解抗原提呈細(xì)胞(APCs)和Teff;③通過細(xì)胞毒T淋巴抗原-4(CTLA-4)和凋亡受體-1(PD-1)介導(dǎo)的細(xì)胞接觸反應(yīng)抑制機(jī)體炎癥反應(yīng)[12-13]。其在機(jī)體的移植免疫耐受、炎癥反應(yīng)、自身免疫性疾病中起著重要的作用[14-15]。Treg與其他T細(xì)胞亞群相比,外核苷酸酶(CD39、CD73)的表達(dá)明顯升高,CD39可降解ATP/ADP生成AMP,CD73可裂解AMP進(jìn)一步生成ADO激活Treg細(xì)胞的抑制活性[16]。CD39、CD73在多種免疫細(xì)胞Treg、CD8+T細(xì)胞、B細(xì)胞均高表達(dá)[17-19],而腫瘤細(xì)胞表面CD73的表達(dá)和預(yù)后存在相關(guān)性[20-23]?;蚯贸鼵D73后,小鼠體內(nèi)結(jié)腸癌、淋巴瘤、乳腺癌、黑素瘤的生長和轉(zhuǎn)移明顯受到抑制[24-25]。

圖1 ADO、Treg與腫瘤免疫調(diào)控腫瘤缺氧微環(huán)境中HIF-α誘導(dǎo)外核苷酸酶(CD39,CD73)表達(dá),使組織ADO水平明顯升高。ADO可通過直接結(jié)合Teff表面A2aR激活細(xì)胞內(nèi)腺苷酸環(huán)化酶生成cAMP或結(jié)合Treg表面A2aR生成cAMP,然后通過細(xì)胞縫隙連接進(jìn)入Teff。通過減少促炎性細(xì)胞因子IFN-γ、TNF-α、IL-6表達(dá),增加炎癥抑制因子TGF-β、IL-10等合成;上調(diào)免疫關(guān)鍵節(jié)點受體PD-1,LAG-3的表達(dá);誘導(dǎo)Treg細(xì)胞分化從而抑制Teff活性

3 腺苷與免疫效應(yīng)細(xì)胞

在缺氧和ADO富集的腫瘤微環(huán)境中,ADO主要通過免疫細(xì)胞表面廣泛表達(dá)的腺苷受體尤其是A2aR來抑制免疫效應(yīng)細(xì)胞,如CD8+T細(xì)胞、NK細(xì)胞、NKT細(xì)胞、樹突細(xì)胞、巨噬細(xì)胞等的功能[17,26-27]。cAMP作為細(xì)胞內(nèi)第二信使,可通過cAMP蛋白激酶-A(PKA)淋巴細(xì)胞特異性絡(luò)氨酸激酶(Lck)/肉瘤基因蛋白激酶(Src激酶)途徑來抑制機(jī)體免疫應(yīng)答[28]。ADO和細(xì)胞表面A2aR結(jié)合后可激活細(xì)胞內(nèi)腺苷酸環(huán)化酶合成cAMP[29],cAMP通過活化PKA介導(dǎo)的磷酸化又可激活Lck和Src激酶[30]。而Lck和Src激酶的免疫抑制主要通過以下途徑實現(xiàn):①減少促炎性細(xì)胞因子干擾素-γ、腫瘤壞死因子-α、IL-6表達(dá),炎癥抑制因子轉(zhuǎn)化生長因子-β、IL-10等合成增加;②上調(diào)免疫關(guān)鍵節(jié)點受體PD-1,LAG-3的表達(dá);③誘導(dǎo)Treg細(xì)胞分化從而抑制Teff活性[31]。使用A2aR激動劑可明顯抑制T細(xì)胞和NK細(xì)胞免疫功能,這種抑制功能在去除A2aR激動劑仍然持續(xù)存在[32]。Cekic等[33]研究發(fā)現(xiàn),A2aR缺失的T細(xì)胞雖可明顯增強(qiáng)其抗腫瘤活性,但卻導(dǎo)致T細(xì)胞的半衰期明顯縮短,而過早凋亡的T細(xì)胞又可導(dǎo)致腫瘤的復(fù)發(fā)和進(jìn)展。

4 腺苷與胃癌調(diào)控

胃癌的發(fā)生是一個多因素、多步驟、復(fù)雜的生理病理過程,具體發(fā)生機(jī)制尚不清楚。但大量致癌物,如蒽環(huán)類、亞硝酸鹽、H.pylori感染導(dǎo)致的胃黏膜慢性炎癥及癌前病變是其主要原因,而腫瘤細(xì)胞的免疫逃避則是其中重要的一環(huán)[34]。H.pylori感染和75%的胃癌發(fā)生存在相關(guān)性,其感染胃黏膜細(xì)胞后,Treg可抑制胃黏膜CD4+細(xì)胞的免疫應(yīng)答,導(dǎo)致胃黏膜炎癥和潰瘍形成,同時胃癌細(xì)胞可通過轉(zhuǎn)化生長因子-β誘導(dǎo)Treg分化增殖[35-37]。但是在腫瘤發(fā)生后,Treg抑制宿主的免疫應(yīng)答則會促進(jìn)腫瘤的進(jìn)展和轉(zhuǎn)移[38-40]。胃癌患者外周血和腫瘤組織中,Treg的比例較非腫瘤個體明顯升高[41-43],而在接受根治性手術(shù)后2個月,其比值降至正常。關(guān)于Treg和胃癌預(yù)后的關(guān)系目前尚有爭議,Kono等[44]認(rèn)為,胃癌患者外周血Treg比例隨著胃癌進(jìn)展而逐漸降低,因此,Treg比例和胃癌患者預(yù)后存在負(fù)相關(guān)[44]。而Haas等[45]的研究則表明,胃癌組織中較高的Treg浸潤程度和胃癌患者術(shù)后生存之間呈正比[45]。國內(nèi)已有學(xué)者證實Treg可通過CD8+T細(xì)胞調(diào)控胃癌細(xì)胞生長[46]。

由于胃癌生理病理的多樣性及機(jī)體免疫調(diào)控網(wǎng)絡(luò)的復(fù)雜性,目前關(guān)于Treg對胃癌免疫調(diào)控的具體機(jī)制尚不十分清楚,腺苷及其受體是否參與了Treg導(dǎo)致腫瘤免疫效應(yīng)細(xì)胞(CD8+T細(xì)胞、NK細(xì)胞等)失活的具體過程目前知之甚少。?ztürk等[47]的研究證實,水飛薊賓提取物可激活胃癌組織中腺苷脫氨酶,從而起到治療胃癌的效果。

5 胃癌免疫治療現(xiàn)狀及展望

腫瘤的免疫治療近年來取得了飛速進(jìn)展,針對關(guān)鍵節(jié)點受體抑制劑、嵌合抗原的T細(xì)胞受體療法、腫瘤浸潤淋巴細(xì)胞過繼療法等免疫治療方法在腫瘤的治療中已經(jīng)有了一定療效[48-51],但大都存在反應(yīng)率低、療效不確切等缺點。ADO及其受體在腫瘤免疫逃避中發(fā)揮重要作用,針對CD73、A2aR的免疫治療在乳腺癌等腫瘤的臨床前期實驗中已取得了積極結(jié)果[25,52-54]。胃癌作為一種免疫原性較弱的惡性腫瘤,如何選擇合適的治療人群和恰當(dāng)?shù)闹委熓侄问敲庖咧委煶晒Φ年P(guān)鍵。胃癌的基因組圖譜分型為其免疫治療提供了新的視角。根據(jù)分型,胃癌可分為EB病毒陽性型、微衛(wèi)星不穩(wěn)定型、基因穩(wěn)定型和染色體不穩(wěn)定型[55]。其中EB病毒陽性型已證實和PD-L1/2高表達(dá)相關(guān),亦有臨床試驗證實,微衛(wèi)星不穩(wěn)定型中的超突變亞型對免疫治療療效較好[56]。因此,胃癌的免疫治療下一步將著眼于:①胃癌的免疫調(diào)控機(jī)制和基因分型之間有何關(guān)系?②如何根據(jù)胃癌的基因分型選擇特異性的免疫治療手段?③免疫治療和胃癌的現(xiàn)有治療,如化療、分子靶向藥物、甚至是免疫治療藥物自身之間的聯(lián)合能否提高胃癌治療的有效率?

鑒于ADO及其受體、Treg在腫瘤免疫調(diào)控中處于重要位置,而在胃癌發(fā)生、轉(zhuǎn)移、復(fù)發(fā)的免疫逃避方面仍有大量未知領(lǐng)域和探索空間。因此進(jìn)一步闡明ADO、Treg在胃癌免疫耐受中的作用機(jī)制,有望為胃癌的免疫治療提供新的靶點和更有效途徑,也為晚期、常規(guī)治療療效欠佳的胃癌患者帶來新的希望。

[1] Couzin-Frankel J. Breakthrough of the year 2013. Cancer immunotherapy[J]. Science, 2013, 342(6165): 1432-1433.

[2] Gapstur SM, Thun MJ. Progress in the war on cancer[J]. JAMA, 2010, 303(11): 1084-1085.

[3] 魏小麗, 徐瑞華. 胃癌免疫治療的進(jìn)展[J]. 中華胃腸外科雜志, 2016, 19(2): 225-232.

[4] Allard B, Turcotte M, Spring K, et al. Anti-CD73 therapy impairs tumor angiogenesis[J]. Int J Cancer, 2014, 134(6): 1466-1473.

[5] Murthy KS. Signaling for contraction and relaxation in smooth muscle of the gut[J]. Annu Rev Physiol, 2006, 68: 345-374.

[6] Estrela AB, Abraham WR. Adenosine in the inflamed gut: a Janus faced compound[J]. Curr Med Chem, 2011, 18(18): 2791-2815.

[7] Fredholm BB, IJzerman AP, Jacobson KA, et al. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors[J]. Pharmacol Rev, 2001, 53(4): 527-552.

[8] Ohta A, Gorelik E, Prasad SJ, et al. A2A adenosine receptor protects tumors from antitumor T cells[J]. Proc Natl Acad Sci USA, 2006, 103(35): 13132-13137.

[9] Eltzschig HK. Adenosine: an old drug newly discovered[J]. Anesthesiology, 2009, 111(4): 904-915.

[10] Whiteside TL. What are regulatory T cells(Treg) regulating in cancer and why[J]. Semin Cancer Biol, 2012, 22(4): 327-334.

[11] Whiteside TL. Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression[J]. Cancer Immunol Immunother, 2014, 63(1): 67-72.

[12] Grant CR, Liberal R, Mieli-Vergani G, et al. Regulatory T-cells in autoimmune diseases: challenges, controversies and-yet-unanswered questions[J]. Autoimmun Rev, 2015, 14(2): 105-116.

[13] van Herk EH, Te Velde AA. Treg subsets in inflammatory bowel disease and colorectal carcinoma: Characteristics, role, and therapeutic targets[J]. J Gastroenterol Hepatol, 2016, 31(8): 1393-1404.

[14] Duhen T, Duhen R, Lanzavecchia A, et al. Functionally distinct subsets of human FOXP3+Treg cells that phenotypically mirror effector Th cells[J]. Blood, 2012, 119(19): 4430-4440.

[15] Harakal J, Rival C, Qiao H, et al. Regulatory T Cells Control Th2-Dominant Murine Autoimmune Gastritis[J]. J Immunol, 2016, 197(1): 27-41.

[16] Ring S, Enk AH, Mahnke K. ATP activates regulatory T Cells in vivo during contact hypersensitivity reactions[J]. J Immunol, 2010, 184(7): 3408-3416.

[17] Sitkovsky MV, Hatfield S, Abbott R, et al. Hostile, hypoxia-A2-adenosinergic tumor biology as the next barrier to overcome for tumor immunologists[J]. Cancer Immunol Res, 2014, 2(7): 598-605.

[18] Young A, Mittal D, Stagg J, et al. Targeting cancer-derived adenosine: new therapeutic approaches[J]. Cancer Discov, 2014, 4(8): 879-888.

[19] Allard B, Pommey S, Smyth MJ, et al. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs[J]. Clin Cancer Res, 2013, 19(20): 5626-5635.

[20] H?usler SF, Montalbán del Barrio I, Strohschein J, et al. Ectonucleotidases CD39 and CD73 on OvCA cells are potent adenosine-generating enzymes responsible for adenosine receptor 2A-dependent suppression of T cell function and NK cell cytotoxicity[J]. Cancer Immunol Immunother, 2011, 60(10): 1405-1418.

[21] Loi S, Pommey S, Haibe-Kains B, et al. CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer[J]. Proc Natl Acad Sci USA, 2013, 110(27): 11091-11096.

[22] Yang Q, Du J, Zu L. Overexpression of CD73 in prostate cancer is associated with lymph node metastasis[J]. Pathol Oncol Res, 2013, 19(4): 811-814.

[23] Turcotte M, Spring K, Pommey S, et al. CD73 is associated with poor prognosis in high-grade serous ovarian cancer[J]. Cancer Res, 2015, 75(21): 4494-4503.

[24] Stagg J, Divisekera U, Duret H, et al. CD73-deficient mice have increased antitumor immunity and are resistant to experimental metastasis[J]. Cancer Res, 2011, 71(8): 2892-2900.

[25] Antonioli L, Blandizzi C, Malavasi F, et al. Anti-CD73 immunotherapy: A viable way to reprogram the tumor microenvironment[J]. Oncoimmunology, 2016, 5(9): e1216292.

[26] Hatfield SM, Sitkovsky M. A2A adenosine receptor antagonists to weaken the hypoxia-HIF-1α driven immunosuppression and improve immunotherapies of cancer[J]. Curr Opin Pharmacol, 2016, 29: 90-96.

[27] Ohta A. A Metabolic Immune Checkpoint: Adenosine in Tumor Microenvironment[J]. Front Immunol, 2016, 7:109.

[28] Wehbi VL, Taskén K. Molecular Mechanisms for cAMP-Mediated Immunoregulation in T cells-Role of Anchored Protein Kinase A Signaling Units[J]. Front Immunol, 2016, 7:222.

[29] Leone RD, Lo YC, Powell JD. A2aR antagonists: Next generation checkpoint blockade for cancer immunotherapy[J]. Computat Struct Biotechnol J, 2015, 13: 265-272.

[30] Zarek PE, Huang CT, Lutz ER, et al. A2A receptor signaling promotes peripheral tolerance by inducing T-cell anergy and the generation of adaptive regulatory T cells[J]. Blood, 2008, 111(1): 251-259.

[31] Nowak M, Lynch L, Yue S, et al. The A2aR adenosine receptor controls cytokine production in iNKT cells[J]. Eur J Immunol, 2010, 40(3): 682-687.

[32] Ohta A, Ohta A, Madasu M, et al. A2A adenosine receptor may allow expansion of T cells lacking effector functions in extracellular adenosine-rich microenvironments[J]. J Immunol, 2009, 183(9): 5487-5493.

[33] Cekic C, Linden J. Adenosine A2A receptors intrinsically regulate CD8+T cells in the tumor microenvironment[J]. Cancer Res, 2014, 74(24): 7239-7249.

[34] Haas M, Büttner M, Rau TT, et al. Inflammation in gastric adenocarcinoma of the cardia: how do EBV infection, Her2 amplification and cancer progression influence tumor-infiltrating lymphocytes[J]. Virchows Arch, 2011, 458(4): 403-411.

[35] Wu C, Chen X, Liu J, et al. Moxifloxacin-containing triple therapy versus bismuth-containing quadruple therapy for second-line treatment of Helicobacter pylori infection: a meta-analysis[J]. Helicobacter, 2011, 16(2): 131-138.

[36] Stein M, Ruggiero P, Rappuoli R, et al. Helicobacter pylori CagA: From Pathogenic Mechanisms to Its Use as an Anti-Cancer Vaccine[J]. Front Immunol, 2013, 4:328.

[37] Lan X, Sun H, Liu J, et al. Effects of garlic oil on pancreatic cancer cells[J]. Asian Pac J Cancer Prev, 2013, 14(10): 5905-5910.

[38] Raghavan S, Quiding-J?rbrink M. Immune modulation by regulatory T cells in Helicobacter pylori-associated diseases[J]. Endocr Metab Immune Disord Drug Targets, 2012, 12(1): 71-85.

[39] Yoshii M, Tanaka H, Ohira M, et al. Expression of Forkhead box P3 in tumour cells causes immunoregulatory function of signet ring cell carcinoma of the stomach[J]. Br J Cancer, 2012, 106(10): 1668-1674.

[40] Lee HE, Park DJ, Kim WH, et al. High FOXP3+regulatory T-cell density in the sentinel lymph node is associated with downstream non-sentinel lymph-node metastasis in gastric cancer[J]. Br J Cancer, 2011, 105(3): 413-419.

[41] Shen Z, Zhou S, Wang Y, et al. Higher intratumoral infiltrated Foxp3+Treg numbers and Foxp3+/CD8+ratio are associated with adverse prognosis in resectable gastric cancer[J]. J Cancer Res Clin Oncol, 2010, 136(10): 1585-1595.

[42] Yuan XL, Chen L, Li MX, et al. Elevated expression of Foxp3 in tumor-infiltrating Treg cells suppresses T-cell proliferation and contributes to gastric cancer progression in a COX-2-dependent manner[J]. Clin Immunol, 2010, 134(3): 277-288.

[43] Huang XM, Liu XS, Lin XK, et al. Role of plasmacytoid dendritic cells and inducible costimulator-positive regulatory T cells in the immunosuppression microenvironment of gastric cancer[J]. Cancer Sci, 2014, 105(2): 150-158.

[44] Kono K, Kawaida H, Takahashi A, et al. CD4(+)CD25high regulatory T cells increase with tumor stage in patients with gastric and esophageal cancers[J]. Cancer Immunol Immunother, 2006, 55(9): 1064-1071.

[45] Haas M, Dimmler A, Hohenberger W, et al. Stromal regulatory T-cells are associated with a favourable prognosis in gastric cancer of the cardia[J]. BMC Gastroenterol, 2009, 9: 65.

[46] 曾冬竹, 余佩武, 雷曉, 等. CD4+CD25+調(diào)控T細(xì)胞對小鼠胃癌的影響[J]. 中華胃腸外科雜志, 2007, 10(4): 368-371.

[47] ?ztürk B, Kocaoglu E, Durak Z. Effects of aqueous extract from Silybum marianum on adenosine deaminase activity in cancerous and noncancerous human gastric and colon tissues[J]. Pharmacognosy Magazine, 2015, 11(41): 143.

[48] Page DB, Postow MA, Callahan MK, et al. Immune modulation in cancer with antibodies[J]. Annu Rev Med, 2014, 65: 185-202.

[49] Kershaw MH, Westwood JA, Slaney CY, et al. Clinical application of genetically modified T cells in cancer therapy[J]. Clin Transl Immunology, 2014, 3(5): e16.

[50] Zarganes-Tzitzikas T, Konstantinidou M, Gao Y, et al. Inhibitors of programmed cell death 1(PD-1): a patent review(2010-2015)[J]. Expert Opin Ther Pat, 2016, 26(9): 973-977.

[51] Weinmann H. Cancer Immunotherapy: Selected Targets and Small-Molecule Modulators[J]. Chem Med Chem, 2016, 11(5): 450-466.

[52] Young A, Ngiow SF, Barkauskas DS, et al. Co-inhibition of CD73 and A2AR Adenosine Signaling Improves Anti-tumor Immune Responses[J]. Cancer Cell, 2016, 30(3): 391-403.

[53] Dahan R, Ravetch JV. Co-targeting of Adenosine Signaling Pathways for Immunotherapy: Potentiation by Fc Receptor Engagement[J]. Cancer Cell, 2016, 30(3): 369-371.

[54] Hay CM, Sult E, Huang Q, et al. Targeting CD73 in the tumor microenvironment with MEDI9447[J]. Oncoimmunology, 2016, 5(8): e1208875.

[55] Cancer Genome Atlas Research Network. Comprehensive molecular characterization of clear cell renal cell carcinoma[J]. Nature, 2013,499(7456): 43-49.

[56] Le DT, Uram JN, Wang H, et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency[J]. N Engl J Med, 2015, 372(26): 2509-2520.

江蘇省自然科學(xué)基金項目(BK201508)

作者單位: 221006 江蘇 徐州,徐州醫(yī)科大學(xué)附屬醫(yī)院 胃腸外科

朱孝成,Email: zxchl@yahoo.com

10.3969/j.issn.1674-4136.2017.02.017

1674-4136(2017)02-0125-04

2016-12-25][本文編輯:李慶]

猜你喜歡
調(diào)節(jié)性腺苷免疫治療
為什么越喝咖啡越困
腫瘤免疫治療發(fā)現(xiàn)新潛在靶點
調(diào)節(jié)性T細(xì)胞在急性白血病中的作用
環(huán)磷腺苷葡胺治療慢性充血性心力衰竭臨床研究
腎癌生物免疫治療進(jìn)展
α-硫辛酸聯(lián)合腺苷鈷胺治療糖尿病周圍神經(jīng)病變效果觀察
人及小鼠胰腺癌組織介導(dǎo)調(diào)節(jié)性T細(xì)胞聚集的趨化因子通路
部分調(diào)節(jié)性內(nèi)斜視遠(yuǎn)期療效分析
探討CD4+CD25+Foxp3+調(diào)節(jié)性T淋巴細(xì)胞在HCV早期感染的作用
Toll樣受體:免疫治療的新進(jìn)展
汝城县| 泰顺县| 巴彦淖尔市| 鹤壁市| 鄄城县| 东辽县| 英德市| 香港 | 东方市| 平安县| 山西省| 慈溪市| 阳东县| 长武县| 手游| 武乡县| 湟中县| 监利县| 安福县| 左权县| 工布江达县| 泸西县| 长垣县| 怀柔区| 望谟县| 崇义县| 泾川县| 扬州市| 贺兰县| 榆树市| 汕头市| 喀喇| 平江县| 丁青县| 昌宁县| 大化| 阳高县| 安塞县| 独山县| 洪江市| 渑池县|