李心平,馬 磊,耿令新,王升升,龐 靖,姬江濤
玉米種子仿生脫粒機(jī)性能試驗(yàn)與參數(shù)優(yōu)化
李心平,馬 磊,耿令新,王升升,龐 靖,姬江濤※
(河南科技大學(xué)農(nóng)業(yè)裝備工程學(xué)院,洛陽 471003)
玉米種子仿生脫粒機(jī)是依據(jù)雞喙離散玉米籽粒過程和裸手脫粒玉米籽粒過程的先離散后脫粒原理設(shè)計(jì)的,其具有低損傷、低破碎率等特點(diǎn)。為了優(yōu)化玉米種子仿生脫粒機(jī)脫粒系統(tǒng)的有關(guān)參數(shù),進(jìn)而降低玉米種子在脫粒過程中的損傷,該文采用二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì)的方法,以籽粒破碎率和脫凈率為主要性能指標(biāo),選取差速輥轉(zhuǎn)速、離散輥轉(zhuǎn)速、脫粒輥轉(zhuǎn)速和離散輥間隙、脫粒輥間隙為試驗(yàn)因素,對(duì)玉米種子仿生脫粒機(jī)進(jìn)行了性能試驗(yàn)。并依據(jù)試驗(yàn)結(jié)果分別對(duì)離散輥轉(zhuǎn)速與脫粒輥轉(zhuǎn)速對(duì)破碎率和脫凈率的影響,以及離散輥間隙與脫粒輥間隙對(duì)破碎率和脫凈率的影響進(jìn)行分析。分析結(jié)果表明:當(dāng)離散輥轉(zhuǎn)速在150~180 r/min和310~350 r/min,脫粒輥轉(zhuǎn)速在270~350 r/min時(shí),破碎率取得較小值;當(dāng)離散輥轉(zhuǎn)速在230~300 r/min,脫粒輥轉(zhuǎn)速在150~200 r/min范圍內(nèi)時(shí),籽粒脫凈率取得最大值100%。當(dāng)離散輥間隙在0~4 mm,脫粒輥間隙在5~9.2 mm時(shí),籽粒破碎率取得最小值。當(dāng)脫粒輥間隙在0~2.2 mm時(shí)脫凈率取得最大值100%。綜合以上結(jié)論,在試驗(yàn)擬合曲線的基礎(chǔ)上按綜合評(píng)價(jià)法進(jìn)行優(yōu)化,得到最優(yōu)參數(shù)組合為差速輥轉(zhuǎn)速90 r/min,離散輥轉(zhuǎn)速350 r/min,脫粒輥轉(zhuǎn)速為350 r/min,離散輥間隙4.6 mm,脫粒輥間隙4.6 mm。測(cè)得此時(shí)破碎率為0.226%,脫凈率為99.317%,玉米芯完整度為100%,達(dá)到國家標(biāo)準(zhǔn)要求。
農(nóng)業(yè)機(jī)械;仿生;種子;玉米;離散;脫粒;破碎率;脫凈率
玉米籽粒的破損影響玉米種子儲(chǔ)藏。遭受破損的玉米籽粒發(fā)芽率低,易生霉菌和蟲子、易破碎,而且其市場(chǎng)價(jià)值降低。國外玉米脫粒機(jī)的研制比較早,整體而言損失率低,脫凈率高,但體積設(shè)計(jì)較為龐大,且價(jià)格昂貴。中國目前玉米種子脫粒采用普通商品玉米脫粒的機(jī)型,以靠釘齒或窄板齒高速打擊玉米果穗而脫粒,滾筒轉(zhuǎn)速在700 r/min以上,脫粒獲得的籽粒破損大,嚴(yán)重影響種子發(fā)芽率和玉米產(chǎn)量,并且不利于精密播種等精細(xì)農(nóng)業(yè)的發(fā)展要求。種子安全是關(guān)系農(nóng)業(yè)安全的重大問題,因此降低玉米種子脫粒損傷成為機(jī)械脫粒的主要問題[1-8]。
基于先離散后脫粒原理的玉米種子仿生脫粒機(jī),具有不傷胚芽,破碎率低、未脫凈率低,對(duì)各品種玉米適應(yīng)性強(qiáng)等先進(jìn)性優(yōu)點(diǎn),能夠滿足種子玉米脫粒的要求。本文是在玉米種子仿生脫粒機(jī)[9-10]上對(duì)玉米種子進(jìn)行多因素試驗(yàn),在試驗(yàn)分析的基礎(chǔ)上確定其最佳的各輥轉(zhuǎn)速和間隙,以獲得最優(yōu)的脫粒效果。
本機(jī)由機(jī)架、進(jìn)料口、差速輥、離散輥、脫粒輥、及籽?;厥諈^(qū)等構(gòu)成,整機(jī)結(jié)構(gòu)如圖1所示。
圖1 仿生玉米脫粒機(jī)結(jié)構(gòu)示意圖Fig.1 Schematic diagram of seed corn bionic thresher
本機(jī)核心部分是差速輥、離散輥和脫粒輥。玉米果穗由進(jìn)料口隨機(jī)喂入,果穗與兩差速輥軸線不平行,在差速輥前端螺旋推進(jìn)器軸向分力作用下,玉米果穗逐步矯正自己位置沿平行于兩差速輥軸線方向運(yùn)動(dòng),果穗隨之被推入工作空間,玉米果穗首先進(jìn)入離散輥與差速輥組成的離散空間,在離散輥仿雞喙離散單元作用下,破壞完整玉米果穗籽粒間組砌規(guī)律[11],使部分果穗籽粒離散,離散后的玉米果穗再進(jìn)入脫粒輥與差速輥組成的脫??臻g,在脫粒輥與差速輥共同作用下完成仿裸手低損傷差速脫粒。被脫籽粒穿過差速輥之間縫隙,通過籽?;厥湛谶M(jìn)行回收;玉米芯沿差速輥軸向排出機(jī)外。由于本機(jī)脫粒時(shí)玉米果穗沿差速輥軸向順序受力,玉米芯完整無斷裂,可節(jié)省清選系統(tǒng),減少功率消耗。
如圖1所示,試驗(yàn)時(shí)差速輥、離散輥、脫粒輥分別由3臺(tái)電機(jī)帶動(dòng),每臺(tái)電機(jī)由YTSP1001L-4-2.2 kW型變頻器控制,以調(diào)節(jié)各輥轉(zhuǎn)速;離散輥間隙、脫粒輥間隙是指離散輥、脫粒輥與差速輥之間的最小間隙,其大小可由固定處軸承座加減墊片來調(diào)節(jié)[12-15]。試驗(yàn)用玉米果穗選取鄭單958,含水率為12.5%。對(duì)試驗(yàn)材料玉米果穗進(jìn)行統(tǒng)計(jì),記錄每一個(gè)果穗的長(zhǎng)度、質(zhì)量、直徑等,挑選差別較小的玉米果穗進(jìn)行試驗(yàn),其平均長(zhǎng)度為18.7 cm,平均質(zhì)量為165.8 g,平均直徑為4.83 cm。
破碎率的計(jì)算公式
式中Y1為樣品中損傷籽粒的百分比;n1為樣品中損傷籽粒的數(shù)量;N1為樣品中全部籽??倲?shù)。
脫凈率的計(jì)算公式
式中Y2為樣品中脫掉籽粒的百分比;n2為樣品中脫掉籽粒的數(shù)量;N2為樣品中全部籽??倲?shù)。
玉米果穗的破碎率和脫凈率與間隙和轉(zhuǎn)速有直接關(guān)系,因此選取差速輥轉(zhuǎn)速、離散輥轉(zhuǎn)速、脫粒輥轉(zhuǎn)速和離散輥間隙、脫粒輥間隙5個(gè)因素[16-20]。參考單因素試驗(yàn)結(jié)果和正交試驗(yàn)結(jié)果[21],綜合考慮選取差速輥轉(zhuǎn)速范圍50~150 r/min,離散輥轉(zhuǎn)速150~350 r/min,脫粒輥轉(zhuǎn)速150~350 r/min,離散輥間隙0~9.2 mm,脫粒輥間隙0~9.2 mm。
試驗(yàn)采用五元二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì)選取差速輥轉(zhuǎn)速x1、離散輥轉(zhuǎn)速x2、脫粒輥轉(zhuǎn)速x3和離散輥間隙x4、脫粒輥間隙x5共5個(gè)因素為試驗(yàn)因素。根據(jù)回歸試驗(yàn)設(shè)計(jì)方法安排變量設(shè)計(jì)水平編碼表和二次回歸正交旋轉(zhuǎn)組合設(shè)計(jì)試驗(yàn)表如表1、2,據(jù)設(shè)計(jì)水平編碼表其中五因素時(shí)γ = 2[22]。試驗(yàn)結(jié)果統(tǒng)計(jì)發(fā)現(xiàn)玉米籽粒清潔度高,玉米芯無破損,因此以破碎率和脫凈率為主要指標(biāo)進(jìn)行分析。
表1 因素水平編碼Table1 Coding of factor levels
表2 二次回歸正交旋轉(zhuǎn)組合試驗(yàn)設(shè)計(jì)Table2 Regression orthogonal rotation combination test design
4.1 回歸分析
4.1.1 試驗(yàn)因素影響破碎率的回歸分析
破碎率試驗(yàn)結(jié)果進(jìn)行逐步回歸統(tǒng)計(jì)分析,求得各試驗(yàn)因素與籽粒破碎率之間關(guān)系的回歸方程如式(3)所示,破碎率方程分析見表3所示[23-27]。
表3 破碎率方差分析Table3 Results of broken rate variance analysis
式中X1、X2、X3、X4、X5分別為x1、x2、x3、x4、x5的水平值。
查 F 表,F(xiàn)0.05(15,11)=2.72,F(xiàn)Lf<F0.05(15,11),說明方程擬合得好;進(jìn)一步用統(tǒng)計(jì)量F回對(duì)方程進(jìn)行檢驗(yàn),已知F0.05(5,26)=2.59,F(xiàn)回>F0.05(5,26),回歸方程顯著。
4.1.2 試驗(yàn)因素影響脫凈率的回歸分析
對(duì)脫凈率試驗(yàn)結(jié)果進(jìn)行逐步回歸統(tǒng)計(jì)分析,求得各試驗(yàn)因素與果穗脫凈率之間關(guān)系的回歸方程如式(4)所示,破碎率方程分析見表4所示。
查F表,F(xiàn)0.05(15,11)=2.72,F(xiàn)Lf<F0.05(15,11),說明方程擬合得好;進(jìn)一步用統(tǒng)計(jì)量F回對(duì)方程進(jìn)行檢驗(yàn),已知F0.05(5,26)=2.59,F(xiàn)回>F0.05(5,26),回歸方程顯著。
表4 脫凈率方差分析Table4 Results of removal rate variance analysis
4.2 雙因素影響試驗(yàn)指標(biāo)的效應(yīng)分析
4.2.1 離散輥轉(zhuǎn)速和脫粒輥轉(zhuǎn)速對(duì)籽粒破碎率的影響效應(yīng)分析
令X1、X4、X5取零水平,得到破碎率與X2、X3的關(guān)系式(5)。
圖2a即為脫粒輥轉(zhuǎn)速和離散輥轉(zhuǎn)速對(duì)破碎率的影響響應(yīng)曲面。從圖2a可以看出,當(dāng)脫粒輥轉(zhuǎn)速固定在某一值時(shí),離散輥轉(zhuǎn)速從150 r/min增加到350 r/min時(shí),破碎率先增大后減小。這是因?yàn)殡x散輥轉(zhuǎn)速從150 r/min增加到250 r/min,離散輥對(duì)玉米果穗的離散力隨之增大,單位時(shí)間內(nèi)的離散單元與玉米果穗接觸的次數(shù)增加,有利于玉米果穗離散;而離散輥轉(zhuǎn)速在250~350 r/min時(shí),隨著轉(zhuǎn)速增加,離散輥離散單元的線速度增大,與玉米果穗接觸時(shí)帶動(dòng)果穗向后運(yùn)動(dòng),使得脫粒時(shí)間減少,破損率減小。
圖2 脫粒輥轉(zhuǎn)速和離散輥轉(zhuǎn)速對(duì)破碎率和脫凈率的影響Fig.2 Effect of threshing roller speed and discrete roller speed on broken rate and removal rate
當(dāng)離散輥轉(zhuǎn)速固定在某一值時(shí),隨著脫粒輥轉(zhuǎn)速的增加,破碎率逐漸下降。這是因?yàn)殡x散后的果穗組砌規(guī)律已經(jīng)被破壞,當(dāng)轉(zhuǎn)速較低時(shí),玉米籽粒主要由脫粒輥產(chǎn)生的脫粒力而進(jìn)行脫粒的,破碎率較大;當(dāng)脫粒輥轉(zhuǎn)速增加時(shí),仿裸手脫粒單元對(duì)果穗的沖擊力增大,而由裸手脫粒試驗(yàn)可知,力越大時(shí)對(duì)籽粒間組砌規(guī)律破壞越嚴(yán)重[28],籽粒之間相互作用力也增大,少部分籽粒受到的作用力傳遞到較大范圍的籽粒,最后蹦散開來。此時(shí)由于只有少部分籽粒直接受力,故破碎率比較小。由圖可知當(dāng)離散輥轉(zhuǎn)速在150~180 r/min和310~350 r/min,脫粒輥轉(zhuǎn)速在270~350 r/min時(shí),籽粒破碎率較低。
4.2.2 離散輥轉(zhuǎn)速和脫粒輥轉(zhuǎn)速對(duì)脫凈率的影響效應(yīng)分析
令X1、X4、X5取零水平,得到脫凈率與X2、X3的關(guān)系式(6)。
圖2b為脫粒輥轉(zhuǎn)速和離散輥轉(zhuǎn)速對(duì)脫凈率的影響響應(yīng)曲面。從圖中可以看出,脫粒輥轉(zhuǎn)速固定在某一值,離散輥轉(zhuǎn)速在150~350 r/min轉(zhuǎn)范圍內(nèi)變化時(shí),脫凈率先增大,在250 r/min左右達(dá)到最大值,隨后維持一段,然后隨著離散輥轉(zhuǎn)速繼續(xù)增加,脫凈率減小。因?yàn)殡x散輥轉(zhuǎn)速在150~250 r/min時(shí),轉(zhuǎn)速增加,對(duì)果穗的離散程度增大,破壞了玉米籽粒的組砌規(guī)律,且單位時(shí)間內(nèi)的離散單元與玉米果穗接觸的次數(shù)增加,從而有利于玉米果穗的離散;而當(dāng)轉(zhuǎn)速在250~350 r/min時(shí),隨著離散輥轉(zhuǎn)速增加,離散輥離散單元的線速度增大,與玉米果穗接觸時(shí)帶動(dòng)果穗向后運(yùn)動(dòng),使得離散時(shí)間減少,脫凈率減小。
而當(dāng)離散輥轉(zhuǎn)速固定在某一值時(shí),隨著脫粒輥轉(zhuǎn)速增大,脫凈率逐漸減小。因?yàn)槊摿]伨€速度增大,與玉米果穗接觸后作用力大,果穗未脫粒完成即離開脫粒輥下方,脫粒時(shí)間短,脫凈率減小。當(dāng)離散輥轉(zhuǎn)速在230~330 r/min,脫粒輥轉(zhuǎn)速在150~300 r/min范圍內(nèi)時(shí),籽粒脫凈率較高。
4.2.3 離散輥間隙和脫粒輥間隙對(duì)籽粒破碎率的影響效應(yīng)分析
令X1、X2、X3取零水平,得到破碎率與X4、X5的關(guān)系式(7)。
圖3a為脫粒輥間隙和離散輥間隙對(duì)破碎率的影響響應(yīng)曲面。由圖3a可知,當(dāng)離散輥間隙固定在0~4 mm之間某一值時(shí),隨著脫粒輥間隙的增大,破碎率逐漸減小,間隙超過某一值時(shí)破碎率減小到0,隨后保持不變。這是因?yàn)槊摿]侀g隙由0逐漸增大時(shí),脫粒輥與玉米果穗間的相互作用力減弱,籽粒的損傷因而減小,破碎率持續(xù)降低,直至減小到0。當(dāng)脫粒輥間隙在4~9.2 mm之間固定在某一值時(shí),隨著脫粒輥間隙的增大,破碎率增大。因離散間隙較大時(shí),離散輥對(duì)果穗的離散力減小,不易打破玉米籽粒間由組砌規(guī)律產(chǎn)生的相互作用力,對(duì)玉米果穗的離散效果不好,進(jìn)而后續(xù)玉米果穗不易脫粒,使破碎率迅速增加。
同理,當(dāng)脫粒輥間隙固定在0~5 mm之間的某一值時(shí),隨著離散輥間隙的增大,破碎率先減小,后逐漸增大。這是因?yàn)殡x散輥間隙增大時(shí),離散輥對(duì)玉米果穗的作用力減小,玉米籽粒的損傷減少,碎率先減?。欢?dāng)間隙持續(xù)增加,離散輥的離散效果逐漸變差,籽粒間由組砌規(guī)律產(chǎn)生的相互作用力仍大量存在,脫粒輥脫粒時(shí)需要很大離散力才能進(jìn)行脫粒,于是加劇了籽粒的破碎,破碎率逐漸增大。當(dāng)脫粒輥間隙固定在5~9.2 mm之間的某個(gè)值時(shí),隨著離散輥間隙的增大,破碎率先保持0不變,隨后迅速增大。這是因?yàn)殡x散輥間隙較小時(shí)能夠充分破壞籽粒間的組砌規(guī)律,較好的進(jìn)行離散,而此時(shí)的脫粒輥間隙相對(duì)較大,即能以較小的脫粒力將剩余果穗脫粒,又不會(huì)造成籽粒破碎,因而破碎率維持在0不變;而隨著離散輥間隙繼續(xù)增加,對(duì)果穗作用力減小,不能充分破壞籽粒的組砌規(guī)律,離散效果減弱,后續(xù)脫粒輥脫粒時(shí)困難加大,需要較大的作用力進(jìn)行脫粒,籽粒破碎率增加。
圖3 脫粒輥間隙和離散輥間隙對(duì)破碎率和脫凈率的影響Fig.3 Effect of the threshing roller gap and discrete roller gap on the broken rate and removal rate
當(dāng)離散輥間隙在0~4 mm,脫粒輥間隙在5~9.2 mm時(shí),籽粒破碎率取得最小值。
4.2.4 離散輥間隙和脫粒輥間隙對(duì)籽粒脫凈率的影響效應(yīng)分析
令X1、X2、X3取零水平,得到破碎率與X4、X5的關(guān)系式(8)。
如圖3b所示為離散輥間隙和脫粒輥間隙對(duì)籽粒脫凈率的影響效果響應(yīng)曲面,當(dāng)離散輥間隙固定在某一值不變,脫粒輥間隙9.2 mm減到0時(shí),脫凈率持續(xù)增大,達(dá)到100%時(shí)保持不變。因?yàn)殚g隙減小,脫粒輥對(duì)玉米果穗的脫粒力增大,能夠破壞籽粒間組砌規(guī)律,脫粒效果好;當(dāng)脫粒輥間隙降到某一臨界值時(shí),脫凈率達(dá)到100%,而后保持不變。當(dāng)脫粒輥間隙降到某一臨界值時(shí),改變離散輥間隙,對(duì)脫凈率幾乎沒有明顯影響,說明離散輥間隙對(duì)脫凈率影響不明顯。這是因?yàn)殡x散輥在前,脫粒輥在后,脫粒輥對(duì)脫凈率起決定性作用。
由圖3b中易知,脫粒輥間隙介于0~2.2 mm時(shí),籽粒脫凈率取得最大值。
5.1 優(yōu)化分析
將4.1.1節(jié)和4.1.2節(jié)中的破碎率和脫凈率的回歸方程進(jìn)程按綜合評(píng)價(jià)法進(jìn)行擬合[29-32]。為便于分析運(yùn)算,引入未脫凈率Y3(即Y3=100-Y2)。破碎率與未脫凈率均以權(quán)重0.5:0.5的比例進(jìn)行相加,計(jì)算評(píng)價(jià)值W1擬合的公式如下
5.1.1 選取離散輥?zhàn)罴艳D(zhuǎn)速和脫粒輥?zhàn)罴艳D(zhuǎn)速
令X1、X4、X5取零水平,得到評(píng)價(jià)值W1關(guān)于X2、X3的關(guān)系式:
評(píng)價(jià)值W1為最小值時(shí),即破碎率和未脫凈率的值均較小。有圖4可知,評(píng)價(jià)值W1在某一小范圍內(nèi)達(dá)到最小值,此時(shí)取離散輥轉(zhuǎn)速為350 r/min,脫粒輥轉(zhuǎn)速為350 r/min作為最佳參數(shù)組合。
圖4 評(píng)價(jià)值W1的響應(yīng)曲面Fig.4 Response surface of evaluation value W1
5.1.2 選取離散輥?zhàn)罴验g隙和脫粒輥?zhàn)罴验g隙
利用5.1.1節(jié)中已知最佳組合X2為350 r/min,X3為350 r/min,差速輥轉(zhuǎn)速X1取0水平,代入公式(9)得到僅含有X4、X5的評(píng)價(jià)值,此時(shí)該評(píng)價(jià)值記為W2:
同理,評(píng)價(jià)值W2越小,說明破碎率越低,未脫凈率越低,二者綜合值越小。由圖5可知,評(píng)價(jià)值W2為最小值0時(shí),離散輥間隙為4.6 mm,脫粒輥間隙為4.6 mm。
圖5 評(píng)價(jià)值W2的響應(yīng)曲面Fig.5 Response surface of evaluation value W2
5.1.3 選取差速輥?zhàn)罴艳D(zhuǎn)速
將已得到的最優(yōu)參數(shù)組合X2=350 r/min,X3=350 r/min,X4=4.6 mm,X5=4.6 mm帶入4.1.1節(jié)和4.1.2節(jié)中Y1和Y2的表達(dá)式,
而Y1大于等于0,因而在最佳轉(zhuǎn)速與間隙條件下破碎率Y1始終是0;考慮未脫凈率Y3,以及此時(shí)僅余未知量X1的綜合評(píng)價(jià)值,記為W3:
由圖6可知,當(dāng)差速輥在50 r/min~90 r/min范圍內(nèi),評(píng)價(jià)值W3變化緩慢,說明差速輥轉(zhuǎn)速對(duì)脫凈率和破碎率綜合影響效果不大,而考慮到差速輥轉(zhuǎn)速?zèng)Q定了單位時(shí)間內(nèi)玉米果穗輸送量,為在較低的破碎率和較高脫凈率情況下提高生產(chǎn)率,取轉(zhuǎn)速90 r/min。
圖6 評(píng)價(jià)值W3的響應(yīng)曲面Fig.6 Response surface of evaluation value W3
5.2 優(yōu)化結(jié)果驗(yàn)證試驗(yàn)
在最佳條件差速輥轉(zhuǎn)速90 r/min,離散輥轉(zhuǎn)速350 r/min,脫粒輥轉(zhuǎn)速為350 r/min,離散輥間隙4.6 mm,脫粒輥間隙4.6 mm條件下進(jìn)行驗(yàn)證試驗(yàn),測(cè)得此時(shí)破碎率為0.226%,脫凈率為99.317%,玉米芯完整度為100%,達(dá)到破碎率小于1%、未脫凈率小于1%的國家標(biāo)準(zhǔn)要求[33]。
1)對(duì)基于先離散后脫粒原理的玉米種子仿生脫粒機(jī)進(jìn)行試驗(yàn)。分析離散輥轉(zhuǎn)速和脫粒輥轉(zhuǎn)速對(duì)破碎率和脫凈率的影響,當(dāng)離散輥轉(zhuǎn)速在150~180 r/min和310~350 r/min,脫粒輥轉(zhuǎn)速在270~350 r/min時(shí),籽粒破碎率達(dá)到最小值;當(dāng)離散輥轉(zhuǎn)速在230~300 r/min,脫粒輥轉(zhuǎn)速在150~200 r/min范圍內(nèi)時(shí),籽粒脫凈率達(dá)到最大值。
2)分析試驗(yàn)結(jié)果中離散間隙和脫粒間隙對(duì)破碎率和脫凈率的影響效果,當(dāng)離散輥間隙在0~4 mm,脫粒輥間隙在5~9.2 mm時(shí),籽粒破碎率取得最小值;脫粒間隙對(duì)脫凈率影響效果較明顯,脫粒輥間隙介于0~2.2mm時(shí),籽粒脫凈率取得最大值。
3)運(yùn)用綜合評(píng)價(jià)法對(duì)結(jié)果進(jìn)行優(yōu)化,得到整機(jī)性能參數(shù)的最優(yōu)參數(shù)組合為差速輥轉(zhuǎn)速90 r/min,離散輥轉(zhuǎn)速350 r/min,脫粒輥轉(zhuǎn)速為350 r/min,離散輥間隙4.6 mm,脫粒輥間隙4.6 mm。以最優(yōu)參數(shù)組合進(jìn)行驗(yàn)證試驗(yàn),破碎率為0.226%,脫凈率為99.317%,玉米芯完整度為100%,達(dá)到低損傷脫粒的目的,為進(jìn)一步降低玉米種子脫粒過程中的機(jī)械損傷提供參考。
[1] Petkevichius S, Shpokas L, Kutzbach H D. Investigation of the maize ear threshing process[J]. Biosystems Engineering, 2008, (99): 532-539.
[2] 羅錫文,廖娟,胡煉,等. 提高農(nóng)業(yè)機(jī)械化水平促進(jìn)農(nóng)業(yè)可持續(xù)發(fā)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(1):1-11.
Luo Xiwen, Liao Juan, Hu lian, et al. Improving agricultural mechanization level to promote agricultural sustainable development[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(1): 1-11. (in Chinese with English abstract)
[3] 羅錫文,臧英,周志艷.精細(xì)農(nóng)業(yè)中農(nóng)情信息采集技術(shù)的研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(1):167-173.
Luo Xiwen, Zang Ying, Zhou Zhiyan. Research progress in farming information acquisition technique for precision agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(1): 167-173. (in Chinese with English abstract)
[4] 朱明,陳海軍,李永磊. 中國種業(yè)機(jī)械化現(xiàn)狀調(diào)研與發(fā)展分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(14):1-7.
Zhu Ming, Chen Haijun, Li Yonglei. Investigation and development analysis of seed industry mechanization in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(14): 1-7. (in Chinese with English abstract)
[5] Folarin A, Kosemani A, Babajide S. Development of a guinea corn thresher[C]//American Society of Agricultural and Biological Engineers Annual International Meeting, ASABE 2011, 2: 1281-1288.
[6] Tastra I K. Designing and testing an improved maize sheller [J]. Ama Agricultural Mechanization in Asia, Africa and Latin America, 2009, 40(1):12-17.
[7] 徐立章,李耀明,王顯仁. 谷物脫粒損傷的研究進(jìn)展分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(1):303-307.
Xu Lizhang, Li Yaoming, Wang Xianren. Research development of grain damage during threshing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(1): 303-307. (in Chinese with English abstract)
[8] 李心平,李玉柱,高吭,等. 種子玉米籽粒仿生脫粒機(jī)理分析[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(2):99-103.
Li Xinping, Li Yuzhu, Gao Hang, et al Bionic threshing process analysis of seed corn kernel[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(2): 99–103. (in Chinese with English abstract)
[9] 李心平,馬義東,金鑫,等. 玉米種子仿生脫粒機(jī)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(7):97-101.
Li Xinping, Ma Yidong, Jin Xin, et al. Design and test of seed corn bionic thresher[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 97-101. (in Chinese with English abstract)
[10] Li Xinping, Wu Kang, Ma Yidong. Quantitative analysis of geometric structures and experimental evaluation of rooster beak[J]. Bio Automation, 2016, 20(2): 205-214
[11] 李心平,劉贏,馬義東,等. 玉米果穗籽粒間縫隙走向?qū)ζ溲h(huán)力衰敗的影響[J]. 農(nóng)機(jī)化研究,2015,37(1):183-187.
Li Xinping, Liu Ying, Ma Yidong, et al. Effect of gap direction among corn ear kernels on the circulating dint decline[J]. Journal of Agricultural Mechanization Research, 2015, 37(1): 183-187. (in Chinese with English abstract)
[12] 羅錫文,劉濤,蔣恩臣,等. 水稻精量穴直播排種輪的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2007,23(3):108-112.
Luo Xiwen, Liu Tao, Jiang Enchen, et al. Design and experiment of hill sowing wheel of precision rice directseeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2007, 23(3): 108-112. (in Chinese with English abstract)
[13] 趙武云,王廣萬,劉國春,等. 低破碎玉米種子脫粒機(jī)的研制[J]. 機(jī)械研究與應(yīng)用,2010,23(1):132-134.
Zhao Wuyun, Wang Guangwan, Liu Guochun, et al. Research and design on low damage corn seed sheller[J]. Machine research and Application, 2010, 23(1): 132-134. (in Chinese with English abstract)
[14] 賈洪雷,趙佳樂,姜鑫銘,等. 行間免耕播種機(jī)防堵裝置設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(18):16-25.
Jia Honglei, Zhao Jiale, Jiang Xinming, et al. Design and experiment of anti-blocking mechanism for inter-row notillage seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(18): 16-25. (in Chinese with English abstract)
[15] 何樹國,車剛,萬霖.5TY-10A型玉米種子脫粒機(jī)的研制與試驗(yàn)研究[J].黑龍江八一農(nóng)墾大學(xué)學(xué)報(bào),2006,18(3):55-58.
He Shuguo, Che Gang, Wan Lin. Manufacture and study on 5TY-10A type corn seed thresher[J]. Journal of Heilongjiang August First Land Reclamation University, 2006, 18(3): 55-58. (in Chinese with English abstract)
[16] 史嵩,張東興,楊麗,等. 氣壓組合孔式玉米精量排種器設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(5):10–18.
Shi Song, Zhang Dongxing, Yang Li, et al. Design and experiment of pneumatic maize precision seed-metering device with combined holes[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(5): 10-18. (in Chinese with English abstract)
[17] 韓長(zhǎng)杰,楊宛章,張學(xué)軍,等. 穴盤苗移栽機(jī)自動(dòng)取喂系統(tǒng)的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(8):51-61.
Han Changjie, Yang Wanzhang, Zhang Xuejun, et al. Design and test of automatic feed system for tray seedlings transplanter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(8): 51-61. (in Chinese with English abstract)
[18] 吳良軍,楊 洲,洪添勝,等. 荔枝樹枝力學(xué)特性的試驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(16):68-73.
Wu Liangjun, Yang Zhou, Hong Tiansheng, et al. Experimental study on mechanical properties of litchi branches[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(16): 68-73. (in Chinese with English abstract)
[19] 張國忠,臧英,羅錫文,等. 水稻氣力式排種器導(dǎo)向型攪種裝置的設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2013,29(12):1-8.
Zhang Guozhong, Zang Ying, Luo Xiwen, et al. Design and experiment of oriented seed churning device on pneumatic seed metering device for rice[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(12): 1-8. (in Chinese with English abstract)
[20] 叢錦玲,廖慶喜,曹秀英,等. 油菜小麥兼用排種盤的排種器充種性能[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(8):30-39. Cong Jinling, Liao Qingxi, Cao Xiuying, et al. Seed filling performance of dual-purpose seed plate in metering device for both rapeseed & wheat seed[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(8): 30-39. (in Chinese with English abstract)
[21] Li Xinping, Wu Kang. Design and experiment of bionic discrete devices based on corn threshing system[J]. Chemical Engineering Transactions, 2016, 51(5), 127-132.
[22] 李云雁,胡傳榮.試驗(yàn)設(shè)計(jì)與數(shù)據(jù)處理[M]. 北京:化學(xué)工業(yè)出版社,2004.
[23] 李心平,高連興. 差速式玉米種子脫粒機(jī)的性能試驗(yàn)[J].農(nóng)業(yè)工程學(xué)報(bào),2009,25(12):102-106.
Li Xinping, Gao Lianxing. Performance test on corn thresher with different-speed threshing parts[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(12): 102-106. (in Chinese with English abstract)
[24] 王晶,聶影,宮元娟,等. 玉米對(duì)生種子脫粒機(jī)試驗(yàn)[J],農(nóng)業(yè)機(jī)械學(xué)報(bào),2011,42(2):104-108.
Wang Jing, Nie Ying, Gong Yuanjuan, et al. Experiment on thresher of maize pair seeds[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(2): 104-108. (in Chinese with English abstract)
[25] 白曉虎,林靜,呂長(zhǎng)義,等. 免耕播種機(jī)圓盤破茬刀工作性能分析與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(15):1-9.
Bai Xiaohu, Lin Jing, Lü Changyi, et al. Analysis and experiment on working performance of disc coulter for no-tillage seeder[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(15): 1-9. (in Chinese with English abstract)
[26] 曹玉華,李長(zhǎng)友,張?jiān)鰧W(xué),等. 蓖麻蒴果剝殼裝置關(guān)鍵部件改進(jìn)設(shè)計(jì)與試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(18):16-22.
Cao Yuhua, Li Changyou, Zhang Zengxue, et al. Improvement design and test to key components of castor capsule hulling device[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18): 16-22. (in Chinese with English abstract)
[27] 楊有剛,劉迎春. 仿生式開溝機(jī)設(shè)計(jì)理論的研究[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2004,35(1):65-68.
Yang Yougang, Liu Yingchun. Design of a bionic ditch digger[J]. Transactions of the Chinese Society for Agricultural Machinery, 2004, 35(1): 65-68. (in Chinese with English abstract).
[28] Li Xinping, Du Zhe, Ma Yidong, et al. Bare hand threshing experiment on corn ear kernel[J]. International Agricultural Engineering Journal, 2014, 23(3): 74-80.
[29] 李耀明,周偉,徐立章,等. 單切雙橫流脫粒分離裝置參數(shù)試驗(yàn)與優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(5):62–67,92.
Li Yaoming, Zhou Wei, Xu Lizhang, et al. Parameter test and optimization of tangential-horizontal-horizontal threshing and separating device[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(5): 62-67, 92. (in Chinese with English abstract)
[30] 李耀明,喬明光,徐立章,等. 縱軸流復(fù)脫分離裝置設(shè)計(jì)與試[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2009,40(11):50-54.
Li Yaoming, Qiao Mingguang, Xu Lizhang, et al. Development and performance experiments on axia-l rethreshing with axial feeding[J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(11): 50-54. (in Chinese with English abstract)
[31] 楚杰,路海東,薛吉全,等. 玉米寬窄行深旋免耕精量播種機(jī)田間試驗(yàn)及效果[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(14):34-41.
Chu Jie, Lu Haidong, Xue Jiquan, et al. Field experiment and effect of precise mechanical sowing of maize based on wide-narrow row deep rotation and no-tillage technology[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(14): 34-41. (in Chinese with English abstract)
[32] 李汝莘,耿愛軍,趙何,等. 碎玉米秸稈卷壓過程的流變行為試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2012,28(18):30-35.
Li Ruxin, Geng Aijun, Zhao He, et al. Rheologic behavior of chopped corn stalks during rotary compression[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(18): 30-35. (in Chinese with English abstract)
[33] JB/T 10749-2007: 玉米脫粒機(jī)[S]. 北京: 機(jī)械工業(yè)出版社, 2008.
Performance test and parameter optimization of corn seed bionic thresher
Li Xinping, Ma Lei, Geng Lingxin, Wang Shengsheng, Pang Jing, Ji Jiangtao※
(College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang 471003, China)
Corn seed bionic thresher was designed based on the principle of first discretizing and then threshing, which imitated the process of chicken beak discretizing corn grain and bare hand threshing, and had the advantages of low damage, low broken rate, and so on. In order to optimize the parameter of corn seed bionic threshing system, and then reduce the damage in the course of threshing of corn seed, this paper adopted the method of the quadratic regression orthogonal rotation combination design. Grain broken rate and removal rate were taken as the main performance indicators, differential roller speed, discrete roller speed, threshing roller speed, discrete roller gap, and threshing roller gap were selected as experimental factors, and the performance test of the corn seed bionic thresher was carried out. According to the test results, the influence of discrete roller speed and threshing roller speed on the broken rate and removal rate was respectively analyzed, as well as the influence of discrete roller gap and threshing roller gap on the broken rate and removal rate. Analysis results showed that when the threshing roller speed was fixed at a certain level, and the discrete roller speed increased from 150 to 350 r/min, the broken rate first increased and then decreased; when the discrete roller speed was fixed at a certain level, with the increasing of the threshing roller speed from 150 to 350 r/min, the broken rate decreased gradually; when the discrete roller speed was in 150-180 and 310-350 r/min, and the threshing roller speed was in 270-350 r/min, the broken rate was 0, which reached the lowest. The threshing roller speed was fixed at a certain level, and the discrete roller speed changed in the range of 150-350 r/min, the removal rate first increased and then decreased; when the discrete roller speed was fixed at a certain level, with the increase of threshing roller speed, the removal rate decreased gradually; when the discrete roller speed was in 230-330 r/min, and the threshing roller speed was in 150-300 r/min, the removal rate reached 100%, which was the highest. When the discrete roller gap was in 0-4 mm, and the threshing roller gap was in 5-9.2 mm, the broken rate was 0, reaching the lowest. When the discrete roll gap was fixed at a certain level, and the threshing roller gap reduced from 9.2 to 0 mm, the removal rate continued to increase; when the threshing roller gap was in 0-2.2 mm, the removal rate was 100%, which was the highest. On the basis of the experimental curve, through the optimization with the comprehensive evaluation method, the optimal combination of parameters was obtained: the differential roller speed of 90 r/min, the discrete roller speed of 350 r/min, the threshing roller speed of 350 r/min, the discrete roller gap of 4.6 mm, and the threshing roller gap of 4.6 mm. The verification test was carried out on the basis of these optimal conditions. It was found that the breaking rate was 0.226%, the net removal rate was 99.317%, and the corncob integrity was 100%. All the results meet the requirements of the national standard.
agricultural machinery; bionics; seeds; corn; discrete; threshing; broken rate; removal rate
10.11975/j.issn.1002-6819.2017.05.009
S226.1
A
1002-6819(2017)-05-0062-08
李心平,馬 磊,耿令新,王升升,龐 靖,姬江濤. 玉米種子仿生脫粒機(jī)性能試驗(yàn)與參數(shù)優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(5):62-69.
10.11975/j.issn.1002-6819.2017.05.009 http://www.tcsae.org
Li Xinping, Ma Lei, Geng Lingxin, Wang Shengsheng, Pang Jing, Ji Jiangtao. Performance test and parameter optimization of corn seed bionic thresher[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 62-69. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2017.05.009 http://www.tcsae.org
2016-05-25
2017-01-05
國家自然科學(xué)基金與河南人才培養(yǎng)聯(lián)合基金資助項(xiàng)目(U1204514)
李心平,男,博士,副教授,主要研究方向?yàn)檗r(nóng)產(chǎn)品收獲與加工機(jī)械研究。洛陽 河南科技大學(xué)農(nóng)業(yè)裝備工程學(xué)院, 417003。
Email:aaalxp@126.com
※通信作者:姬江濤,男,河南偃師人,博士,教授,博士生導(dǎo)師,研究方向?yàn)橹悄芑r(nóng)業(yè)裝備。洛陽 河南科技大學(xué)農(nóng)業(yè)裝備工程學(xué)院,417003。
Email:jjt0907@163.com