靳興來,朱世強,張學(xué)群,朱笑叢,潘忠強
·農(nóng)業(yè)裝備工程與機械化·
液壓驅(qū)動下肢助力外骨骼機器人膝關(guān)節(jié)結(jié)構(gòu)設(shè)計及試驗
靳興來,朱世強※,張學(xué)群,朱笑叢,潘忠強
(浙江大學(xué)機械工程學(xué)院,杭州 310027)
液壓驅(qū)動下肢助力外骨骼是一種典型的人機交互類機器人,在跟隨人體行進的同時,可提高人的負重能力。為實現(xiàn)最優(yōu)化的結(jié)構(gòu)設(shè)計以降低對系統(tǒng)壓強、液壓缸尺寸的要求,通過仿生學(xué)分析人類正常步行時的步態(tài)數(shù)據(jù),依據(jù)準擬人化設(shè)計準則,采用CAD設(shè)計軟件、數(shù)值計算等方法,給出了液壓驅(qū)動膝關(guān)節(jié)的設(shè)計過程,并通過MATLAB等仿真軟件進行了驗證。基于確定的模型參數(shù),進行了結(jié)構(gòu)設(shè)計及平臺搭建,并進行了穿戴試驗。仿真及試驗結(jié)果表明,該方法設(shè)計的外骨骼膝關(guān)節(jié)可以滿足步行及負重需求。在負重由10增加為20 kg時,即負重增加一倍時,膝關(guān)節(jié)的軌跡平均跟蹤誤差減小了0.05%,跟蹤誤差最大值增加了20.7%,但是相對于整個膝關(guān)節(jié)的活動范圍,該誤差僅占總活動范圍的1.2%。該研究為優(yōu)化液壓驅(qū)動下肢助力外骨骼提供了參考方法,并可為直線執(zhí)行器驅(qū)動外骨骼其他關(guān)節(jié)的優(yōu)化設(shè)計提供參考。關(guān)鍵詞:機器人;設(shè)計;優(yōu)化;計算機仿真;液壓驅(qū)動;膝關(guān)節(jié);外骨骼;準擬人化
外骨骼機器人是指將人的智能、路徑規(guī)劃、自身平衡等能力與機器人的可負重、耐力強等優(yōu)勢相結(jié)合的一類機器人[1-2]。外骨骼技術(shù)最早出現(xiàn)于20世紀60年代,但自從美國加州大學(xué)伯克利分校研制成功第一款能源可攜帶的可穿戴式下肢助力外骨骼之后,作為一種典型的人機交互機器人[3-5],外骨骼機器人再次得到了國內(nèi)外高校、研究院所乃至企業(yè)的重視。
Zoss等[6]在美國軍方支持下研制成功了第一款下肢助力外骨骼BLEEX,該外骨骼旨在增強士兵背負重物的能力,之后相繼推出了民用版的eLegs等型號;Kawamoto等[7-9]研發(fā)了HAL系列外骨骼,該系列的下肢版既可以用于增強穿戴者的負重能力,也可以用于癱瘓病人的康復(fù)訓(xùn)練;Toyama等[10]研制了農(nóng)用版外骨骼,減輕農(nóng)民勞動強度;電子科技大學(xué)于2015年成功研制出一款下肢外骨骼,該外骨骼主要是對癱瘓患者的助力,實現(xiàn)患者的站立行走[11-12]。Dollar等[13-14]則研制了膝關(guān)節(jié)被動助力外骨骼,由于沒有動力元件,因此助力效果受到了限制。下肢外骨骼作為全身外骨骼的基礎(chǔ),其結(jié)構(gòu)設(shè)計對系統(tǒng)性能有著顯著影響。為了能達到較大的助力幅值,下肢助力外骨骼多采用液壓驅(qū)動,其結(jié)構(gòu)設(shè)計多采用仿生學(xué)設(shè)計方法[15-19]。外骨骼作為較新的機器人類別,日本首次將其應(yīng)用于農(nóng)業(yè)領(lǐng)域,外骨骼的發(fā)展及應(yīng)用將推動農(nóng)業(yè)的變革,顯著降低農(nóng)民勞作時的負擔(dān),增強農(nóng)民的體力。
BLEEX通過對膝關(guān)節(jié)的機構(gòu)建模,得出膝關(guān)節(jié)液壓缸力臂與關(guān)節(jié)轉(zhuǎn)角及安裝位置的關(guān)系,根據(jù)臨床步態(tài)數(shù)據(jù)(clinical gait analysis,CGA)數(shù)據(jù)得出的膝關(guān)節(jié)力矩-角度圖,采用迭代法確定液壓缸的安裝位置,進而確定了膝關(guān)節(jié)的結(jié)構(gòu)[20];趙彥峻等[21]著重分析了外骨骼機構(gòu)確定之后的動力學(xué)仿真分析,并沒有提出膝關(guān)節(jié)液壓缸安裝位置確定的方法;蔣靖[22]從機構(gòu)靜力學(xué)的角度分析了外骨骼機構(gòu),也未提及膝關(guān)節(jié)液壓缸的設(shè)計方法。由于下肢助力外骨骼與穿戴者連接為一體,因此結(jié)構(gòu)設(shè)計,尤其是液壓執(zhí)行器的安裝位置的最優(yōu)化設(shè)計非常重要,它會影響關(guān)節(jié)助力的幅值以及穿戴者的穿戴體驗[23-24]。
本文將分析下肢助力外骨骼,優(yōu)化膝關(guān)節(jié)的結(jié)構(gòu)設(shè)計,通過仿真分析驗證設(shè)計方法,并且在搭建的下肢助力外骨骼膝關(guān)節(jié)平臺上進行穿戴試驗。
下肢外骨骼的機構(gòu)設(shè)計可以被分為3類[2]:1)擬人化設(shè)計,下肢外骨骼的各關(guān)節(jié)與人體下肢關(guān)節(jié)一一對應(yīng),能夠?qū)崿F(xiàn)人體下肢相同的動作;2)準擬人化設(shè)計,下肢外骨骼的各關(guān)節(jié)從功能上與人體下肢各關(guān)節(jié)類似,能夠?qū)崿F(xiàn)與人體下肢類似的動作;3)非擬人化設(shè)計,下肢外骨骼的結(jié)構(gòu)設(shè)計并不參考人體下肢關(guān)節(jié)。
為了在保證下肢外骨骼最大的靈活性同時又能降低整個系統(tǒng)的質(zhì)量,本文采用了準擬人化的設(shè)計準則。需要參考人的下肢結(jié)構(gòu)及運動信息,因此作如下假設(shè):外骨骼的體積、質(zhì)量及慣性等參數(shù)與人是類似的;外骨骼的步態(tài)能夠滿足人體運動步態(tài)的需求;外骨骼可以支撐自身的質(zhì)量及一定的負載[25]。設(shè)計的下肢外骨骼單腿包含7個自由度,其中髖關(guān)節(jié)3個自由度、膝關(guān)節(jié)1個自由度、踝關(guān)節(jié)3個自由度,設(shè)計的三維結(jié)構(gòu)如圖1所示。
圖1 液壓驅(qū)動下肢助力外骨骼結(jié)構(gòu)示意圖Fig.1 Structural representation of hydraulic driven lower-limb power-assistance exoskeleton
統(tǒng)計數(shù)據(jù)指出人體下肢各關(guān)節(jié)的活動范圍,結(jié)合圖1的關(guān)節(jié)角度示意,定義膝關(guān)節(jié)或髖關(guān)節(jié)伸展角度為正,彎曲角度為負,設(shè)計的角度活動范圍為:膝關(guān)節(jié)-10°~159°,髖關(guān)節(jié)-40°~110°。然而人體正常行走時的活動范圍與上述數(shù)據(jù)并不一致,參考臨床步態(tài)數(shù)據(jù)(75 kg,1.4 m/s),人體正常步行時的關(guān)節(jié)角度,如圖2所示。常見的下肢助力外骨骼系統(tǒng)在設(shè)計時通常只考慮髖關(guān)節(jié)及膝關(guān)節(jié)的主動自由度,考慮到負載經(jīng)由外骨骼傳導(dǎo)至地面,增加膝關(guān)節(jié)在其他方向運動的驅(qū)動給整個系統(tǒng)質(zhì)量及能耗帶來的額外增加,本文所述的外骨骼只有髖關(guān)節(jié)和膝關(guān)節(jié)在矢狀面內(nèi)的自由度由液壓缸驅(qū)動,其與自由度是被動自由度。因此圖2只包含矢狀面內(nèi)的運動信息。
圖2 臨床步態(tài)數(shù)據(jù)Fig.2 Clinical gait data
通過對CGA曲線進行分析,可以得到圖2所示的膝關(guān)節(jié)角度、力矩曲線。圖2橫坐標表示人體正常行走時,以一側(cè)下肢從腳趾離地開始到該側(cè)腳趾再次離地的一個完整步態(tài)周期。質(zhì)量75 kg的人在以1.4 m/s的速度正常步行時,膝關(guān)節(jié)的活動范圍大約在-5°~70°,考慮到膝關(guān)節(jié)其他彎曲狀況的存在以及為了避免角度過大造成穿戴者的關(guān)節(jié)不舒服甚至受傷,本文設(shè)計的膝關(guān)節(jié)矢狀面內(nèi)的活動范圍為0o~120o。
1.1 結(jié)構(gòu)設(shè)計
膝關(guān)節(jié)的結(jié)構(gòu)設(shè)計主要是液壓執(zhí)行器及其安裝位置的設(shè)計。本文采用了準擬人化的設(shè)計準則,并且參考CGA數(shù)據(jù)進行結(jié)構(gòu)設(shè)計,故膝關(guān)節(jié)的液壓執(zhí)行器需要產(chǎn)生比CGA力矩值更大的力矩以驅(qū)動外骨骼。由于液壓缸是線性執(zhí)行器,采用類似于人體肌肉分布的方法,將液壓缸兩端分別安裝在大腿和小腿上[26-28]。
1.1.1 膝關(guān)節(jié)建模
圖3是膝關(guān)節(jié)的幾合模型。液壓缸無桿腔在A端,有桿腔在B端。
圖3 膝關(guān)節(jié)幾何模型Fig.3 Geometric model of knee joint
O代表膝關(guān)節(jié)旋轉(zhuǎn)中心,x、y是建立的直角坐標系,定義圖3中液壓缸安裝點的坐標A(x1,y1),B(x2,y2),并且定義OA=r1,OB=r2??傻?/p>
式中θ1、θ2表示液壓缸在大腿桿、小腿桿上的安裝角,(o);θ表示膝關(guān)節(jié)旋轉(zhuǎn)角,(°)。
液壓缸坐標向量為
根據(jù)膝關(guān)節(jié)角度的設(shè)計范圍,滿足θ∈(0°,120°),在該條件下,則有θ1+θ2≤60°。膝關(guān)節(jié)活動角度的彎曲角最大及伸展角最大時,分別對應(yīng)了液壓缸的最短長度及最長長度。
1.1.2 力矩分析
液壓缸輸出力矩由液壓力以及力臂所決定,而力臂又受液壓缸安裝位置的影響,因此優(yōu)化液壓缸安裝位置,將降低對系統(tǒng)壓強的要求,有利于液壓缸的選型和設(shè)計。假定液壓缸尺寸已經(jīng)確定,需要分析液壓缸的安裝位置,結(jié)合CAD軟件對此進行定性分析,如圖4所示。
圖4 液壓缸安裝位置效果Fig.4 Effects of different mounting locations of cylinder
圖4 中的坐標標號與圖3含義相同。虛線AB表示膝關(guān)節(jié)伸展時,即θ=0°,液壓缸的最大長度;虛線AB'表示膝關(guān)節(jié)彎曲最大角度時,即θ=120°,液壓缸的最小長度。由圖4可知,圖4c中液壓缸完全伸展及最大收縮時的方向變化較小,考慮到力的方向穩(wěn)定性,選取圖4c的布置方式,即r1>r2?;谝陨戏治觯xr1/r2=k,并且,k>1。結(jié)合圖3,令r2=a cm,則有r1=k·a cm,代入式(4),得到力臂值如式(6)。
由式(6)借助MATLAB可以得到力臂值R與膝關(guān)節(jié)角度 (θ1+θ2+θ)和系數(shù)k的關(guān)系,如圖5a所示。由于下肢外骨骼采用準擬人化設(shè)計準則,可以參考75 kg體質(zhì)量人群的CGA數(shù)據(jù),通過圖2b中的力矩曲線,可知在膝關(guān)節(jié)彎曲約20°時,即θ=20°,力矩最大,由于外骨骼膝關(guān)節(jié)的最大活動范圍120°可知,力矩最大點位于圖5a中的平滑區(qū)域C,在該區(qū)域,k≥5后,力臂值R近似于直線,考慮到實際安裝尺寸的限制,因此得k=5。接下來需要確定θ1及θ2,結(jié)合k=5和式(6)并借助MATLAB可得(θ1+θ2+θ)與力臂的對應(yīng)關(guān)系,如圖5b所示,力臂值R隨著角度(θ1+θ2+θ)的增大先增大后減小,類似于開口向下的拋物線。
當θ1+θ2+θ=103°時,力臂值最大,最理想的情況是當θ=20°時,力臂值最大,然而此時θ1+θ2=80°,與θ1+ θ2≤60°相矛盾,因此,可知無法實現(xiàn)力臂值最大值與膝關(guān)節(jié)力矩最大值在同一彎曲角下存在。結(jié)合圖5可知,(θ1+θ2)越大,在θ=20°時越接近于力臂值最大值,因此可得出θ1+θ2=60°。
圖5 力臂曲線分析Fig.5 Graphic analysis of arm of force
1.1.3 液壓缸傾角分析
為了分析θ1及θ2取值的影響,再次借助CAD軟件進行定性分析,圖6a表示θ2>θ1,圖6b表示θ2≤θ1。
圖6 液壓缸不同安裝角的效果Fig.6 Effects of different mounting angles of hydraulic cylinder
不同的θ1取值,影響液壓缸的傾斜角,比較圖6可得出:液壓缸在大腿桿上的安裝傾角不應(yīng)比在小腿桿上的安裝角大,否則不僅液壓缸存在較大的傾斜角,而且導(dǎo)致液壓缸大腿處的安裝→位置與大腿相距較遠,穿戴不方便。為此,定義向量,可得出液壓缸的傾角方程
結(jié)合式(7),借助MATLAB可得圖7。由圖7可知,在θ1>10°后,隨著膝關(guān)節(jié)的彎曲,液壓缸的傾角逐漸變大方向一致,同時隨著θ1變大,在相同膝關(guān)節(jié)彎曲角度下,液壓缸傾角的變化也更加劇烈,因此,基于圖7,選?。害?=15°,θ2=45°。
由式(6)可知,a取值越大,力臂越大,但同樣液壓缸的長度也會越大,同時a的取值還受下肢長度的限制。統(tǒng)計數(shù)據(jù)表明人體下肢的尺寸關(guān)系如式 (8)。例如當人體身高H為175 cm時,L大腿為43 cm,L小腿為43 cm。
圖7 液壓缸傾角圖Fig.7 Pitch angle of hydraulic cylinder
式中L大腿和L小腿分別為大腿和小腿的長度,cm;H為人體身高,cm。
由式(8),結(jié)合圖3有:r1cosθ1<41,a<8.5,選取a=5 cm,根據(jù)圖3,可列出液壓缸的最大推力及最大拉力公式,如式(9)所示。
式中Tmax_push代表液壓缸所產(chǎn)生的最大推力,Tmax_push代表液壓缸所產(chǎn)生的最大拉力,Psupply代表系統(tǒng)壓力,Dact代表無桿腔的桿徑,Drod代表活塞桿桿徑。
1.1.4 參數(shù)確定
選取常用液壓壓強6.5 MPa,并將圖2中得到的
θ =20°時Tmax=60 N·m代入式(9),可得缸徑Dact=1.94 cm,取整為:Dact=2 cm。同理根據(jù)圖2彎曲時的最大力矩:θ=0°,Tmax=40 N·m代入式(9),可得活塞桿桿徑Drod= 0.988 7 cm,取整為Drod=0.9 cm。
1.2 結(jié)構(gòu)仿真
為了確保液壓缸的尺寸及安裝位置能夠在人體步行時提供足夠的力矩,借助MATLAB進行仿真驗證。圖8中顯示CGA曲線統(tǒng)計的人體膝關(guān)節(jié)所需力矩曲線被本文設(shè)計的膝關(guān)節(jié)所提供的彎曲力矩和伸展力矩曲線包圍。
圖8 設(shè)計機構(gòu)產(chǎn)生的力矩與所需力矩對比Fig.8 Comparison of torque produced by designed knee joint and desired torque
基于上述分析確定的液壓缸尺寸及安裝位置,搭建了可穿戴式下肢助力外骨骼平臺,設(shè)計加工的膝關(guān)節(jié)結(jié)構(gòu)如圖9所示。并設(shè)計了滑模控制器進行了膝關(guān)節(jié)位置跟蹤的穿戴試驗[29-33],穿戴者分別在外骨骼背板質(zhì)量約為10 kg(工況一)及再加額外質(zhì)量10 kg(工況二)2種工況下進行試驗。為了使試驗具有可對比性,穿戴者盡量做2次相同的運動,圖10a為膝關(guān)節(jié)位置曲線,圖10b為2次的軌跡跟蹤誤差曲線。
圖9 膝關(guān)節(jié)結(jié)構(gòu)圖Fig.9 Structure block of knee joint
圖10 膝關(guān)節(jié)位置跟蹤試驗Fig.10 Position tracking experiments of knee joint
分析上述試驗數(shù)據(jù),并定義2個評價指標[34],如式(10)與式(11)。式中L2[e]表示軌跡平均跟蹤誤差,(°);emax表示最大跟蹤誤差,(°);T為運行時間,(s);e(t) 為位置跟蹤誤差。
穿戴下肢外骨骼后,在負重由10變?yōu)?0 kg時,膝關(guān)節(jié)的軌跡平均跟蹤誤差并沒有增加,卻由0.330 7°降低到0.329 2°,縮小了0.05%;最大誤差由0.514 8°增加到0.621 4°,增加了20.7%,但是相對于整個膝關(guān)節(jié)的活動范圍,該誤差僅占總活動范圍的1.2%,且與負載增加了100%相比,也可忽略。從側(cè)面反映了機械結(jié)構(gòu)的有效性。
本文主要研究了液壓驅(qū)動下肢助力外骨骼膝關(guān)節(jié)的結(jié)構(gòu)優(yōu)化,通過理論分析和圖形仿真提出了一套液壓助力膝關(guān)節(jié)結(jié)構(gòu)設(shè)計、優(yōu)化的方法。
1)從分析人體正常步行時的步態(tài)數(shù)據(jù)入手,采用準擬人化方法指導(dǎo)下肢外骨骼設(shè)計,明確了下肢外骨骼的主被動關(guān)節(jié)布置及相應(yīng)的活動范圍。
2)搭建了液壓驅(qū)動膝關(guān)節(jié)的示意圖,并運用CAD軟件、數(shù)值分析及仿真軟件等方法詳細探討了液壓驅(qū)動下肢外骨骼膝關(guān)節(jié)的設(shè)計依據(jù),得出參數(shù)優(yōu)化的方法,最終得出優(yōu)化的膝關(guān)節(jié)布局,降低了對液壓系統(tǒng)的要求。
3)進行了仿真和穿戴試驗,仿真表明所設(shè)計的液壓助力膝關(guān)節(jié)能夠滿足人體膝關(guān)節(jié)的力矩需求,試驗則表明在負載增加一倍的情況下,膝關(guān)節(jié)穿戴后跟蹤誤差最大值增加了約20.7%,但平均跟蹤誤差減小了0.05%,說明優(yōu)化后的膝關(guān)節(jié)在關(guān)節(jié)穿戴試驗時跟隨效果基本不受負載的影響。
4)基于所設(shè)計的下肢助力外骨骼的膝關(guān)節(jié),仿真和試驗均表明本文所提方法能夠有效指導(dǎo)液壓驅(qū)動下肢助力外骨骼膝關(guān)節(jié)的最優(yōu)設(shè)計,并且該方法可拓展至直線執(zhí)行器驅(qū)動的外骨骼其他主動關(guān)節(jié)設(shè)計中。
[1] Kazerooni H, Steger R. The Berkeley lower extremity exoskeleton[J]. Journal of Dynamic Systems, Measurement, and Control, 2006, 128(1): 14-25.
[2] Lee H, Kim W, Han J, et al. The technical trend of the exoskeleton robot system for human power assistance[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13(8): 1491-1497.
[3] Chen B, Ma H, Qin L Y, et al. Recent developments and challenges of lower extremity exoskeletons[J]. Journal of Orthopaedic Translation, 2016(5): 26-37.
[4] Kazerooni H. A review of the exoskeleton and human augmentation technology[C]//ASME 2008 Dynamic Systems and Control Conference, 2008, 1539-1547.
[5] Yang C J, Zhang J F, Chen Y, et al. A review of exoskeletontype systems and their key technologies[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2008, 222(8): 1599-1612.
[6] Zoss A. Actuation Design and Implementation for Lower Extremity Human Exoskeletons[D]. Berkeley: University of California, 2006.
[7] Kawamoto H, Taal S, Niniss H, et al. Voluntary motion support control of robot suit HAL triggered by bioelectrical signal for hemiplegia[C]//Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE, 2010: 462-466.
[8] Kawamoto H, Sankai Y. Power assist method based on phase sequence and muscle force condition for HAL[J]. Advanced Robotics, 2005, 19(7): 717-734.
[9] Kawamoto H, Sankai Y. Power assist method based on phase sequence driven by interaction between human and robot suit[C]//13th IEEE International Workshop on Robot and Human Interactive Communication, 2004: 491-496.
[10] Toyama S, Yamamoto G. Development of Wearable-agrirobot mechanism for agricultural work[C]//2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009: 5801-5806.
[11] 張倩. 下肢外骨骼康復(fù)機器人的機構(gòu)設(shè)計與分析[D]. 成都:電子科技大學(xué),2013.
Zhang Qian. Mechanism Design and Analysis of the Lower Limb Exoskeleton Rehabilitation Robot[D]. Chengdu: University of Electronic Science and Technology of China, 2013.
[12] 王強. 可穿戴下肢外骨骼康復(fù)機器人機械設(shè)計與研究[D].成都:電子科技大學(xué),2014.
Wang Qiang. Mechanism Design and Research of the Wearable Lower Limb Exoskeleton Rehabilitation Robot[D]. Chengdu: University of Electronic Science and Technology of China, 2014.
[13] Dollar A M, Herr H. Design of a quasi-passive knee exoskeleton to assist running[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008: 747-754.
[14] Lambrecht B G, Kazerooni H. Design of a semi-active knee prosthesis[C]//IEEE International Conference on Robotics and Automation, 2009: 639-645.
[15] 楊巍,張秀峰,楊燦軍,等. 基于人機5桿模型的下肢外骨骼系統(tǒng)設(shè)計[J]. 浙江大學(xué)學(xué)報,2014,48(3):430-435,444.
Yang Wei, Zhang Xiufeng, Yang Canjun, et al. Design of a lower extremity exoskeleton based on 5-bar human machine model[J]. Journal of Zhejiang University, 2014, 48(3): 430-435, 444. (in Chinese with English abstract)
[16] 王善杰. 下肢可穿戴外骨骼機器人仿人機構(gòu)設(shè)計與運動控制研究[D]. 合肥:合肥工業(yè)大學(xué),2015.
Wang Shanjie. Humanoid Mechanism Design and Motion Control of Lower Extremity Wearable Exoskeleton Robot[D]. Hefei: Hefei University of Technology, 2015.
[17] Huo W G, Mohammed S, Moreno J C, et al. Lower limb wearable robots for assistance and rehabilitation: A state of the art[J]. IEEE Systems Journal, 2016, 10(3): 1068-1081.
[18] Chu A. Design of the Berkeley Lower Extremity Exoskeleton[D]. Berkeley: University of California, 2005.
[19] 榮譽,金振林,崔冰艷. 六足農(nóng)業(yè)機器人并聯(lián)腿構(gòu)型分析與結(jié)構(gòu)參數(shù)設(shè)計[J]. 農(nóng)業(yè)工程學(xué)報,2012,28(15):9-14.
Rong Yu, Jin Zhenlin, Cui Bingyan. Configuration analysis and structure parameter design of six-leg agricultural robot with parallel-leg mechanism[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2012, 28(15): 9-14. (in Chinese with English abstract)
[20] 李研彪,劉毅,趙章風(fēng),等. 基于空間模型技術(shù)的擬人機械腿的運動學(xué)傳遞性能分析[J]. 農(nóng)業(yè)工程學(xué)報,2013,29(2):17-23.
Li Yanbiao, Liu Yi, Zhao Zhangfeng, et al. Kinematics transmission analysis on anthropopathic mechanical leg based on spatial model technique[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2013, 29(2): 17-23. (in Chinese with English abstract)
[21] 趙彥峻,徐誠. 人體下肢外骨骼設(shè)計與仿真分析[J]. 系統(tǒng)仿真學(xué)報,2008,20(17):4756-4759,4766.
Zhao Yanjun, Xu Cheng. Design and simulation of human lower extremity exoskeleton[J]. Journal of System Simulation, 2008, 20(17): 4756-4759, 4766. (in Chinese with English abstract)
[22] 蔣靖. 下肢助力外骨骼機構(gòu)設(shè)計與研究[D]. 哈爾濱:哈爾濱工業(yè)大學(xué),2012.
Jiang Jing. Research and Mechanism Design of Lower Limb Power Exoskeletons[D]. Harbin: Harbin Institue of Technology, 2012.
[23] 嚴華,楊燦軍,陳杰. 上肢運動康復(fù)外骨骼肩關(guān)節(jié)優(yōu)化設(shè)計與系統(tǒng)應(yīng)用[J]. 浙江大學(xué)學(xué)報,2014,48(6):1086-1094.
Yan Hua, Yang Canjun, Chen Jie. Optimal design on shoulder joint of upper limb exoskeleton robot for motor rehabilitation and system application[J]. Journal of Zhejiang University, 2014, 48(6): 1086-1094. (in Chinese with English abstract)
[24] 賈山,韓亞麗,路新亮,等. 基于人體特殊步態(tài)分析的下肢外骨骼機構(gòu)設(shè)計[J]. 機器人,2014,36(4):392-401,410.
Jia Shan, Han Yali, Lu Xinliang, et al. Design of lower extremity exoskeleton based on analysis on special human gaits[J]. Robot, 2014, 36(4): 392-401, 410. (in Chinese with English abstract)
[25] Kim W, Lee H, Kim D, et al. Mechanical design of the Hanyang exoskeleton assistive robot (HEXAR)[C]//14thInternational Conference on Control, Automation and Systems (ICCAS), 2014: 479-484.
[26] Zoss A, Kazerooni H, Chu A. On the mechanical design of the berkeley lower extremity exoskeleton (BLEEX)[J]. IEEE/ASME Transactions on Mechatronics, 2005, 11(2): 128-138.
[27] Chu A, Kazerooni H, Zoss A. On the biomimetic design of the berkeley lower extremity exoskeleton[C]//IEEE International Conference on Robotics and Automation, 2005: 4345-4352.
[28] Miao Y J, Gao F, Pan D L. Mechanical design of a hybrid leg exoskeleton to augment load-carrying for walking[J]. International Journal of Advanced Robot Systems, 2013(10): 1-11.
[29] 陳慶誠,朱世強,Mittal R,等. 基于POE的動力學(xué)建模與快速非奇異終端滑??刂芠J]. 農(nóng)業(yè)機械學(xué)報,2015,46(6):310-318.
Chen Qingcheng, Zhu Shiqiang, Mittal R, et al. Dynamic modeling based on poe and non-singular terminal sliding mode control[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(6): 310-318. (in Chinese with English abstract)
[30] 焦俊,孔文,王強,等. 基于輸入模糊化的農(nóng)用履帶機器人自適應(yīng)滑??刂芠J]. 農(nóng)業(yè)機械學(xué)報,2015,46(6):14-19,23.
Jiao Jun, Kong Wen, Wang Qiang, et al. Self-adaptive sliding mode control based on input fuzzy for agricultural tracked robot[J]. Transactions of the Chinese Society of Agricultural Machinery, 2015, 46(6): 14-19, 23. (in Chinese with English abstract)
[31] Eker I, Akinal S A. Sliding mode control with integral augmented sliding surface: Design and experimental application to an electromechanical system[J]. Electrical Engineering , 2008, 90(3): 189-197.
[32] Eker I. Sliding mode control with PID sliding surface and experimental application to an electromechanical plant[J]. Isa Transactions, 2006, 45(1): 109-118.
[33] 陳志偉,金波,朱世強,等. 液壓驅(qū)動仿生多足機器人單腿設(shè)計與試驗[J]. 農(nóng)業(yè)工程學(xué)報,2016,32(5):36-42.
Chen Zhiwei, Jin bo, Zhu Shiqiang, et al. Design and experiment of single leg of hydraulically actuated bionic multi-legged robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(5): 36—42.(in Chinese with English abstract)
[34] 潘忠強. 助力外骨骼下肢控制技術(shù)研究[D]. 杭州:浙江大學(xué),2015.
Pan Zhongqiang. Control Technique Research on Power-Assistance Exoskeleton's Lower Extremity[D]. Hangzhou: Zhejiang University, 2015.
Structure design and experiment of knee joint of hydraulic driven lower-limb power-assistance exoskeleton robot
Jin Xinglai, Zhu Shiqiang※, Zhang Xuequn, Zhu Xiaocong, Pan Zhongqiang
(College of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China)
As a kind of typical human-machine interaction robot, the powered lower-limb exoskeleton driven by hydraulics can augment wearer’s power while following wearer. This kind of exoskeleton has a broad application in military field, rescue occasions, and so on, however, there are still many technical difficulties which need to be studied, such as structure optimization. There are 3 kinds of design concepts among the exoskeleton structure design. To guarantee the flexibility and decrease the dead weight of exoskeleton, quasi-anthropomorphic design was adopted, which means the lower-limb exoskeleton is similar to leg but does not need one-to-one match. According to quasi-anthropomorphic design rule, 7 degrees of freedom for single leg were set to satisfy the freedom need of wearer. Among these 7 degrees of freedom, only 2 degrees are active which are located in sagittal plane of knee joint and hip joint. During designing the active freedom of knee joint, the core parameters are the size of hydraulic cylinder and the torque which can be produced. So it is significant to study a method which can lead to a minor size of hydraulic cylinder while producing the same torque. To optimize the structure of knee joint and its hydraulic system, the computer aided design (CAD) method and the numerical calculation method were adopted to design the structure of the hydraulic cylinder and its installation position. According to the schematic diagram of structure, the relationship of torque, arm of force, and installation position was built. Design indicators were obtained through analyzing the clinical gait analysis (CGA) data, which was widely used in lower-limb exoskeleton research. To find out the optimized parameter, MATLAB was used to present graphics which depicted the nonlinear relationship which was built before. According to the optimization method, the hydraulic driven knee joint of the lower limb exoskeleton was designed and assembled. During the normal walking phase, there are 2 kinds of torques in knee joint, which contain flexure torque and extension torque. Flexure torque is used to bend shank to avoid the collision of foot and floor while extension torque is used to extend shank to drive the body forward. The both kinds of torques are also important for a person to walk. So simulations were designed to compare the torque produced by hydraulic driven knee joint and the torque needed in normal walking which was got through CGA data. The simulation found that the designed hydraulic driven knee joint could meet the torque demand. Meanwhile, the comparison experiments were also designed and implemented. Hydraulic driven knee joint was driven to follow the motion of wearer in 2 conditions. In the first condition, the wearer just needed to bear the exoskeleton’s own weight, which was about 10 kg. In the second condition, another 10 kg load was added on the exoskeleton. It should be noted that all load was transferred to the ground through lower-limb exoskeleton, which meant the added load wouldn’t add other burden to wearer. This is the work mechanism of powered lower-limb exoskeleton. In the comparison experiments, the wearer was demanded to move a similar trajectory while it was impossible to move the same trajectory. Experiments showed that the average error was decreased by 0.05% while the maximum error was increased by 20.7%. Considering the load was increased by 100% and the motion range was large, these results clear demonstrated how the designed hydraulic driven knee joint satisfied the demand of walking with load. In conclusion, a method is proposed to fulfill the optimization of the knee joint structure of the hydraulic driven lower-limb exoskeleton, and it can obviously instruct other joint design of exoskeleton which is driven by linear actuator such as linear motor and electric cylinder.
robots; design; optimization; computer simulation; hydraulic driven; knee joint; exoskeleton; quasi- anthropomorphic
10.11975/j.issn.1002-6819.2017.05.004
TH137
A
1002-6819(2017)-05-0026-06
靳興來,朱世強,張學(xué)群,朱笑叢,潘忠強. 液壓驅(qū)動下肢助力外骨骼機器人膝關(guān)節(jié)結(jié)構(gòu)設(shè)計及試驗[J]. 農(nóng)業(yè)工程學(xué)報,2017,33(5):26-31.
10.11975/j.issn.1002-6819.2017.05.004 http://www.tcsae.org
Jin Xinglai, Zhu Shiqiang, Zhang Xuequn, Zhu Xiaocong, Pan Zhongqiang. Structure design and experiment of knee joint of hydraulic driven lower-limb power-assistance exoskeleton robot[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(5): 26-31. (in Chinese with English abstract)
doi:10.11975/j.issn.1002-6819.2017.05.004 http://www.tcsae.org
2016-10-24
2016-12-16
國家自然科學(xué)基金創(chuàng)新研究群體資助項目(51521064);浙江省自然科學(xué)基金資助項目(LY13E050001);杭州市重大科技創(chuàng)新資助項目(20132111A04)
靳興來,男,山東泰安人,博士生,主要從事外骨骼機器人的系統(tǒng)開發(fā)及控制系統(tǒng)研究。杭州 浙江大學(xué)機械工程學(xué)院,310027。
Email:21125069@zju.edu.cn
※通信作者:朱世強,男,浙江義烏人,教授,博士,主要從事機器人技術(shù)研究。杭州 浙江大學(xué)機械工程學(xué)院,310027。Email:sqzhu@zju.edu.cn