宋迎新
我們這里說(shuō)的提高中學(xué)數(shù)學(xué)教學(xué)質(zhì)量,不僅僅是為了提高學(xué)生的數(shù)學(xué)成績(jī),更重要的是能使學(xué)生學(xué)到有用的數(shù)學(xué)知識(shí)。正因?yàn)槿绱?,我認(rèn)為在中學(xué)數(shù)學(xué)教學(xué)中構(gòu)建數(shù)學(xué)建模意識(shí),無(wú)疑是我們中學(xué)數(shù)學(xué)教學(xué)改革的一個(gè)正確的方向。根據(jù)自己長(zhǎng)期的教學(xué)實(shí)踐、自己的教學(xué)體會(huì),從理論上及實(shí)踐上來(lái)談?wù)勛钪档梦覀冏鼋處熤匾暤膯?wèn)題:首先是構(gòu)建數(shù)學(xué)建模意識(shí)的基本方法。其次是通過(guò)建模教學(xué)培養(yǎng)學(xué)生的創(chuàng)新思維。
一、數(shù)學(xué)建模與數(shù)學(xué)建模意識(shí)
最著名的數(shù)學(xué)家懷特海就說(shuō)過(guò):“數(shù)學(xué)就是對(duì)于模式的研究”。這里所說(shuō)的數(shù)學(xué)模型,實(shí)際上是指對(duì)于現(xiàn)實(shí)世界的某一特定研究對(duì)象,為了某個(gè)特定的目的,在做了一些必要的簡(jiǎn)化假設(shè),運(yùn)用適當(dāng)?shù)臄?shù)學(xué)工具,并通過(guò)數(shù)學(xué)語(yǔ)言表述出來(lái)的一個(gè)數(shù)學(xué)結(jié)構(gòu),數(shù)學(xué)中的各種基本概念,都以各自相應(yīng)的現(xiàn)實(shí)原型作為背景而抽象出來(lái)的數(shù)學(xué)概念。各種數(shù)學(xué)公式、方程式、定理、理論體系等等,都是一些具體的數(shù)學(xué)模型。舉個(gè)簡(jiǎn)單的例子來(lái)說(shuō),二次函數(shù)就是一個(gè)數(shù)學(xué)模型,很多數(shù)學(xué)問(wèn)題甚至實(shí)際問(wèn)題都可以轉(zhuǎn)化為二次函數(shù)來(lái)解決。而通過(guò)對(duì)問(wèn)題數(shù)學(xué)化,模型構(gòu)建,求解檢驗(yàn)使問(wèn)題獲得解決的方法稱之為數(shù)學(xué)模型方法。我們的數(shù)學(xué)教學(xué)說(shuō)到底實(shí)際上就是教給學(xué)生前人給我們構(gòu)建的一個(gè)個(gè)數(shù)學(xué)模型和怎樣構(gòu)建模型的思想方法,以使學(xué)生能運(yùn)用數(shù)學(xué)模型解決數(shù)學(xué)問(wèn)題和實(shí)際問(wèn)題。
具體的講數(shù)學(xué)模型方法的操作程序大致上為:實(shí)際問(wèn)題→分析抽象→建立模型→數(shù)學(xué)問(wèn)題(檢驗(yàn) ← 實(shí)際解 ← 釋譯 ← 數(shù)學(xué)解)。由此可見(jiàn),我們作為數(shù)學(xué)教師要培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)建模解決實(shí)際問(wèn)題的能力,關(guān)鍵是把實(shí)際問(wèn)題抽象為數(shù)學(xué)問(wèn)題,必須首先通過(guò)觀察分析、提煉出實(shí)際問(wèn)題的數(shù)學(xué)模型,然后再把數(shù)學(xué)模型納入某知識(shí)系統(tǒng)去處理,這不但要求學(xué)生有一定的抽象能力,而且要有相當(dāng)?shù)挠^察、分析、綜合、類比能力。而學(xué)生的這種能力的獲得并不是一朝一夕的事情,恰恰需要把數(shù)學(xué)建模意識(shí)貫穿在教學(xué)的始終,也就是要不斷的引導(dǎo)學(xué)生用數(shù)學(xué)思維的觀點(diǎn)去觀察、分析和表示各種事物關(guān)系、空間關(guān)系和數(shù)學(xué)信息,從紛繁復(fù)雜的具體問(wèn)題中抽象出我們熟悉的數(shù)學(xué)模型,進(jìn)而達(dá)到用數(shù)學(xué)模型來(lái)解決實(shí)際問(wèn)題,使數(shù)學(xué)建模意識(shí)成為學(xué)生思考問(wèn)題的方法和習(xí)慣。
二、構(gòu)建數(shù)學(xué)建模意識(shí)的基本途徑
為了培養(yǎng)學(xué)生的建模意識(shí),我們中學(xué)數(shù)學(xué)教師應(yīng)率先需要提高自己的建模意識(shí)。這不僅意味著我們?cè)诮虒W(xué)內(nèi)容和要求上的變化,更意味著教育思想和教學(xué)觀念的更新。我們中學(xué)數(shù)學(xué)教師除需要了解數(shù)學(xué)科學(xué)的發(fā)展歷史和發(fā)展動(dòng)態(tài)之外,還需要不斷地學(xué)習(xí)一些新的數(shù)學(xué)建模理論,并且努力鉆研如何把中學(xué)數(shù)學(xué)知識(shí)應(yīng)用于現(xiàn)實(shí)生活。
其次,數(shù)學(xué)建模教學(xué)還應(yīng)與現(xiàn)行教材結(jié)合起來(lái)研究。我們中學(xué)數(shù)學(xué)教師應(yīng)研究在各個(gè)教學(xué)章節(jié)中可引入哪些模型問(wèn)題,如講立體幾何時(shí)可引入正方體模型或長(zhǎng)方體模型把相關(guān)問(wèn)題放入到這些模型中來(lái)解決;又如在解幾中講了兩點(diǎn)間的距離公式后,可引入兩點(diǎn)間的距離模型解決一些具體問(wèn)題,而儲(chǔ)蓄問(wèn)題、信用貸款問(wèn)題則可結(jié)合在數(shù)列教學(xué)中。要經(jīng)常滲透建模意識(shí),這樣通過(guò)教師的潛移默化,學(xué)生可以從各類大量的建模問(wèn)題中逐步領(lǐng)悟到數(shù)學(xué)建模的廣泛應(yīng)用,從而激發(fā)學(xué)生去研究數(shù)學(xué)建模的興趣,提高他們運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行建模的能力。
還有,要注意與其它相關(guān)學(xué)科的關(guān)系整合。由于數(shù)學(xué)是學(xué)生學(xué)習(xí)其它自然科學(xué)以至社會(huì)科學(xué)的工具而且其它學(xué)科與數(shù)學(xué)的聯(lián)系是相當(dāng)密切的。因此我們?cè)诮虒W(xué)中應(yīng)注意與其它學(xué)科的呼應(yīng),這不但可以幫助學(xué)生加深對(duì)其它學(xué)科的理解,也是培養(yǎng)學(xué)生建模意識(shí)的一個(gè)不可忽視的途徑。這樣的模型意識(shí)不僅僅是抽象的數(shù)學(xué)知識(shí),而且將對(duì)他們學(xué)習(xí)其它學(xué)科的知識(shí)以及將來(lái)用數(shù)學(xué)建模知識(shí)探討各種邊緣學(xué)科產(chǎn)生深遠(yuǎn)的影響。
另外,在教學(xué)中還要結(jié)合專題討論與建模法研究。我們中學(xué)數(shù)學(xué)教師還可以選擇適當(dāng)?shù)慕n},如“代數(shù)法建?!薄ⅰ皥D解法建?!薄ⅰ爸保ㄇ┚€擬合法建?!保ㄟ^(guò)討論、分析和研究,熟悉并理解數(shù)學(xué)建模的一些重要思想,掌握建模的基本方法。甚至可以引導(dǎo)學(xué)生通過(guò)對(duì)日常生活的觀察,自己選擇實(shí)際問(wèn)題進(jìn)行建模練習(xí),從而讓學(xué)生嘗到數(shù)學(xué)建模成功的“甜”和難于解決的“苦”借亦拓寬視野、增長(zhǎng)知識(shí)、積累經(jīng)驗(yàn)。這亦符合玻利亞的“主動(dòng)學(xué)習(xí)原則”,也正所謂“學(xué)問(wèn)之道,問(wèn)而得,不如求而得之深固也”。
綜上所述,我們?cè)跀?shù)學(xué)教育教學(xué)中,構(gòu)建學(xué)生的數(shù)學(xué)建模意識(shí)與素質(zhì)教學(xué)所要求的培養(yǎng)學(xué)生的創(chuàng)造性思維能力是相輔相成,密不可分的。我們要真正培養(yǎng)學(xué)生的創(chuàng)新能力,光憑傳授知識(shí)是遠(yuǎn)遠(yuǎn)不夠的,重要的是在教學(xué)中必須堅(jiān)持以學(xué)生為主體,不能脫離學(xué)生搞一些不切實(shí)際的建模教學(xué),我們的一切教學(xué)活動(dòng)必須以調(diào)動(dòng)學(xué)生的主觀能動(dòng)性,培養(yǎng)學(xué)生的創(chuàng)新思維為出發(fā)點(diǎn),引導(dǎo)學(xué)生自主活動(dòng),自覺(jué)的在學(xué)習(xí)過(guò)程中構(gòu)建數(shù)學(xué)建模意識(shí),只有這樣才能使學(xué)生分析和解決問(wèn)題的能力得到長(zhǎng)足的進(jìn)步,也只有這樣才能真正提高學(xué)生的創(chuàng)新能力,使學(xué)生學(xué)到有用的數(shù)學(xué)。